Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An interaction between integrin and the talin FERM domain mediates integrin activation but not linkage to the cytoskeleton

Abstract

Transmembrane adhesion receptors, such as integrins, mediate cell adhesion by interacting with intracellular proteins that connect to the cytoskeleton. Talin, one such linker protein, is thought to have two roles: mediating inside-out activation of integrins, and connecting extracellular matrix (ECM)-bound integrins to the cytoskeleton1. Talin's amino-terminal head, which consists of a FERM domain, binds an NPxY motif within the cytoplasmic tail of most integrin β subunits2. This is consistent with the role of FERM domains in recruiting other proteins to the plasma membrane3. We tested the role of the talin-head–NPxY interaction in integrin function in Drosophila. We found that introduction of a mutation that perturbs this binding in vitro2 into the isolated talin head disrupts its recruitment by integrins in vivo. Surprisingly, when engineered into the full-length talin, this mutation did not disrupt talin recruitment by integrins nor its ability to connect integrins to the cytoskeleton. However, it reduced the ability of talin to strengthen integrin adhesion to the ECM, indicating that the function of the talin-head–NPxY interaction is solely to regulate integrin adhesion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Recruitment of integrin-binding domains of talin.
Figure 2: Talin(R367A) function in the embryo.
Figure 3: Talin(R367A) still clusters integrins.
Figure 4: Consequences of truncating the βPS cytoplasmic domain.

Similar content being viewed by others

References

  1. Nayal, A., Webb, D. J. & Horwitz, A. F. Talin: an emerging focal point of adhesion dynamics. Curr. Opin. Cell Biol. 16, 94–98 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Garcia-Alvarez, B. et al. Structural determinants of integrin recognition by talin. Mol. Cell 11, 49–58 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Chishti, A. H. et al. The FERM domain: a unique module involved in the linkage of cytoplasmic proteins to the membrane. Trends Biochem. Sci. 23, 281–282 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Hynes, R. O. Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–687 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Bretscher, A., Edwards, K. & Fehon, R. G. ERM proteins and merlin: integrators at the cell cortex. Nature Rev. Mol. Cell Biol. 3, 586–599 (2002).

    Article  CAS  Google Scholar 

  6. Becam, I. E., Tanentzapf, G., Lepesant, J. A., Brown, N. H. & Huynh, J. R. Integrin-independent repression of cadherin transcription by talin during axis formation in Drosophila. Nature Cell Biol. 7, 510–516 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Tadokoro, S. et al. Talin binding to integrin beta tails: a final common step in integrin activation. Science 302, 103–106 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Martin-Bermudo, M. D., Dunin-Borkowski, O. M. & Brown, N. H. Modulation of integrin activity is vital for morphogenesis. J. Cell Biol. 141, 1073–1081 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brown, N. H. et al. Talin is essential for integrin function in Drosophila. Dev. Cell 3, 569–579 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Du, X. P. et al. Ligands 'activate' integrin αIIbβ3 (platelet GPIIb-IIIa). Cell 65, 409–416 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Kaapa, A., Peter, K. & Ylanne, J. Effects of mutations in the cytoplasmic domain of integrin β1 to talin binding and cell spreading. Exp. Cell Res. 250, 524–534 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Calderwood, D. A. et al. The talin head domain binds to integrin β subunit cytoplasmic tails and regulates integrin activation. J. Biol. Chem. 274, 28071–28074 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Ulmer, T. S., Calderwood, D. A., Ginsberg, M. H. & Campbell, I. D. Domain-specific interactions of talin with the membrane-proximal region of the integrin β3 subunit. Biochemistry 42, 8307–8312 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Tanentzapf, G., Martin-Bermudo, M. D., Hicks, M. S. & Brown, N. H. Multiple factors contribute to integrin–talin interactions in vivo. J. Cell Sci. 119, 1632−1644 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Brower, D. L. & Jaffe, S. M. Requirement for integrins during Drosophila wing development. Nature 342, 285–287 (1989).

    Article  CAS  PubMed  Google Scholar 

  16. Yagi, R. et al. A novel muscle LIM-only protein is generated from the paxillin gene locus in Drosophila. EMBO Rep. 2, 814–820 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Clark, K. A., McGrail, M. & Beckerle, M. C. Analysis of PINCH function in Drosophila demonstrates its requirement in integrin-dependent cellular processes. Development 130, 2611–2621 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Grabbe, C., Zervas, C. G., Hunter, T., Brown, N. H. & Palmer, R. H. Focal adhesion kinase is not required for integrin function or viability in Drosophila. Development 131, 5795–5805 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Carman, C. V. & Springer, T. A. Integrin avidity regulation: are changes in affinity and conformation underemphasized? Curr. Opin. Cell Biol. 15, 547–556 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Prokop, A., Martin-Bermudo, M. D., Bate, M. & Brown, N. H. Absence of PS integrins or laminin A affects extracellular adhesion, but not intracellular assembly, of hemiadherens and neuromuscular junctions in Drosophila embryos. Dev. Biol. 196, 58–76 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. O'Toole, T. E. et al. Integrin cytoplasmic domains mediate inside-out signal transduction. J. Cell Biol. 124, 1047–1059 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Cluzel, C. et al. The mechanisms and dynamics of αvβ3 integrin clustering in living cells. J. Cell Biol. 171, 383–392 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tremuth, L. et al. A fluorescence cell biology approach to map the second integrin-binding site of talin to a 130-amino acid sequence within the rod domain. J. Biol. Chem. 279, 22258–22266 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Grinblat, Y., Zusman, S., Yee, G., Hynes, R. O. & Kafatos, F. C. Functions of the cytoplasmic domain of the βPS integrin subunit during Drosophila development. Development 120, 91–102 (1994).

    CAS  PubMed  Google Scholar 

  25. Jannuzi, A. L. et al. Disruption of C-terminal cytoplasmic domain of βPS integrin subunit has dominant negative properties in developing Drosophila. Mol. Biol. Cell 13, 1352–1365 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chou, T. B. & Perrimon, N. The autosomal FLP-DFS technique for generating germline mosaics in Drosophila melanogaster. Genetics 144, 1673–1679 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Tepass, U. Crumbs, a component of the apical membrane, is required for zonula adherens formation in primary epithelia of Drosophila. Dev. Biol. 177, 217–225 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Brower, D. L., Wilcox, M., Piovant, M., Smith, R. J. & Reger, L. A. Related cell-surface antigens expressed with positional specificity in Drosophila imaginal discs. Proc. Natl Acad. Sci. USA 81, 7485–7489 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bogaert, T., Brown, N. & Wilcox, M. The Drosophila PS2 antigen is an invertebrate integrin that, like the fibronectin receptor, becomes localized to muscle attachments. Cell 51, 929–940 (1987).

    Article  CAS  PubMed  Google Scholar 

  30. Fogerty, F. J. et al. Tiggrin, a novel Drosophila extracellular matrix protein that functions as a ligand for Drosophila αPS2 βPS integrins. Development 120, 1747–1758 (1994).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to J. Overton for technical support, and members of the Brown laboratory for critical reading of the manuscript and helpful discussions. This work was supported by a Human Frontiers Scientific Program fellowship to G.T. and Wellcome Trust grant 69943 to N.H.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas H. Brown.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1 and S2 (PDF 270 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanentzapf, G., Brown, N. An interaction between integrin and the talin FERM domain mediates integrin activation but not linkage to the cytoskeleton. Nat Cell Biol 8, 601–606 (2006). https://doi.org/10.1038/ncb1411

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1411

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing