Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The lymphocyte function-associated antigen-1 receptor costimulates plasma membrane Ras via phospholipase D2

Abstract

Ras activation as a consequence of antigen receptor (T-cell receptor; TCR) engagement on T lymphocytes is required for T-cell development, selection and function. Lymphocyte function-associated antigen-1 (LFA-1) mediates lymphocyte adhesion, stabilization of the immune synapse and bidirectional signalling. Using a fluorescent biosensor we found that TCR activation with or without costimulation of CD28 led to activation of Ras only on the Golgi apparatus, whereas costimulation with LFA-1 induced Ras activation on both the Golgi and the plasma membrane. Ras activation on both compartments required RasGRP1, an exchange factor regulated by calcium and diacylglycerol (DAG), but phospholipase C (PLC) activity was required only for activation on the Golgi. Engagement of LFA-1 increased DAG levels at the plasma membrane by stimulating phospholipase D (PLD). PLD2 and phosphatidic acid phosphatase (PAP) were required for Ras activation on the plasma membrane. Thus, LFA-1 acts through PLD2 to reshape the pattern of Ras activation downstream of the TCR.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Costimulation of LFA-1 is required for TCR activation of Ras at the plasma membrane.
Figure 2: LFA-1 costimulates TCR activation of the Ras/MAPK pathway.
Figure 3: Costimulation through LFA-1 is required to elevate DAG levels and recruit RasGRP1 to the plasma membrane.
Figure 4: Costimulation of plasma membrane Ras activation by LFA-1 does not require PLCγ1.
Figure 5: Costimulation of plasma membrane Ras activation by LFA-1 requires PLD2.

Similar content being viewed by others

References

  1. Pérez de Castro, I., Bivona, T., Philips, M. & Pellicer, A. Ras activation in Jurkat T cells following low-grade stimulation of the T-cell receptor is specific to N-Ras and occurs only on the Golgi. Mol. Cell Biol. 24, 3485–3496 (2004).

    Article  Google Scholar 

  2. Chiu, V. K. et al. Ras signalling on the endoplasmic reticulum and the Golgi. Nature Cell Biol. 4, 343–350 (2002).

    Article  CAS  Google Scholar 

  3. Bivona, T. G. et al. Phospholipase Cγ activates Ras on the Golgi apparatus by means of RasGRP1. Nature 424, 694–698 (2003).

    Article  CAS  Google Scholar 

  4. Daniels, M. A. et al. Thymic selection threshold defined by compartmentalization of Ras/MAPK signalling. Nature 444, 724–729 (2006).

    Article  CAS  Google Scholar 

  5. Mor, A. & Philips, M. R. Compartmentalized Ras/MAPK signaling. Annu. Rev. Immunol. 24, 771–800 (2006).

    Article  CAS  Google Scholar 

  6. Goodwin, J. S. et al. Depalmitoylated Ras traffics to and from the Golgi complex via a nonvesicular pathway. J. Cell Biol. 170, 261–272 (2005).

    Article  CAS  Google Scholar 

  7. Rocks, O. et al. An acylation cycle regulates localization and activity of palmitoylated Ras isoforms. Science 307, 1746–1752 (2005).

    Article  CAS  Google Scholar 

  8. Bivona, T. G. et al. PKC regulates a farnesyl-electrostatic switch on K-Ras that promotes its association with Bcl-XL on mitochondria and induces apoptosis. Mol. Cell 21, 481–493 (2006).

    Article  CAS  Google Scholar 

  9. Yeung, T. et al. Receptor activation alters inner surface potential during phagocytosis. Science 313, 347–351 (2006).

    Article  CAS  Google Scholar 

  10. Warnock, R. A., Askari, S., Butcher, E. C. & von Andrian, U. H. Molecular mechanisms of lymphocyte homing to peripheral lymph nodes. J. Exp. Med. 187, 205–216 (1998).

    Article  CAS  Google Scholar 

  11. Berlin-Rufenach, C. et al. Lymphocyte migration in lymphocyte function-associated antigen (LFA)-1-deficient mice. J. Exp. Med. 189, 1467–1478 (1999).

    Article  CAS  Google Scholar 

  12. Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221–227 (1999).

    Article  CAS  Google Scholar 

  13. Anikeeva, N. et al. Distinct role of lymphocyte function-associated antigen-1 in mediating effective cytolytic activity by cytotoxic T lymphocytes. Proc. Natl Acad. Sci. USA 102, 6437–6442 (2005).

    Article  CAS  Google Scholar 

  14. Dustin, M. L. & Springer, T. A. T-cell receptor cross-linking transiently stimulates adhesiveness through LFA-1. Nature 341, 619–624 (1989).

    Article  CAS  Google Scholar 

  15. Geiger, C. et al. Cytohesin-1 regulates beta-2 integrin-mediated adhesion through both ARF-GEF function and interaction with LFA-1. EMBO J. 19, 2525–2536 (2000).

    Article  CAS  Google Scholar 

  16. Kim, M., Carman, C. V. & Springer, T. A. Bidirectional transmembrane signaling by cytoplasmic domain separation in integrins. Science 301, 1720–1725 (2003).

    Article  CAS  Google Scholar 

  17. Bianchi, E. et al. Integrin LFA-1 interacts with the transcriptional co-activator JAB1 to modulate AP-1 activity. Nature 404, 617–621 (2000).

    Article  CAS  Google Scholar 

  18. Perez, O. D. et al. Leukocyte functional antigen 1 lowers T cell activation thresholds and signaling through cytohesin-1 and Jun-activating binding protein 1. Nature Immunol. 4, 1083–1092 (2003).

    Article  CAS  Google Scholar 

  19. Linsley, P. S. et al. Binding of the B cell activation antigen B7 to CD28 costimulates T cell proliferation and interleukin 2 mRNA accumulation. J. Exp. Med. 173, 721–730 (1991).

    Article  CAS  Google Scholar 

  20. Dower, N. A. et al. RasGRP is essential for mouse thymocyte differentiation and TCR signaling. Nature Immunol. 1, 317–321 (2000).

    Article  CAS  Google Scholar 

  21. Bankaitis, V. A. Cell biology. Slick recruitment to the Golgi. Science 295, 290–291 (2002).

    Article  CAS  Google Scholar 

  22. Oancea, E., Teruel, M. N., Quest, A. F. & Meyer, T. Green fluorescent protein (GFP)-tagged cysteine-rich domains from protein kinase C as fluorescent indicators for diacylglycerol signaling in living cells. J. Cell Biol. 140, 485–498 (1998).

    Article  CAS  Google Scholar 

  23. Hoer, A. & Oberdisse, E. Characterization of a phosphatidic acid phosphatase from rat brain cell membranes. Naunyn Schmiedebergs Arch. Pharmacol. 350, 653–661 (1994).

    Article  CAS  Google Scholar 

  24. Corrotte, M. et al. Dynamics and function of phospholipase D and phosphatidic acid during phagocytosis. Traffic 7, 365–377 (2006).

    Article  CAS  Google Scholar 

  25. Frohman, M. A., Sung, T. C. & Morris, A. J. Mammalian phospholipase D structure and regulation. Biochim. Biophys. Acta. 1439, 175–186 (1999).

    Article  CAS  Google Scholar 

  26. Olenchock, B. A. et al. Disruption of diacylglycerol metabolism impairs the induction of T cell anergy. Nature Immunol. 7, 1174–1181 (2006).

    Article  CAS  Google Scholar 

  27. Zha, Y. et al. T cell anergy is reversed by active Ras and is regulated by diacylglycerol kinase-alpha. Nature Immunol. 7, 1166–1173 (2006).

    Article  CAS  Google Scholar 

  28. Campi, G., Varma, R. & Dustin, M. L. Actin and agonist MHC-peptide complex-dependent T cell receptor microclusters as scaffolds for signaling. J. Exp. Med. 202, 1031–1036 (2005).

    Article  CAS  Google Scholar 

  29. Katagiri, K., Maeda, A., Shimonaka, M. & Kinashi, T. RAPL, a Rap1-binding molecule that mediates Rap1-induced adhesion through spatial regulation of LFA-1. Nature Immunol. 4, 741–748 (2003).

    Article  CAS  Google Scholar 

  30. Zheng, Y. et al. Phospholipase D couples survival and migration signals in stress response of human cancer cells. J. Biol. Chem. 281, 15862–15868 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Stone for generously supplying Ras–GRP1-deficient mice. We thank M. Frohman for PLD expression plasmids. We thank Y. Nozawa for antibodies against PLD2. This work was supported by grants from the National Institutes of Health and the Arthritis National Research Foundation.

Author information

Authors and Affiliations

Authors

Contributions

A.M. and M.R.P. designed and analysed all experiments and prepared the manuscript. A.M. performed all experimental work. G.C. and M.L.D. assisted with ICAM-1 stimulation and T-cell imaging. G.D. assisted with PLD2 knockdown. Y.Z. and D.A.F. assisted with the PLD assay. M.L.D. and D.A.F. contributed to the discussion.

Corresponding author

Correspondence to Mark R. Philips.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1, S2, S3 and S4 (PDF 169 kb)

Supplementary Information

Supplementary Movie 1 (MOV 1710 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mor, A., Campi, G., Du, G. et al. The lymphocyte function-associated antigen-1 receptor costimulates plasma membrane Ras via phospholipase D2. Nat Cell Biol 9, 713–719 (2007). https://doi.org/10.1038/ncb1592

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1592

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing