Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

A conceptual framework for the identification of candidate drugs and drug targets in acute promyelocytic leukemia

Abstract

Chromosomal translocations of transcription factors generating fusion proteins with aberrant transcriptional activity are common in acute leukemia. In acute promyelocytic leukemia (APL), the promyelocytic leukemia–retinoic-acid receptor alpha (PML-RARA) fusion protein, which emerges as a consequence of the t(15;17) translocation, acts as a transcriptional repressor that blocks neutrophil differentiation at the promyelocyte (PM) stage. In this study, we used publicly available microarray data sets and identified signatures of genes dysregulated in APL by comparison of gene expression profiles of APL cells and normal PMs representing the same stage of differentiation. We next subjected our identified APL signatures of dysregulated genes to a series of computational analyses leading to (i) the finding that APL cells show stem cell properties with respect to gene expression and transcriptional regulation, and (ii) the identification of candidate drugs and drug targets for therapeutic interventions. Significantly, our study provides a conceptual framework that can be applied to any subtype of AML and cancer in general to uncover novel information from published microarray data sets at low cost. In a broader perspective, our study provides strong evidence that genomic strategies might be used in a clinical setting to prospectively identify candidate drugs that subsequently are validated in vitro to define the most effective drug combination for individual cancer patients on a rational basis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Estey E, Dohner H . Acute myeloid leukaemia. Lancet 2006; 368: 1894–1907.

    Article  PubMed  Google Scholar 

  2. Bullinger L, Dohner K, Bair E, Frohling S, Schlenk RF, Tibshirani R et al. Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N Engl J Med 2004; 350: 1605–1616.

    Article  CAS  PubMed  Google Scholar 

  3. Valk PJ, Verhaak RG, Beijen MA, Erpelinck CA, Barjesteh van Waalwijk van Doorn-Khosrovani S, Boer JM et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med 2004; 350: 1617–1628.

    Article  CAS  PubMed  Google Scholar 

  4. Collins SJ . Retinoic acid receptors, hematopoiesis and leukemogenesis. Curr Opin Hematol 2008; 15: 346–351.

    Article  CAS  PubMed  Google Scholar 

  5. Wang ZY, Chen Z . Acute promyelocytic leukemia: from highly fatal to highly curable. Blood 2008; 111: 2505–2515.

    Article  CAS  PubMed  Google Scholar 

  6. Minucci S, Pelicci PG . Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 2006; 6: 38–51.

    Article  CAS  PubMed  Google Scholar 

  7. Lin RJ, Evans RM . Acquisition of oncogenic potential by RAR chimeras in acute promyelocytic leukemia through formation of homodimers. Mol Cell 2000; 5: 821–830.

    Article  CAS  PubMed  Google Scholar 

  8. Licht JD . Reconstructing a disease: what essential features of the retinoic acid receptor fusion oncoproteins generate acute promyelocytic leukemia? Cancer Cell 2006; 9: 73–74.

    Article  CAS  PubMed  Google Scholar 

  9. Villa R, Pasini D, Gutierrez A, Morey L, Occhionorelli M, Vire E et al. Role of the polycomb repressive complex 2 in acute promyelocytic leukemia. Cancer Cell 2007; 11: 513–525.

    Article  CAS  PubMed  Google Scholar 

  10. Kamashev D, Vitoux D, De The H . PML-RARA-RXR oligomers mediate retinoid and rexinoid/cAMP cross-talk in acute promyelocytic leukemia cell differentiation. J Exp Med 2004; 199: 1163–1174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gutierrez NC, Lopez-Perez R, Hernandez JM, Isidro I, Gonzalez B, Delgado M et al. Gene expression profile reveals deregulation of genes with relevant functions in the different subclasses of acute myeloid leukemia. Leukemia 2005; 19: 402–409.

    Article  CAS  PubMed  Google Scholar 

  12. Stegmaier K, Ross KN, Colavito SA, O'Malley S, Stockwell BR, Golub TR . Gene expression-based high-throughput screening(GE-HTS) and application to leukemia differentiation. Nat Genet 2004; 36: 257–263.

    Article  CAS  PubMed  Google Scholar 

  13. Eckfeldt CE, Mendenhall EM, Flynn CM, Wang TF, Pickart MA, Grindle SM et al. Functional analysis of human hematopoietic stem cell gene expression using zebrafish. PLoS Biol 2005; 3: e254.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Theilgaard-Monch K, Jacobsen LC, Borup R, Rasmussen T, Bjerregaard MD, Nielsen FC et al. The transcriptional program of terminal granulocytic differentiation. Blood 2005; 105: 1785–1796.

    Article  PubMed  Google Scholar 

  15. Wu ZJ, Irizarry RA, Gentleman R, Martinez-Murillo F, Spencer F . A model-based background adjustment for oligonucleotide expression arrays. J Am Stat Assoc 2004; 99: 909–917.

    Article  Google Scholar 

  16. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 2004; 5: R80.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102: 15545–15550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Marstrand TT, Frellsen J, Moltke I, Thiim M, Valen E, Retelska D et al. Asap: a framework for over-representation statistics for transcription factor binding sites. PLoS ONE 2008; 3: e1623.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bryne JC, Valen E, Tang MH, Marstrand T, Winther O, da Piedade I et al. JASPAR, the open access database of transcription factor-binding profiles: new content and tools in the 2008 update. Nucleic Acids Res 2008; 36 (Database issue): D102–D106.

    CAS  PubMed  Google Scholar 

  20. Matys V, Kel-Margoulis OV, Fricke E, Liebich I, Land S, Barre-Dirrie A et al. TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res 2006; 34 (Database issue): D108–D110.

    Article  CAS  PubMed  Google Scholar 

  21. Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 2006; 313: 1929–1935.

    Article  CAS  PubMed  Google Scholar 

  22. Lamb J . The Connectivity Map: a new tool for biomedical research. Nat Rev Cancer 2007; 7: 54–60.

    Article  CAS  PubMed  Google Scholar 

  23. Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A . ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 2003; 31: 3784–3788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Diaz-Uriarte R, Alvarez de Andres S . Gene selection and classification of microarray data using random forest. BMC Bioinformatics 2006; 7: 3.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Porse BT, Pedersen TA, Xu X, Lindberg B, Wewer UM, Friis-Hansen L et al. E2F repression by C/EBPalpha is required for adipogenesis and granulopoiesis in vivo. Cell 2001; 107: 247–258.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang P, Iwasaki-Arai J, Iwasaki H, Fenyus ML, Dayaram T, Owens BM et al. Enhancement of hematopoietic stem cell repopulating capacity and self-renewal in the absence of the transcription factor C/EBP alpha. Immunity 2004; 21: 853–863.

    Article  CAS  PubMed  Google Scholar 

  27. Radich JP, Dai H, Mao M, Oehler V, Schelter J, Druker B et al. Gene expression changes associated with progression and response in chronic myeloid leukemia. Proc Natl Acad Sci USA 2006; 103: 2794–2799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Robertson KA, Hill DP, Kelley MR, Tritt R, Crum B, Van Epps S et al. The myeloid zinc finger gene (MZF-1) delays retinoic acid-induced apoptosis and differentiation in myeloid leukemia cells. Leukemia 1998; 12: 690–698.

    Article  CAS  PubMed  Google Scholar 

  29. Salomon-Nguyen F, Della-Valle V, Mauchauffe M, Busson-Le Coniat M, Ghysdael J, Berger R et al. The t(1;12)(q21;p13) translocation of human acute myeloblastic leukemia results in a TEL-ARNT fusion. Proc Natl Acad Sci USA 2000; 97: 6757–6762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Min IM, Pietramaggiori G, Kim FS, Passegue E, Stevenson KE, Wagers AJ . The transcription factor EGR1 controls both the proliferation and localization of hematopoietic stem cells. Cell Stem Cell 2008; 2: 380–391.

    Article  CAS  PubMed  Google Scholar 

  31. Pyatt DW, Stillman WS, Yang Y, Gross S, Zheng JH, Irons RD . An essential role for NF-kappaB in human CD34(+) bone marrow cell survival. Blood 1999; 93: 3302–3308.

    CAS  PubMed  Google Scholar 

  32. Hassane DC, Guzman ML, Corbett C, Li X, Abboud R, Young F et al. Discovery of agents that eradicate leukemia stem cells using an in silico screen of public gene expression data. Blood 2008; 111: 5654–5662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sved P, Scott KF, McLeod D, King NJ, Singh J, Tsatralis T et al. Oncogenic action of secreted phospholipase A2 in prostate cancer. Cancer Res 2004; 64: 6934–6940.

    Article  CAS  PubMed  Google Scholar 

  34. Sanz MA, Montesinos P, Vellenga E, Rayon C, de la Serna J, Parody R et al. Risk-adapted treatment of acute promyelocytic leukemia with all-trans retinoic acid and anthracycline monochemotherapy: long-term outcome of the LPA 99 multicenter study by the PETHEMA Group. Blood 2008; 112: 3130–3134.

    Article  CAS  PubMed  Google Scholar 

  35. Asou N, Kishimoto Y, Kiyoi H, Okada M, Kawai Y, Tsuzuki M et al. A randomized study with or without intensified maintenance chemotherapy in patients with acute promyelocytic leukemia who have become negative for PML-RARalpha transcript after consolidation therapy: the Japan Adult Leukemia Study Group (JALSG) APL97 study. Blood 2007; 110: 59–66.

    Article  CAS  PubMed  Google Scholar 

  36. Lanotte M, Martin-Thouvenin V, Najman S, Balerini P, Valensi F, Berger R . NB4, a maturation inducible cell line with t(15;17) marker isolated from a human acute promyelocytic leukemia (M3). Blood 1991; 77: 1080–1086.

    CAS  PubMed  Google Scholar 

  37. Rucker FG, Sander S, Dohner K, Dohner H, Pollack JR, Bullinger L . Molecular profiling reveals myeloid leukemia cell lines to be faithful model systems characterized by distinct genomic aberrations. Leukemia 2006; 20: 994–1001.

    Article  CAS  PubMed  Google Scholar 

  38. Pajak B, Gajkowska B, Orzechowski A . Molecular basis of parthenolide-dependent proapoptotic activity in cancer cells. Folia Histochem Cytobiol 2008; 46: 129–135.

    Article  CAS  PubMed  Google Scholar 

  39. Kirstetter P, Schuster MB, Bereshchenko O, Moore S, Dvinge H, Kurz E et al. Modeling of C/EBPalpha mutant acute myeloid leukemia reveals a common expression signature of committed myeloid leukemia-initiating cells. Cancer Cell 2008; 13: 299–310.

    Article  CAS  PubMed  Google Scholar 

  40. Krivtsov AV, Twomey D, Feng Z, Stubbs MC, Wang Y, Faber J et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 2006; 442: 818–822.

    Article  CAS  PubMed  Google Scholar 

  41. Shi L, Reid LH, Jones WD, Shippy R, Warrington JA, Baker SC et al. The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat Biotechnol 2006; 24: 1151–1161.

    Article  CAS  PubMed  Google Scholar 

  42. Guibal FC, Alberich-Jorda M, Hirai H, Ebralidze A, Levantini E, Di Ruscio A et al. Identification of a myeloid committed progenitor as the cancer initiating cell in acute promyelocytic leukemia. Blood 2009; 114: 5415–5425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Trumpp A, Wiestler OD . Mechanisms of disease: cancer stem cells—targeting the evil twin. Nat Clin Pract Oncol 2008; 5: 337–347.

    Article  CAS  PubMed  Google Scholar 

  44. Wojiski S, Guibal FC, Kindler T, Lee BH, Jesneck JL, Fabian A et al. PML-RARalpha initiates leukemia by conferring properties of self-renewal to committed promyelocytic progenitors. Leukemia 2009; 23: 1462–1471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bolden JE, Peart MJ, Johnstone RW . Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 2006; 5: 769–784.

    Article  CAS  PubMed  Google Scholar 

  46. Nebbioso A, Clarke N, Voltz E, Germain E, Ambrosino C, Bontempo P et al. Tumor-selective action of HDAC inhibitors involves TRAIL induction in acute myeloid leukemia cells. Nat Med 2005; 11: 77–84.

    Article  CAS  PubMed  Google Scholar 

  47. He LZ, Tolentino T, Grayson P, Zhong S, Warrell Jr RP, Rifkind RA et al. Histone deacetylase inhibitors induce remission in transgenic models of therapy-resistant acute promyelocytic leukemia. J Clin Invest 2001; 108: 1321–1330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Insinga A, Monestiroli S, Ronzoni S, Gelmetti V, Marchesi F, Viale A et al. Inhibitors of histone deacetylases induce tumor-selective apoptosis through activation of the death receptor pathway. Nat Med 2005; 11: 71–76.

    Article  CAS  PubMed  Google Scholar 

  49. Warrell Jr RP, He LZ, Richon V, Calleja E, Pandolfi PP . Therapeutic targeting of transcription in acute promyelocytic leukemia by use of an inhibitor of histone deacetylase. J Natl Cancer Inst 1998; 90: 1621–1625.

    Article  CAS  PubMed  Google Scholar 

  50. Steelman LS, Abrams SL, Whelan J, Bertrand FE, Ludwig DE, Basecke J et al. Contributions of the Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways to leukemia. Leukemia 2008; 22: 686–707.

    Article  CAS  PubMed  Google Scholar 

  51. Yuan TL, Cantley LC . PI3K pathway alterations in cancer: variations on a theme. Oncogene 2008; 27: 5497–5510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Park S, Chapuis N, Bardet V, Tamburini J, Gallay N, Willems L et al. PI-103, a dual inhibitor of class IA phosphatidylinositide 3-kinase and mTOR, has antileukemic activity in AML. Leukemia 2008; 22: 1698–1706.

    Article  CAS  PubMed  Google Scholar 

  53. Kharas MG, Janes MR, Scarfone VM, Lilly MB, Knight ZA, Shokat KM et al. Ablation of PI3K blocks BCR-ABL leukemogenesis in mice, and a dual PI3K/mTOR inhibitor prevents expansion of human BCR-ABL+ leukemia cells. J Clin Invest 2008; 118: 3038–3050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Weisberg E, Banerji L, Wright RD, Barrett R, Ray A, Moreno D et al. Potentiation of antileukemic therapies by the dual PI3K/PDK-1 inhibitor, BAG956: effects on BCR-ABL- and mutant FLT3-expressing cells. Blood 2008; 111: 3723–3734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Grandage VL, Gale RE, Linch DC, Khwaja A . PI3-kinase/Akt is constitutively active in primary acute myeloid leukaemia cells and regulates survival and chemoresistance via NF-kappaB, Mapkinase and p53 pathways. Leukemia 2005; 19: 586–594.

    Article  CAS  PubMed  Google Scholar 

  56. Cummings BS . Phospholipase A2 as targets for anti-cancer drugs. Biochem Pharmacol 2007; 74: 949–959.

    Article  CAS  PubMed  Google Scholar 

  57. Wilkins III WP, Barbour SE . Group VI phospholipases A2: homeostatic phospholipases with significant potential as targets for novel therapeutics. Curr Drug Targets 2008; 9: 683–697.

    Article  CAS  PubMed  Google Scholar 

  58. Hammamieh R, Sumaida D, Zhang X, Das R, Jett M . Control of the growth of human breast cancer cells in culture by manipulation of arachidonate metabolism. BMC Cancer 2007; 7: 138.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Balboa MA, Perez R, Balsinde J . Calcium-independent phospholipase A2 mediates proliferation of human promonocytic U937 cells. FEBS J 2008; 275: 1915–1924.

    Article  CAS  PubMed  Google Scholar 

  60. Maloney DG, Grillo-Lopez AJ, White CA, Bodkin D, Schilder RJ, Neidhart JA et al. IDEC-C2B8 (rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin's lymphoma. Blood 1997; 90: 2188–2195.

    CAS  PubMed  Google Scholar 

  61. Sievers EL, Larson RA, Stadtmauer EA, Estey E, Lowenberg B, Dombret H et al. Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse. J Clin Oncol 2001; 19: 3244–3254.

    Article  CAS  PubMed  Google Scholar 

  62. Keating MJ, Flinn I, Jain V, Binet JL, Hillmen P, Byrd J et al. Therapeutic role of alemtuzumab (Campath-1H) in patients who have failed fludarabine: results of a large international study. Blood 2002; 99: 3554–3561.

    Article  CAS  PubMed  Google Scholar 

  63. Jurcic JG, DeBlasio T, Dumont L, Yao TJ, Scheinberg DA . Molecular remission induction with retinoic acid and anti-CD33 monoclonal antibody HuM195 in acute promyelocytic leukemia. Clin Cancer Res 2000; 6: 372–380.

    CAS  PubMed  Google Scholar 

  64. Hosen N, Park CY, Tatsumi N, Oji Y, Sugiyama H, Gramatzki M et al. CD96 is a leukemic stem cell-specific marker in human acute myeloid leukemia. Proc Natl Acad Sci USA 2007; 104: 11008–11013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from The Danish Medical Research Council (to KTM, to BP), the Danish Cancer Research Foundation (to KTM, to BP), the Danish Cancer Society (to KTM, to BP), the Novo Nordisk Foundation (to BP, to TTM and AS), The Lundbeck Foundation (to KTM, to BP), the European Research Council—grant #204135 (to AS), the Danish Strategic Research Council (to BP, KTM and NB).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B T Porse or K Theilgaard-Mönch.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marstrand, T., Borup, R., Willer, A. et al. A conceptual framework for the identification of candidate drugs and drug targets in acute promyelocytic leukemia. Leukemia 24, 1265–1275 (2010). https://doi.org/10.1038/leu.2010.95

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2010.95

Keywords

This article is cited by

Search

Quick links