Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

MicroRNA in TLR signaling and endotoxin tolerance

Abstract

Toll-like receptors (TLRs) in innate immune cells are the prime cellular sensors for microbial components. TLR activation leads to the production of proinflammatory mediators and thus TLR signaling must be properly regulated by various mechanisms to maintain homeostasis. TLR4-ligand lipopolysaccharide (LPS)-induced tolerance or cross-tolerance is one such mechanism, and it plays an important role in innate immunity. Tolerance is established and sustained by the activity of the microRNA miR-146a, which is known to target key elements of the myeloid differentiation factor 88 (MyD88) signaling pathway, including IL-1 receptor-associated kinase (IRAK1), IRAK2 and tumor-necrosis factor (TNF) receptor-associated factor 6 (TRAF6). In this review, we comprehensively examine the TLR signaling involved in innate immunity, with special focus on LPS-induced tolerance. The function of TLR ligand-induced microRNAs, including miR-146a, miR-155 and miR-132, in regulating inflammatory mediators, and their impact on the immune system and human diseases, are discussed. Modulation of these microRNAs may affect TLR pathway activation and help to develop therapeutics against inflammatory diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Medzhitov R . Recognition of microorganisms and activation of the immune response. Nature 2007; 449: 819–826.

    CAS  PubMed  Google Scholar 

  2. Janeway CA Jr . Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 4 1989; ( Pt 1) 1–13.

    Article  CAS  PubMed  Google Scholar 

  3. Medzhitov R, Janeway CA Jr . Innate immunity: the virtues of a nonclonal system of recognition. Cell 1997; 91: 295–298.

    Article  CAS  PubMed  Google Scholar 

  4. Kumar H, Kawai T, Akira S . Pathogen recognition by the innate immune system. Int Rev Immunol 2011; 30: 16–34.

    Article  CAS  PubMed  Google Scholar 

  5. Akira S, Takeda K . Toll-like receptor signalling. Nat Rev Immunol 2004; 4: 499–511.

    Article  CAS  PubMed  Google Scholar 

  6. Tabeta K, Georgel P, Janssen E, Du X, Hoebe K, Crozat K et al. Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection. Proc Natl Acad Sci USA 2004; 101: 3516–3521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jin MS, Kim SE, Heo JY, Lee ME, Kim HM, Paik SG et al. Crystal structure of the TLR1–TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 2007; 130: 1071–1082.

    Article  CAS  PubMed  Google Scholar 

  8. Kim HM, Park BS, Kim JI, Kim SE, Lee J, Oh SC et al. Crystal structure of the TLR4–MD-2 complex with bound endotoxin antagonist Eritoran. Cell 2007; 130: 906–917.

    Article  CAS  PubMed  Google Scholar 

  9. Ozinsky A, Underhill DM, Fontenot JD, Hajjar AM, Smith KD, Wilson CB et al. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors. Proc Natl Acad Sci USA 2000; 97: 13766–13771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liew FY, Xu D, Brint EK, O'Neill LA . Negative regulation of Toll-like receptor-mediated immune responses. Nat Rev Immunol 2005; 5: 446–458.

    Article  CAS  PubMed  Google Scholar 

  11. Shishodia S, Aggarwal BB . Nuclear factor-kappaB activation: a question of life or death. J Biochem Mol Biol 2002; 35: 28–40.

    CAS  PubMed  Google Scholar 

  12. Burrell R . Human responses to bacterial endotoxin. Circ Shock 1994; 43: 137–153.

    CAS  PubMed  Google Scholar 

  13. McCall CE, Grosso-Wilmoth LM, LaRue K, Guzman RN, Cousart SL . Tolerance to endotoxin-induced expression of the interleukin-1 beta gene in blood neutrophils of humans with the sepsis syndrome. J Clin Invest 1993; 91: 853–861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Adib-Conquy M, Cavaillon JM . Compensatory anti-inflammatory response syndrome. Thromb Haemost 2009; 101: 36–47.

    Article  CAS  PubMed  Google Scholar 

  15. Dalpke AH, Lehner MD, Hartung T, Heeg K . Differential effects of CpG-DNA in Toll-like receptor-2/-4/-9 tolerance and cross-tolerance. Immunology 2005; 116: 203–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Greisman SE, Hornick RB . The nature of endotoxin tolerance. Trans Am Clin Climatol Assoc 1975; 86: 43–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Wheeler DS, Lahni PM, Denenberg AG, Poynter SE, Wong HR, Cook JA et al. Induction of endotoxin tolerance enhances bacterial clearance and survival in murine polymicrobial sepsis. Shock 2008; 30: 267–273.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Lehner MD, Ittner J, Bundschuh DS, van Rooijen N, Wendel A, Hartung T . Improved innate immunity of endotoxin-tolerant mice increases resistance to Salmonella enterica serovar Typhimurium infection despite attenuated cytokine response. Infect Immun 2001; 69: 463–471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lehner MD, Hartung T . Endotoxin tolerance—mechanisms and beneficial effects in bacterial infection. Rev Physiol Biochem Pharmacol 2002; 144: 95–141.

    Article  CAS  PubMed  Google Scholar 

  20. West MA, Heagy W . Endotoxin tolerance: a review. Crit Care Med 2002; 30: S64–S73.

    Article  CAS  PubMed  Google Scholar 

  21. LaRue KE, McCall CE . A labile transcriptional repressor modulates endotoxin tolerance. J Exp Med 1994; 180: 2269–2275.

    Article  CAS  PubMed  Google Scholar 

  22. Yoza B, LaRue K, McCall C . Molecular mechanisms responsible for endotoxin tolerance. Prog Clin Biol Res 1998; 397: 209–215.

    CAS  PubMed  Google Scholar 

  23. Mengozzi M, Fantuzzi G, Sironi M, Bianchi M, Fratelli M, Peri G et al. Early down-regulation of TNF production by LPS tolerance in human monocytes: comparison with IL-1 beta, IL-6, and IL-8. Lymphokine Cytokine Res 1993; 12: 231–236.

    CAS  PubMed  Google Scholar 

  24. Takasuka N, Matsuura K, Yamamoto S, Akagawa KS . Suppression of TNF-alpha mRNA expression in LPS-primed macrophages occurs at the level of nuclear factor-kappa B activation, but not at the level of protein kinase C or CD14 expression. J Immunol 1995; 154: 4803–4812.

    CAS  PubMed  Google Scholar 

  25. Takasuka N, Tokunaga T, Akagawa KS . Preexposure of macrophages to low doses of lipopolysaccharide inhibits the expression of tumor necrosis factor-alpha mRNA but not of IL-1 beta mRNA. J Immunol 1991; 146: 3824–3830.

    CAS  PubMed  Google Scholar 

  26. Frankenberger M, Pechumer H, Ziegler-Heitbrock HW . Interleukin-10 is upregulated in LPS tolerance. J Inflamm 1995; 45: 56–63.

    CAS  PubMed  Google Scholar 

  27. Ziegler-Heitbrock HW, Frankenberger M, Wedel A . Tolerance to lipopolysaccharide in human blood monocytes. Immunobiology 1995; 193: 217–223.

    Article  CAS  PubMed  Google Scholar 

  28. Knopf HP, Otto F, Engelhardt R, Freudenberg MA, Galanos C, Herrmann F et al. Discordant adaptation of human peritoneal macrophages to stimulation by lipopolysaccharide and the synthetic lipid A analogue SDZ MRL 953. Down-regulation of TNF-alpha and IL-6 is paralleled by an up-regulation of IL-1 beta and granulocyte colony-stimulating factor expression. J Immunol 1994; 153: 287–299.

    CAS  PubMed  Google Scholar 

  29. Mathison JC, Virca GD, Wolfson E, Tobias PS, Glaser K, Ulevitch RJ . Adaptation to bacterial lipopolysaccharide controls lipopolysaccharide-induced tumor necrosis factor production in rabbit macrophages. J Clin Invest 1990; 85: 1108–1118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zuckerman SH, Evans GF, Snyder YM, Roeder WD . Endotoxin–macrophage interaction: post-translational regulation of tumor necrosis factor expression. J Immunol 1989; 143: 1223–1227.

    CAS  PubMed  Google Scholar 

  31. Bogdan C, Vodovotz Y, Paik J, Xie QW, Nathan C . Traces of bacterial lipopolysaccharide suppress IFN-gamma-induced nitric oxide synthase gene expression in primary mouse macrophages. J Immunol 1993; 151: 301–309.

    CAS  PubMed  Google Scholar 

  32. Hirohashi N, Morrison DC . Low-dose lipopolysaccharide (LPS) pretreatment of mouse macrophages modulates LPS-dependent interleukin-6 production in vitro. Infect Immun 1996; 64: 1011–1015.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ancuta P, Fahmi H, Pons JF, Le BK, Chaby R . Involvement of the membrane form of tumour necrosis factor-alpha in lipopolysaccharide-induced priming of mouse peritoneal macrophages for enhanced nitric oxide response to lipopolysaccharide. Immunology 1997; 92: 259–266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. West MA, Li MH, Seatter SC, Bubrick MP . Pre-exposure to hypoxia or septic stimuli differentially regulates endotoxin release of tumor necrosis factor, interleukin-6, interleukin-1, prostaglandin E2, nitric oxide, and superoxide by macrophages. J Trauma 1994; 37: 82–89.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang X, Morrison DC . Lipopolysaccharide-induced selective priming effects on tumor necrosis factor alpha and nitric oxide production in mouse peritoneal macrophages. J Exp Med 1993; 177: 511–516.

    Article  CAS  PubMed  Google Scholar 

  36. Beeson PB, Wall MJ, Heyman A . Isolation of virus of lymphogranuloma venereum from blood and spinal fluid of a human being Proc Soc Exp Biol Med 1946; 62: 306.

    Article  CAS  PubMed  Google Scholar 

  37. Freudenberg MA, Galanos C . Induction of tolerance to lipopolysaccharide (LPS)-d-galactosamine lethality by pretreatment with LPS is mediated by macrophages. Infect Immun 1988; 56: 1352–1357.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Ogawa H, Rafiee P, Heidemann J, Fisher PJ, Johnson NA, Otterson MF et al. Mechanisms of endotoxin tolerance in human intestinal microvascular endothelial cells. J Immunol 2003; 170: 5956–5964.

    Article  CAS  PubMed  Google Scholar 

  39. Beeson PB . Tolerance to bacterial pyrogens. J Exp Med 1947; 86: 29-38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Neva FA, Morgan HR . Tolerance to the action of endotoxins of enteric bacilli in patients convalescent from typhoid and paratyphoid fevers. J Lab Clin Med 1950; 35: 911–922.

    CAS  PubMed  Google Scholar 

  41. Heyman A, Beeson PB . Influence of various disease states upon the febrile response to intravenous injection of typhoid bacterial pyrogen; with particular reference to malaria and cirrhosis of the liver. J Lab Clin Med 1949; 34: 1400–1403.

    CAS  PubMed  Google Scholar 

  42. Cavaillon JM, dib-Conquy M . Bench-to-bedside review: endotoxin tolerance as a model of leukocyte reprogramming in sepsis Crit Care 2006; 10: 233.

    Article  PubMed  PubMed Central  Google Scholar 

  43. McCabe WR . Endotoxin tolerance. I. Its induction by experimental pyelonephritis. J Clin Invest 1963; 42: 610–617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Munoz C, Carlet J, Fitting C, Misset B, Bleriot JP, Cavaillon JM . Dysregulation of in vitro cytokine production by monocytes during sepsis. J Clin Invest 1991; 88: 1747–1754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. del Fresno C, Garcia-Rio F, Gomez-Pina V, Soares-Schanoski A, Fernandez-Ruiz I, Jurado T et al. Potent phagocytic activity with impaired antigen presentation identifying lipopolysaccharide-tolerant human monocytes: demonstration in isolated monocytes from cystic fibrosis patients. J Immunol 2009; 182: 6494–6507.

    Article  CAS  PubMed  Google Scholar 

  46. Draisma A, Pickkers P, Bouw MP, van der Hoeven JG . Development of endotoxin tolerance in humans in vivo. Crit Care Med 2009; 37: 1261–1267.

    Article  CAS  PubMed  Google Scholar 

  47. Dobrovolskaia MA, Vogel SN . Toll receptors, CD14, and macrophage activation and deactivation by LPS. Microbes Infect 2002; 4: 903–914.

    Article  CAS  PubMed  Google Scholar 

  48. Foster SL, Hargreaves DC, Medzhitov R . Gene-specific control of inflammation by TLR-induced chromatin modifications. Nature 2007; 447: 972–978.

    Article  CAS  PubMed  Google Scholar 

  49. Dinarello CA, Bodel PT, Atkins E . The role of the liver in the production of fever and in pyrogenic tolerance. Trans Assoc Am Physicians 1968; 81: 334–344.

    CAS  PubMed  Google Scholar 

  50. Moore JN, Cook JA, Morris DD, Halushka PV, Wise WC . Endotoxin-induced procoagulant activity, eicosanoid synthesis, and tumor necrosis factor production by rat peritoneal macrophages: effect of endotoxin tolerance and glucan. Circ Shock 1990; 31: 281–295.

    CAS  PubMed  Google Scholar 

  51. Balkhy HH, Heinzel FP . Endotoxin fails to induce IFN-gamma in endotoxin-tolerant mice: deficiencies in both IL-12 heterodimer production and IL-12 responsiveness. J Immunol 1999; 162: 3633–3638.

    CAS  PubMed  Google Scholar 

  52. Bundschuh DS, Barsig J, Hartung T, Randow F, Docke WD, Volk HD et al. Granulocyte-macrophage colony-stimulating factor and IFN-gamma restore the systemic TNF-alpha response to endotoxin in lipopolysaccharide-desensitized mice. J Immunol 1997; 158: 2862–2871.

    CAS  PubMed  Google Scholar 

  53. Granowitz EV, Porat R, Mier JW, Orencole SF, Kaplanski G, Lynch EA et al. Intravenous endotoxin suppresses the cytokine response of peripheral blood mononuclear cells of healthy humans. J Immunol 1993; 151: 1637–1645.

    CAS  PubMed  Google Scholar 

  54. Rodrick ML, Moss NM, Grbic JT, Revhaug A, O'Dwyer ST, Michie HR et al. Effects of in vivo endotoxin infusions on in vitro cellular immune responses in humans. J Clin Immunol 1992; 12: 440–450.

    Article  CAS  PubMed  Google Scholar 

  55. Biswas SK, Lopez-Collazo E . Endotoxin tolerance: new mechanisms, molecules and clinical significance. Trends Immunol 2009; 30: 475–487.

    Article  CAS  PubMed  Google Scholar 

  56. Larsen NE, Sullivan R . Interaction between endotoxin and human monocytes: characteristics of the binding of 3H-labeled lipopolysaccharide and 51Cr-labeled lipid A before and after the induction of endotoxin tolerance. Proc Natl Acad Sci USA 1984; 81: 3491–3495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Labeta MO, Durieux JJ, Spagnoli G, Fernandez N, Wijdenes J, Herrmann R . CD14 and tolerance to lipopolysaccharide: biochemical and functional analysis. Immunology 1993; 80: 415–423.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Matsuura K, Ishida T, Setoguchi M, Higuchi Y, Akizuki S, Yamamoto S . Upregulation of mouse CD14 expression in Kupffer cells by lipopolysaccharide. J Exp Med 1994; 179: 1671–1676.

    Article  CAS  PubMed  Google Scholar 

  59. Ziegler-Heitbrock HW, Wedel A, Schraut W, Strobel M, Wendelgass P, Sternsdorf T et al. Tolerance to lipopolysaccharide involves mobilization of nuclear factor kappa B with predominance of p50 homodimers. J Biol Chem 1994; 269: 17001–17004.

    CAS  PubMed  Google Scholar 

  60. Ziegler-Heitbrock HW, Blumenstein M, Kafferlein E, Kieper D, Petersmann I, Endres S et al. In vitro desensitization to lipopolysaccharide suppresses tumour necrosis factor, interleukin-1 and interleukin-6 gene expression in a similar fashion. Immunology 1992; 75: 264–268.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Heagy W, Hansen C, Nieman K, Michael AW . Evidence for a CD-14- and serum-independent pathway in the induction of endotoxin-tolerance in human monocytes and THP-1 monocytic cells. Shock 2003; 19: 321–327.

    Article  CAS  PubMed  Google Scholar 

  62. Sato S, Nomura F, Kawai T, Takeuchi O, Muhlradt PF, Takeda K et al. Synergy and cross-tolerance between Toll-like receptor (TLR) 2- and TLR4-mediated signaling pathways. J Immunol 2000; 165: 7096–7101.

    Article  CAS  PubMed  Google Scholar 

  63. Medvedev AE, Lentschat A, Wahl LM, Golenbock DT, Vogel SN . Dysregulation of LPS-induced Toll-like receptor 4-MyD88 complex formation and IL-1 receptor-associated kinase 1 activation in endotoxin-tolerant cells. J Immunol 2002; 169: 5209–5216.

    Article  PubMed  Google Scholar 

  64. Adib-Conquy M, Cavaillon JM . Gamma interferon and granulocyte/monocyte colony-stimulating factor prevent endotoxin tolerance in human monocytes by promoting interleukin-1 receptor-associated kinase expression and its association to MyD88 and not by modulating TLR4 expression. J Biol Chem 2002; 277: 27927–27934.

    Article  CAS  PubMed  Google Scholar 

  65. Fan H, Cook JA . Molecular mechanisms of endotoxin tolerance. J Endotoxin Res 2004; 10: 71–84.

    Article  CAS  PubMed  Google Scholar 

  66. Medvedev AE, Henneke P, Schromm A, Lien E, Ingalls R, Fenton MJ et al. Induction of tolerance to lipopolysaccharide and mycobacterial components in Chinese hamster ovary/CD14 cells is not affected by overexpression of Toll-like receptors 2 or 4. J Immunol 2001; 167: 2257–2267.

    Article  CAS  PubMed  Google Scholar 

  67. Medvedev AE, Vogel SN . Overexpression of CD14, TLR4, and MD-2 in HEK 293T cells does not prevent induction of in vitro endotoxin tolerance. J Endotoxin Res 2003; 9: 60–64.

    Article  CAS  PubMed  Google Scholar 

  68. Makhlouf M, Zingarelli B, Halushka PV, Cook JA . Endotoxin tolerance alters macrophage membrane regulatory G proteins. Prog Clin Biol Res 1998; 397: 217–226.

    CAS  PubMed  Google Scholar 

  69. Bowling WM, Hafenrichter DG, Flye MW, Callery MP . Endotoxin tolerance alters phospholipase C-gamma 1 and phosphatidylinositol-3'-kinase expression in peritoneal macrophages. J Surg Res 1995; 58: 592–598.

    Article  CAS  PubMed  Google Scholar 

  70. West MA, LeMieur T, Clair L, Bellingham J, Rodriguez JL . Protein kinase C regulates macrophage tumor necrosis factor secretion: direct protein kinase C activation restores tumor necrosis factor production in endotoxin tolerance. Surgery 1997; 122: 204–211.

    Article  CAS  PubMed  Google Scholar 

  71. Medvedev AE, Kopydlowski KM, Vogel SN . Inhibition of lipopolysaccharide-induced signal transduction in endotoxin-tolerized mouse macrophages: dysregulation of cytokine, chemokine, and Toll-like receptor 2 and 4 gene expression. J Immunol 2000; 164: 5564–5574.

    Article  CAS  PubMed  Google Scholar 

  72. Tominaga K, Saito S, Matsuura M, Nakano M . Lipopolysaccharide tolerance in murine peritoneal macrophages induces downregulation of the lipopolysaccharide signal transduction pathway through mitogen-activated protein kinase and nuclear factor-kappaB cascades, but not lipopolysaccharide-incorporation steps. Biochim Biophys Acta 1999; 1450: 130–144.

    Article  CAS  PubMed  Google Scholar 

  73. Kastenbauer S, Ziegler-Heitbrock HW . NF-kappaB1 (p50) is upregulated in lipopolysaccharide tolerance and can block tumor necrosis factor gene expression. Infect Immun 1999; 67: 1553–1559.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Bohuslav J, Kravchenko VV, Parry GC, Erlich JH, Gerondakis S, Mackman N et al. Regulation of an essential innate immune response by the p50 subunit of NF-kappaB. J Clin Invest 1998; 102: 1645–1652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Goldring CE, Reveneau S, Pinard D, Jeannin JF . Hyporesponsiveness to lipopolysaccharide alters the composition of NF-kappaB binding to the regulatory regions of inducible nitric oxide synthase gene. Eur J Immunol 1998; 28: 2960–2970.

    Article  CAS  PubMed  Google Scholar 

  76. Nomura F, Akashi S, Sakao Y, Sato S, Kawai T, Matsumoto M et al. Cutting edge: endotoxin tolerance in mouse peritoneal macrophages correlates with down-regulation of surface Toll-like receptor 4 expression. J Immunol 2000; 164: 3476–3479.

    Article  CAS  PubMed  Google Scholar 

  77. Wahlstrom K, Bellingham J, Rodriguez JL, West MA . Inhibitory kappaBalpha control of nuclear factor-kappaB is dysregulated in endotoxin tolerant macrophages. Shock 1999; 11: 242–247.

    Article  CAS  PubMed  Google Scholar 

  78. Li L, Cousart S, Hu J, McCall CE . Characterization of interleukin-1 receptor-associated kinase in normal and endotoxin-tolerant cells. J Biol Chem 2000; 275: 23340–23345.

    Article  CAS  PubMed  Google Scholar 

  79. Medzhitov R, Preston-Hurlburt P, Kopp E, Stadlen A, Chen C, Ghosh S et al. MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol Cell 1998; 2: 253–258.

    Article  CAS  PubMed  Google Scholar 

  80. Yang RB, Mark MR, Gray A, Huang A, Xie MH, Zhang M et al. Toll-like receptor-2 mediates lipopolysaccharide-induced cellular signalling. Nature 1998; 395: 284–288.

    Article  CAS  PubMed  Google Scholar 

  81. Nahid MA, Satoh M, Chan EK . Mechanistic role of microRNA-146a in endotoxin-induced differential cross-regulation of TLR signaling. J Immunol 2011; 186: 1723–1734.

    Article  CAS  PubMed  Google Scholar 

  82. Nahid MA, Pauley KM, Satoh M, Chan EKL . miR-146a is critical for endotoxin-induced tolerance: implication in innate immunity. J Biol Chem 2009; 284: 34590–34599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. de Nardo D, Nguyen T, Hamilton JA, Scholz GM . Down-regulation of IRAK-4 is a component of LPS- and CpG DNA-induced tolerance in macrophages. Cell Signal 2009; 21: 246–252.

    Article  CAS  PubMed  Google Scholar 

  84. Suzuki N, Suzuki S, Duncan GS, Millar DG, Wada T, Mirtsos C et al. Severe impairment of interleukin-1 and Toll-like receptor signalling in mice lacking IRAK-4. Nature 2002; 416: 750–756.

    Article  CAS  PubMed  Google Scholar 

  85. Swantek JL, Tsen MF, Cobb MH, Thomas JA . IL-1 receptor-associated kinase modulates host responsiveness to endotoxin. J Immunol 2000; 164: 4301–4306.

    Article  CAS  PubMed  Google Scholar 

  86. Kobayashi K, Hernandez LD, Galan JE, Janeway CA Jr, Medzhitov R, Flavell RA . IRAK-M is a negative regulator of Toll-like receptor signaling. Cell 2002; 110: 191–202.

    Article  CAS  PubMed  Google Scholar 

  87. Boone DL, Turer EE, Lee EG, Ahmad RC, Wheeler MT, Tsui C et al. The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat Immunol 2004; 5: 1052–1060.

    Article  CAS  PubMed  Google Scholar 

  88. Nakayama K, Okugawa S, Yanagimoto S, Kitazawa T, Tsukada K, Kawada M et al. Involvement of IRAK-M in peptidoglycan-induced tolerance in macrophages. J Biol Chem 2004; 279: 6629–6634.

    Article  CAS  PubMed  Google Scholar 

  89. Filipowicz W, Bhattacharyya SN, Sonenberg N . Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 2008; 9: 102–114.

    Article  CAS  PubMed  Google Scholar 

  90. Grey F, Tirabassi R, Meyers H, Wu G, McWeeney S, Hook L et al. A viral microRNA down-regulates multiple cell cycle genes through mRNA 5'UTRs PLoS Pathog 2010; 6: e1000967.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Bartel DP . MicroRNAs: target recognition and regulatory functions. Cell 2009; 136: 215–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Baltimore D, Boldin MP, O'Connell RM, Rao DS, Taganov KD . MicroRNAs: new regulators of immune cell development and function. Nat Immunol 2008; 9: 839–845.

    Article  CAS  PubMed  Google Scholar 

  93. Lodish HF, Zhou B, Liu G, Chen CZ . Micromanagement of the immune system by microRNAs. Nat Rev Immunol 2008; 8: 120–130.

    Article  CAS  PubMed  Google Scholar 

  94. Ceribelli A, Nahid MA, Satoh M, Chan EKL . MicroRNAs in rheumatoid arthritis. FEBS Lett 2011; in press

  95. Friedman RC, Farh KK, Burge CB, Bartel DP . Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009; 19: 92–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kozomara A, Griffiths-Jones S . miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 2011; 39: D152–D157.

    Article  CAS  PubMed  Google Scholar 

  97. Kim VN, Nam JW . Genomics of microRNA. Trends in Genet 2006; 22: 165–173.

    Article  CAS  Google Scholar 

  98. Kim YK, Kim VN . Processing of intronic microRNAs. EMBO J 2007; 26: 775–783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A . Identification of mammalian microRNA host genes and transcription units. Genome Res 2004; 14: 1902–1910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lee RC, Feinbaum RL, Ambros V . The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75: 843–854.

    Article  CAS  PubMed  Google Scholar 

  101. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 2000; 403: 901–906.

    Article  CAS  PubMed  Google Scholar 

  102. Ambros V . The functions of animal microRNAs. Nature 2004; 431: 350–355.

    Article  CAS  PubMed  Google Scholar 

  103. Chi SW, Zang JB, Mele A, Darnell RB . Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 2009; 460: 479–486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 2010; 141: 129–141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Yi R, Pasolli HA, Landthaler M, Hafner M, Ojo T, Sheridan R et al. DGCR8-dependent microRNA biogenesis is essential for skin development. Proc Natl Acad Sci USA 2009; 106: 498–502.

    Article  CAS  PubMed  Google Scholar 

  106. Cheloufi S, dos Santos CO, Chong MM, Hannon GJ . A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature 2010; 465: 584–589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Yang JS, Maurin T, Robine N, Rasmussen KD, Jeffrey KL, Chandwani R et al. Conserved vertebrate mir-451 provides a platform for Dicer-independent, Ago2-mediated microRNA biogenesis. Proc Natl Acad Sci USA 2010; 107: 15163–15168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Babiarz JE, Ruby JG, Wang Y, Bartel DP, Blelloch R . Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs. Genes Dev 2008; 22: 2773–2785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Berezikov E, Chung WJ, Willis J, Cuppen E, Lai EC . Mammalian mirtron genes. Mol Cell 2007; 28: 328–336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhou H, Huang X, Cui H, Luo X, Tang Y, Chen S et al. miR-155 and its star-form partner miR-155* cooperatively regulate type I interferon production by human plasmacytoid dendritic cells. Blood 2010; 116: 5885–5894.

    Article  CAS  PubMed  Google Scholar 

  111. Yao B, Li S, Jung HM, Lian SL, Abadal GX, Han F et al. Divergent GW182 functional domains in the regulation of translational silencing. Nucleic Acids Res 2011; 39: 2534–2547.

    Article  CAS  PubMed  Google Scholar 

  112. Fabian MR, Sonenberg N, Filipowicz W . Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 2010; 79: 351–379.

    Article  CAS  PubMed  Google Scholar 

  113. Jakymiw A, Ikeda K, Fritzler MJ, Reeves WH, Satoh M, Chan EK . Autoimmune targeting of key components of RNA interference. Arthritis Res Ther 2006; 8: R87.

    Article  CAS  Google Scholar 

  114. Eystathioy T, Chan EK, Takeuchi K, Mahler M, Luft LM, Zochodne DW et al. Clinical and serological associations of autoantibodies to GW bodies and a novel cytoplasmic autoantigen GW182. J Mol Med 2003; 81: 811–818.

    Article  CAS  PubMed  Google Scholar 

  115. Bhanji RA, Eystathioy T, Chan EK, Bloch DB, Fritzler MJ . Clinical and serological features of patients with autoantibodies to GW/P bodies. Clin Immunol 2007; 125: 247–256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Taganov KD, Boldin MP, Chang KJ, Baltimore D . NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA 2006; 103: 12481–12486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Pauley KM, Satoh M, Pauley BA, Dominguez-Gutierrez PR, Wallet SM, Holliday LS et al. Formation of GW/P bodies as marker for microRNA-mediated regulation of innate immune signaling in THP-1 cells. Immunol Cell Biol 2010; 88: 205–212.

    Article  CAS  PubMed  Google Scholar 

  118. Nahid MA, Rivera M, Lucas A, Chan EK, Kesavalu L . Polymicrobial infection with periodontal pathogens specifically enhances miR-146a in ApoE−/− mice during experimental periodontal disease. Infect Immun 2011; 79: 1597–1605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lagos D, Pollara G, Henderson S, Gratrix F, Fabani M, Milne RS et al. miR-132 regulates antiviral innate immunity through suppression of the p300 transcriptional co-activator. Nat Cell Biol 2010; 12: 513–519.

    Article  CAS  PubMed  Google Scholar 

  120. O'Neill LA, Sheedy FJ, McCoy CE . MicroRNAs: the fine-tuners of Toll-like receptor signalling. Nat Rev Immunol 2011; 11: 163–175.

    Article  CAS  PubMed  Google Scholar 

  121. Perry MM, Moschos SA, Williams AE, Shepherd NJ, Larner-Svensson HM, Lindsay MA . Rapid changes in microRNA-146a expression negatively regulate the IL-1beta-induced inflammatory response in human lung alveolar epithelial cells. J Immunol 2008; 180: 5689–5698.

    Article  CAS  PubMed  Google Scholar 

  122. Hou J, Wang P, Lin L, Liu X, Ma F, An H et al. MicroRNA-146a feedback inhibits RIG-I-dependent type I IFN production in macrophages by targeting TRAF6, IRAK1, and IRAK2. J Immunol 2009; 183: 2150–2158.

    Article  CAS  PubMed  Google Scholar 

  123. O'Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D . MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci USA 2007; 104: 1604–1609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Moschos SA, Williams AE, Perry MM, Birrell MA, Belvisi MG, Lindsay MA . Expression profiling in vivo demonstrates rapid changes in lung microRNA levels following lipopolysaccharide-induced inflammation but not in the anti-inflammatory action of glucocorticoids BMC Genom 2007; 8: 240 .

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Sheedy FJ, Palsson-McDermott E, Hennessy EJ, Martin C, O'Leary JJ, Ruan Q et al. Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat Immunol 2010; 11: 141–147.

    Article  CAS  PubMed  Google Scholar 

  126. McCoy CE, Sheedy FJ, Qualls JE, Doyle SL, Quinn SR, Murray PJ et al. IL-10 inhibits miR-155 induction by Toll-like receptors. J Biol Chem 2010; 285: 20492–20498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Chen XM, Splinter PL, O'Hara SP, LaRusso NF . A cellular micro-RNA, let-7i, regulates Toll-like receptor 4 expression and contributes to cholangiocyte immune responses against Cryptosporidium parvum infection. J Biol Chem 2007; 282: 28929–28938.

    Article  CAS  PubMed  Google Scholar 

  128. Benakanakere MR, Li Q, Eskan MA, Singh AV, Zhao J, Galicia JC et al. Modulation of TLR2 protein expression by miR-105 in human oral keratinocytes. J Biol Chem 2009; 284: 23107–23115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Yang K, He YS, Wang XQ, Lu L, Chen QJ, Liu J et al. MiR-146a inhibits oxidized low-density lipoprotein-induced lipid accumulation and inflammatory response via targeting Toll-like receptor 4. FEBS Lett 2011; 585: 854–860.

    Article  CAS  PubMed  Google Scholar 

  130. Ceppi M, Pereira PM, Dunand-Sauthier I, Barras E, Reith W, Santos MA et al. MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells. Proc Natl Acad Sci USA 2009; 106: 2735–27340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Tang B, Xiao B, Liu Z, Li N, Zhu ED, Li BS et al. Identification of MyD88 as a novel target of miR-155, involved in negative regulation of Helicobacter pylori-induced inflammation. FEBS Lett 2010; 584: 1481–1486.

    Article  CAS  PubMed  Google Scholar 

  132. Huang RS, Hu GQ, Lin B, Lin ZY, Sun CC . MicroRNA-155 silencing enhances inflammatory response and lipid uptake in oxidized low-density lipoprotein-stimulated human THP-1 macrophages. J Invest Med 2010; 58: 961–967.

    Article  CAS  Google Scholar 

  133. Starczynowski DT, Kuchenbauer F, Argiropoulos B, Sung S, Morin R, Muranyi A et al. Identification of miR-145 and miR-146a as mediators of the 5q- syndrome phenotype. Nat Med 2010; 16: 49–58.

    Article  CAS  PubMed  Google Scholar 

  134. Mansell A, Smith R, Doyle SL, Gray P, Fenner JE, Crack PJ et al. Suppressor of cytokine signaling 1 negatively regulates Toll-like receptor signaling by mediating Mal degradation. Nat Immunol 2006; 7: 148–155.

    Article  CAS  PubMed  Google Scholar 

  135. Alsaleh G, Suffert G, Semaan N, Juncker T, Frenzel L, Gottenberg JE et al. Bruton's tyrosine kinase is involved in miR-346-related regulation of IL-18 release by lipopolysaccharide-activated rheumatoid fibroblast-like synoviocytes. J Immunol 2009; 182: 5088–5097.

    Article  CAS  PubMed  Google Scholar 

  136. Jurkin J, Schichl YM, Koeffel R, Bauer T, Richter S, Konradi S et al. miR-146a is differentially expressed by myeloid dendritic cell subsets and desensitizes cells to TLR2-dependent activation. J Immunol 2010; 184: 4955–4965.

    Article  CAS  PubMed  Google Scholar 

  137. Labbaye C, Spinello I, Quaranta MT, Pelosi E, Pasquini L, Petrucci E et al. A three-step pathway comprising PLZF/miR-146a/CXCR4 controls megakaryopoiesis. Nat Cell Biol 2008; 10: 788–801.

    Article  CAS  PubMed  Google Scholar 

  138. Lu LF, Boldin MP, Chaudhry A, Lin LL, Taganov KD, Hanada T et al. Function of miR-146a in controlling Treg cell-mediated regulation of Th1 responses. Cell 2010; 142: 914–929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Boldin MP, Taganov KD, Rao DS, Yang L, Zhao JL, Kalwani M et al. miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. J Exp Med 2011; 208: 1189–1201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Zhao JL, Rao DS, Boldin MP, Taganov KD, O'Connell RM, Baltimore D . NF-κB dysregulation in microRNA-146a-deficient mice drives the development of myeloid malignancies. Proc Natl Acad Sci USA 2011; 108: 9184–9189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Tili E, Michaille JJ, Cimino A, Costinean S, Dumitru CD, Adair B et al. Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol 2007; 179: 5082–5089.

    Article  CAS  PubMed  Google Scholar 

  142. Costinean S, Zanesi N, Pekarsky Y, Tili E, Volinia S, Heerema N et al. Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in Eμ-miR155 transgenic mice. Proc Natl Acad Sci USA 2006; 103: 7024–7029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. O'Connell RM, Rao DS, Chaudhuri AA, Boldin MP, Taganov KD, Nicoll J et al. Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J Exp Med 2008; 205: 585–594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Lindsay MA . microRNAs and the immune response. Trends Immunol 2008; 29: 343–351.

    Article  CAS  PubMed  Google Scholar 

  145. Calin GA, Croce CM . MicroRNA signatures in human cancers. Nat Rev Cancer 2006; 6: 857–866.

    Article  CAS  PubMed  Google Scholar 

  146. Thai TH, Calado DP, Casola S, Ansel KM, Xiao C, Xue Y et al. Regulation of the germinal center response by microRNA-155. Science 2007; 316: 604–608.

    Article  CAS  PubMed  Google Scholar 

  147. Vigorito E, Perks KL, breu-Goodger C, Bunting S, Xiang Z, Kohlhaas S et al. microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells. Immunity 2007; 27: 847–859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Rodriguez A, Vigorito E, Clare S, Warren MV, Couttet P, Soond DR et al. Requirement of bic/microRNA-155 for normal immune function. Science 2007; 316: 608–611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Vo N, Klein ME, Varlamova O, Keller DM, Yamamoto T, Goodman RH et al. A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc Natl Acad Sci USA 2005; 102: 16426–16431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Wayman GA, Davare M, Ando H, Fortin D, Varlamova O, Cheng HY et al. An activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAP. Proc Natl Acad Sci USA 2008; 105: 9093–9098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Shaked I, Meerson A, Wolf Y, Avni R, Greenberg D, Gilboa-Geffen A et al. MicroRNA-132 potentiates cholinergic anti-inflammatory signaling by targeting acetylcholinesterase. Immunity 2009; 31: 965–973.

    Article  CAS  PubMed  Google Scholar 

  152. Incoronato M, Garofalo M, Urso L, Romano G, Quintavalle C, Zanca C et al. miR-212 increases tumor necrosis factor-related apoptosis-inducing ligand sensitivity in non-small cell lung cancer by targeting the antiapoptotic protein PED. Cancer Res 2010; 70: 3638–3346.

    Article  CAS  PubMed  Google Scholar 

  153. Androulidaki A, Iliopoulos D, Arranz A, Doxaki C, Schworer S, Zacharioudaki V et al. The kinase Akt1 controls macrophage response to lipopolysaccharide by regulating microRNAs. Immunity 2009; 31: 220–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Monticelli S, Ansel KM, Xiao C, Socci ND, Krichevsky AM, Thai TH et al. MicroRNA profiling of the murine hematopoietic system. Genome Biol 2005; 6: R71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Xiao C, Calado DP, Galler G, Thai TH, Patterson HC, Wang J et al. MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell 2007; 131: 146–159.

    Article  CAS  PubMed  Google Scholar 

  156. Zhou B, Wang S, Mayr C, Bartel DP, Lodish HF . miR-150, a microRNA expressed in mature B and T cells, blocks early B cell development when expressed prematurely. Proc Natl Acad Sci USA 2007; 104: 7080–7085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. O'Carroll D, Mecklenbrauker I, Das PP, Santana A, Koenig U, Enright AJ et al. A Slicer-independent role for Argonaute 2 in hematopoiesis and the microRNA pathway. Genes Dev 2007; 21: 1999–2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Cobb BS, Nesterova TB, Thompson E, Hertweck A, O'Connor E, Godwin J et al. T cell lineage choice and differentiation in the absence of the RNase III enzyme Dicer. J Exp Med 2005; 201: 1367–1373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Muljo SA, Ansel KM, Kanellopoulou C, Livingston DM, Rao A, Rajewsky K . Aberrant T cell differentiation in the absence of Dicer. J Exp Med 2005; 202: 261–269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Koralov SB, Muljo SA, Galler GR, Krek A, Chakraborty T, Kanellopoulou C et al. Dicer ablation affects antibody diversity and cell survival in the B lymphocyte lineage. Cell 2008; 132: 860–874.

    Article  CAS  PubMed  Google Scholar 

  161. Chen CZ, Li L, Lodish HF, Bartel DP . MicroRNAs modulate hematopoietic lineage differentiation. Science 2004; 303: 83–86.

    Article  CAS  PubMed  Google Scholar 

  162. Li QJ, Chau J, Ebert PJ, Sylvester G, Min H, Liu G et al. miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell 2007; 129: 147–161.

    Article  CAS  PubMed  Google Scholar 

  163. Fukao T, Fukuda Y, Kiga K, Sharif J, Hino K, Enomoto Y et al. An evolutionarily conserved mechanism for microRNA-223 expression revealed by microRNA gene profiling. Cell 2007; 129: 617–631.

    Article  CAS  PubMed  Google Scholar 

  164. Johnnidis JB, Harris MH, Wheeler RT, Stehling-Sun S, Lam MH, Kirak O et al. Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 2008; 451: 1125–1129.

    Article  CAS  PubMed  Google Scholar 

  165. Fazi F, Rosa A, Fatica A, Gelmetti V, de Marchis ML, Nervi C, et al. A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell 2005; 123: 819–831.

    Article  CAS  PubMed  Google Scholar 

  166. Skalsky RL, Cullen BR . Viruses, microRNAs, and host interactions. Annu Rev Microbiol 2010; 64: 123–141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Plaisance-Bonstaff K, Renne R . Viral miRNAs. Methods Mol Biol 2011; 721: 43–66.

    Article  CAS  PubMed  Google Scholar 

  168. Gottwein E, Mukherjee N, Sachse C, Frenzel C, Majoros WH, Chi JT et al. A viral microRNA functions as an orthologue of cellular miR-155. Nature 2007; 450: 1096–1099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Skalsky RL, Samols MA, Plaisance KB, Boss IW, Riva A, Lopez MC et al. Kaposi's sarcoma-associated herpesvirus encodes an ortholog of miR-155. J Virol 2007; 81: 12836–12845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Xiao C, Rajewsky K . MicroRNA control in the immune system: basic principles. Cell 2009; 136: 26–36.

    Article  CAS  PubMed  Google Scholar 

  171. Cameron JE, Yin Q, Fewell C, Lacey M, McBride J, Wang X et al. Epstein–Barr virus latent membrane protein 1 induces cellular MicroRNA miR-146a, a modulator of lymphocyte signaling pathways. J Virol 2008; 82: 1946–1958.

    Article  CAS  PubMed  Google Scholar 

  172. Anastasiadou E, Boccellato F, Vincenti S, Rosato P, Bozzoni I, Frati L et al. Epstein–Barr virus encoded LMP1 downregulates TCL1 oncogene through miR-29b. Oncogene 2010; 29: 1316–1328.

    Article  CAS  PubMed  Google Scholar 

  173. Pfeffer S, Sewer A, Lagos-Quintana M, Sheridan R, Sander C, Grasser FA et al. Identification of microRNAs of the herpesvirus family. Nat Methods 2005; 2: 269–276.

    Article  CAS  PubMed  Google Scholar 

  174. Pfeffer S, Zavolan M, Grasser FA, Chien M, Russo JJ, Ju J et al. Identification of virus-encoded microRNAs. Science 2004; 304: 734–736.

    Article  CAS  PubMed  Google Scholar 

  175. Stern-Ginossar N, Elefant N, Zimmermann A, Wolf DG, Saleh N, Biton M et al. Host immune system gene targeting by a viral miRNA. Science 2007; 317: 376–381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Triboulet R, Mari B, Lin YL, Chable-Bessia C, Bennasser Y, Lebrigand K et al. Suppression of microRNA-silencing pathway by HIV-1 during virus replication. Science 2007; 315: 1579–1582.

    Article  CAS  PubMed  Google Scholar 

  177. Lecellier CH, Dunoyer P, Arar K, Lehmann-Che J, Eyquem S, Himber C et al. A cellular microRNA mediates antiviral defense in human cells. Science 2005; 308: 557–560.

    Article  CAS  PubMed  Google Scholar 

  178. Pedersen IM, Cheng G, Wieland S, Volinia S, Croce CM, Chisari FV et al. Interferon modulation of cellular microRNAs as an antiviral mechanism. Nature 2007; 449: 919–922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Garzon R, Calin GA, Croce CM . MicroRNAs in cancer. Annu Rev Med 2009; 60: 167–179.

    Article  CAS  PubMed  Google Scholar 

  180. Chan E, Prado DE, Weidhaas JB . Cancer microRNAs: from subtype profiling to predictors of response to therapy. Trends Mol Med 2011; 17: 235–243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 2005; 102: 13944–13949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 2004; 64: 3753–3756.

    Article  CAS  PubMed  Google Scholar 

  183. Barh D, Malhotra R, Ravi B, Sindhurani P . Microrna let-7: an emerging next-generation cancer therapeutic. Curr Oncol 2010; 17: 70–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A et al. RAS is regulated by the let-7 microRNA family. Cell 2005; 120: 635–647.

    Article  CAS  PubMed  Google Scholar 

  185. Olive V, Jiang I, He L . mir-17-92, a cluster of miRNAs in the midst of the cancer network. Int J Biochem Cell Biol 2010; 42: 1348–1354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Aguda BD, Kim Y, Piper-Hunter MG, Friedman A, Marsh CB . MicroRNA regulation of a cancer network: consequences of the feedback loops involving miR-17-92, E2F, and Myc. Proc Natl Acad Sci USA 2008; 105: 19678–19683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Yan HL, Xue G, Mei Q, Wang YZ, Ding FX, Liu MF et al. Repression of the miR-17-92 cluster by p53 has an important function in hypoxia-induced apoptosis. EMBO J 2009; 28: 2719–2732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Li M, Li J, Ding X, He M, Cheng SY . microRNA and cancer. AAPS J 2010; 12: 309–317.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Cavaillon JM, Adrie C, Fitting C, Adib-Conquy M . Endotoxin tolerance: is there a clinical relevance? J Endotoxin Res 2003; 9: 101–107.

    Article  CAS  PubMed  Google Scholar 

  190. Randow F, Syrbe U, Meisel C, Krausch D, Zuckermann H, Platzer C et al. Mechanism of endotoxin desensitization: involvement of interleukin 10 and transforming growth factor beta. J Exp Med 1995; 181: 1887–1892.

    Article  CAS  PubMed  Google Scholar 

  191. Karp CL, Wysocka M, Ma X, Marovich M, Factor RE, Nutman T et al. Potent suppression of IL-12 production from monocytes and dendritic cells during endotoxin tolerance. Eur J Immunol 1998; 28: 3128–3136.

    Article  CAS  PubMed  Google Scholar 

  192. Jacinto R, Hartung T, McCall C, Li L . Lipopolysaccharide- and lipoteichoic acid-induced tolerance and cross-tolerance: distinct alterations in IL-1 receptor-associated kinase. J Immunol 2002; 168: 6136–6141.

    Article  CAS  PubMed  Google Scholar 

  193. Virca GD, Kim SY, Glaser KB, Ulevitch RJ . Lipopolysaccharide induces hyporesponsiveness to its own action in RAW 264.7 cells. J Biol Chem 1989; 264: 21951–21956.

    CAS  PubMed  Google Scholar 

  194. Yeo SJ, Yoon JG, Hong SC, Yi AK . CpG DNA induces self and cross-hyporesponsiveness of RAW264.7 cells in response to CpG DNA and lipopolysaccharide: alterations in IL-1 receptor-associated kinase expression. J Immunol 2003; 170: 1052–1061.

    Article  CAS  PubMed  Google Scholar 

  195. Heagy W, Hansen C, Nieman K, Rodriguez JL, West MA . Impaired mitogen-activated protein kinase activation and altered cytokine secretion in endotoxin-tolerant human monocytes. J Trauma 2000; 49: 806–814.

    Article  CAS  PubMed  Google Scholar 

  196. Kraatz J, Clair L, Bellingham J, Wahlstrom K, Rodriguez JL, West MA . Lipopolysaccharide pretreatment produces macrophage endotoxin tolerance via a serum-independent pathway. J Trauma 1998; 45: 684–691.

    Article  CAS  PubMed  Google Scholar 

  197. Riedel DD, Kaufmann SH . Differential tolerance induction by lipoarabinomannan and lipopolysaccharide in human macrophages. Microbes Infect 2000; 2: 463–471.

    Article  CAS  PubMed  Google Scholar 

  198. Matic M, Simon SR . Tumor necrosis factor release from lipopolysaccharide-stimulated human monocytes: lipopolysaccharide tolerance in vitro. Cytokine 1991; 3: 576–583.

    Article  CAS  PubMed  Google Scholar 

  199. Sly LM, Rauh MJ, Kalesnikoff J, Song CH, Krystal G . LPS-induced upregulation of SHIP is essential for endotoxin tolerance. Immunity 2004; 21: 227–239.

    Article  CAS  PubMed  Google Scholar 

  200. Leon P, Redmond HP, Shou J, Daly JM . Interleukin 1 and its relationship to endotoxin tolerance. Arch Surg 1992; 127: 146–151.

    Article  CAS  PubMed  Google Scholar 

  201. Astiz ME, Rackow EC, Still JG, Howell ST, Cato A, von Eschen KB et al. Pretreatment of normal humans with monophosphoryl lipid A induces tolerance to endotoxin: a prospective, double-blind, randomized, controlled trial. Crit Care Med 1995; 23: 9–17.

    Article  CAS  PubMed  Google Scholar 

  202. Kiani A, Tschiersch A, Gaboriau E, Otto F, Seiz A, Knopf HP et al. Downregulation of the proinflammatory cytokine response to endotoxin by pretreatment with the nontoxic lipid A analog SDZ MRL 953 in cancer patients. Blood 1997; 90: 1673–1683.

    CAS  PubMed  Google Scholar 

  203. Mackensen A, Galanos C, Wehr U, Engelhardt R . Endotoxin tolerance: regulation of cytokine production and cellular changes in response to endotoxin application in cancer patients. Eur Cytokine Netw 1992; 3: 571–579.

    CAS  PubMed  Google Scholar 

  204. Klosterhalfen B, Horstmann-Jungemann K, Vogel P, Flohe S, Offner F, Kirkpatrick CJ et al. Time course of various inflammatory mediators during recurrent endotoxemia. Biochem Pharmacol 1992; 43: 2103–2109.

    Article  CAS  PubMed  Google Scholar 

  205. Wakabayashi G, Cannon JG, Gelfand JA, Clark BD, Aiura K, Burke JF et al. Altered interleukin-1 and tumor necrosis factor production and secretion during pyrogenic tolerance to LPS in rabbits. Am J Physiol 1994; 267: R329–R336.

    CAS  PubMed  Google Scholar 

  206. Roth J, Aslan T, Storr B, Zeisberger E . Lack of cross tolerance between LPS and muramyl dipeptide in induction of circulating TNF-alpha and IL-6 in guinea pigs. Am J Physiol 1997; 273: R1529–R1533.

    CAS  PubMed  Google Scholar 

  207. Sanchez-Cantu L, Rode HN, Christou NV . Endotoxin tolerance is associated with reduced secretion of tumor necrosis factor. Arch Surg 1989; 124: 1432–1435.

    Article  CAS  PubMed  Google Scholar 

  208. Erroi A, Fantuzzi G, Mengozzi M, Sironi M, Orencole SF, Clark BD et al. Differential regulation of cytokine production in lipopolysaccharide tolerance in mice. Infect Immun 1993; 61: 4356–4359.

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Mengozzi M, Sironi M, Gadina M, Ghezzi P . Reversal of defective IL-6 production in lipopolysaccharide-tolerant mice by phorbol myristate acetate. J Immunol 1991; 147: 899–902.

    CAS  PubMed  Google Scholar 

  210. Flohe S, Dominguez FE, Ackermann M, Hirsch T, Borgermann J, Schade FU . Endotoxin tolerance in rats: expression of TNF-alpha, IL-6, IL-10, VCAM-1 and HSP 70 in lung and liver during endotoxin shock. Cytokine 1999; 11: 796–804.

    Article  CAS  PubMed  Google Scholar 

  211. Baykal A, Kaynaroglu V, Hascelik G, Sayek I, Sanac Y . Epinephrine and endotoxin tolerance differentially modulate serum cytokine levels to high-dose lipopolysaccharide challenge in a murine model. Surgery 1999; 125: 403–410.

    Article  CAS  PubMed  Google Scholar 

  212. Madonna GS, Peterson JE, Ribi EE, Vogel SN . Early-phase endotoxin tolerance: induction by a detoxified lipid A derivative, monophosphoryl lipid A. Infect Immun 1986; 52: 6–11.

  213. Gustafson GL, Rhodes MJ, Hegel T . Monophosphoryl lipid A as a prophylactic for sepsis and septic shock. Prog Clin Biol Res 1995; 392: 567–579.

    CAS  PubMed  Google Scholar 

  214. de Vos AF, Pater JM, van den Pangaart PS, de Kurif MD, van 't Veer C, van der Poll T . In vivo lipopolysaccharide exposure of human blood leukocytes induces cross-tolerance to multiple TLR ligands. J Immunol 2009; 183: 533–542.

    Article  CAS  PubMed  Google Scholar 

  215. Hartung T, Wendel A . Endotoxin-inducible cytotoxicity in liver cell cultures—II. Demonstration of endotoxin-tolerance. Biochem Pharmacol 1992; 43: 191–196.

    Article  CAS  PubMed  Google Scholar 

  216. Gahring LC, Daynes RA . Desensitization of animals to the inflammatory effects of ultraviolet radiation is mediated through mechanisms which are distinct from those responsible for endotoxin tolerance. J Immunol 1986; 136: 2868–2874.

    CAS  PubMed  Google Scholar 

  217. Zingarelli B, Chen H, Caputi AP, Halushka PV, Cook JA . Reorientation of macrophage mediator production in endotoxin tolerance. Prog Clin Biol Res 1995; 392: 529–537.

    CAS  PubMed  Google Scholar 

  218. Hafenrichter DG, Roland CR, Mangino MJ, Flye MW . The Kupffer cell in endotoxin tolerance: mechanisms of protection against lethal endotoxemia. Shock 1994; 2: 251–256.

    Article  CAS  PubMed  Google Scholar 

  219. Nakagawa R, Naka T, Tsutsui H, Fujimoto M, Kimura A, Abe T et al. SOCS-1 participates in negative regulation of LPS responses. Immunity 2002; 17: 677–687.

    Article  CAS  PubMed  Google Scholar 

  220. Janssens S, Burns K, Tschopp J, Beyaert R . Regulation of interleukin-1- and lipopolysaccharide-induced NF-kappaB activation by alternative splicing of MyD88. Curr Biol 2002; 12: 467–471.

    Article  CAS  PubMed  Google Scholar 

  221. Gibot S, Kolopp-Sarda MN, Bene MC, Bollaert PE, Lozniewski A, Mory F et al. A soluble form of the triggering receptor expressed on myeloid cells-1 modulates the inflammatory response in murine sepsis. J Exp Med 2004; 200: 1419–1426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Takeshita F, Ishii KJ, Kobiyama K, Kojima Y, Coban C, Sasaki S et al. TRAF4 acts as a silencer in TLR-mediated signaling through the association with TRAF6 and TRIF. Eur J Immunol 2005; 35: 2477–2485.

    Article  CAS  PubMed  Google Scholar 

  223. Bowie AG . TRIM-ing down Tolls. Nat Immunol 2008; 9: 348–350.

    Article  CAS  PubMed  Google Scholar 

  224. Curtale G, Citarella F, Carissimi C, Goldoni M, Carucci N, Fulci V et al. An emerging player in the adaptive immune response: microRNA-146a is a modulator of IL-2 expression and activation-induced cell death in T lymphocytes. Blood 2010; 115: 265–273.

    Article  CAS  PubMed  Google Scholar 

  225. Motsch N, Pfuhl T, Mrazek J, Barth S, Grasser FA . Epstein–Barr virus-encoded latent membrane protein 1 (LMP1) induces the expression of the cellular microRNA miR-146a. RNA Biol 2007; 4: 131–137.

    Article  CAS  PubMed  Google Scholar 

  226. Tang Y, Banan A, Forsyth CB, Fields JZ, Lau CK, Zhang LJ et al. Effect of alcohol on miR-212 expression in intestinal epithelial cells and its potential role in alcoholic liver disease. Alcohol Clin Exp Res 2008; 32: 355–364.

    Article  CAS  PubMed  Google Scholar 

  227. Cremer TJ, Ravneberg DH, Clay CD, Piper-Hunter MG, Marsh CB, Elton TS et al. MiR-155 induction by F. novicida but not the virulent F. tularensis results in SHIP down-regulation and enhanced pro-inflammatory cytokine response. PLoS One 2009; 4: e8508.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  228. Ruggiero T, Trabucchi M, de SF, Zupo S, Harfe BD, McManus MT et al. LPS induces KH-type splicing regulatory protein-dependent processing of microRNA-155 precursors in macrophages. FASEB J 2009; 23: 2898–2908.

    Article  CAS  PubMed  Google Scholar 

  229. Lu C, Huang X, Zhang X, Roensch K, Cao Q, Nakayama KI et al. miR-221 and miR-155 regulate human dendritic cell development, apoptosis, and IL-12 production through targeting of p27kip1, KPC1, and SOCS-1. Blood 2011; 117: 4293–4303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Yin Q, Wang X, McBride J, Fewell C, Flemington E . B-cell receptor activation induces BIC/miR-155 expression through a conserved AP-1 element. J Biol Chem 2008; 283: 2654–2662.

    Article  CAS  PubMed  Google Scholar 

  231. Yamamoto M, Kondo E, Takeuchi M, Harashima A, Otani T, Tsuji-Takayama K et al. miR-155, a modulator of FOXO3a protein expression, is underexpressed and cannot be upregulated by stimulation of HOZOT, a line of multifunctional Treg. PloS one 2011; 6: e16841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Xiao B, Liu Z, Li BS, Tang B, Li W, Guo G et al. Induction of microRNA-155 during Helicobacter pylori infection and its negative regulatory role in the inflammatory response. J Infect Dis 2009; 200: 916–925.

    Article  CAS  PubMed  Google Scholar 

  233. Yin Q, McBride J, Fewell C, Lacey M, Wang X, Lin Z et al. MicroRNA-155 is an Epstein–Barr virus-induced gene that modulates Epstein–Barr virus-regulated gene expression pathways. J Virol 2008; 82: 5295–5306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Imaizumi T, Tanaka H, Tajima A, Yokono Y, Matsumiya T, Yoshida H et al. IFN-gamma and TNF-alpha synergistically induce microRNA-155 which regulates TAB2/IP-10 expression in human mesangial cells. Am J Nephrol 2010; 32: 462–468.

    Article  CAS  PubMed  Google Scholar 

  235. Gao W, Shen H, Liu L, Xu J, Shu Y . MiR-21 overexpression in human primary squamous cell lung carcinoma is associated with poor patient prognosis. J Cancer Res Clin Oncol 2011; 137: 557–566.

    Article  CAS  PubMed  Google Scholar 

  236. Medina PP, Nolde M, Slack FJ . OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature 2010; 467: 86–90.

    Article  CAS  PubMed  Google Scholar 

  237. Zhou R, Hu G, Liu J, Gong AY, Drescher KM, Chen XM . NF-kappaB p65-dependent transactivation of miRNA genes following Cryptosporidium parvum infection stimulates epithelial cell immune responses. PLoS Pathog 2009; 5: e1000681.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  238. Cameron JE, Fewell C, Yin Q, McBride J, Wang X, Lin Z et al. Epstein–Barr virus growth/latency III program alters cellular microRNA expression. Virology 2008; 382: 257–266.

    Article  CAS  PubMed  Google Scholar 

  239. Liu G, Friggeri A, Yang Y, Park YJ, Tsuruta Y, Abraham E . miR-147, a microRNA that is induced upon Toll-like receptor stimulation, regulates murine macrophage inflammatory responses. Proc Natl Acad Sci USA 2009; 106: 15819–15824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Bazzoni F, Rossato M, Fabbri M, Gaudiosi D, Mirolo M, Mori L et al. Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals. Proc Natl Acad Sci USA 2009; 106: 5282–5287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Ma X, Becker Buscaglia LE, Barker JR, Li Y . MicroRNAs in NF-κB signaling. J Mol Cell Biol 2011; 3: 159–166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. El GM, McCall CE . MicroRNAs distinguish translational from transcriptional silencing during endotoxin tolerance. J Biol Chem 2010; 285: 20940–20951.

    Article  CAS  Google Scholar 

  243. Jennewein C, von KA, Schmid T, Brune B . MicroRNA-27b contributes to lipopolysaccharide-mediated peroxisome proliferator-activated receptor gamma (PPARgamma) mRNA destabilization. J Biol Chem 2010; 285: 11846–11853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Hu G, Zhou R, Liu J, Gong AY, Eischeid AN, Dittman JW et al. MicroRNA-98 and let-7 confer cholangiocyte expression of cytokine-inducible Src homology 2-containing protein in response to microbial challenge. J Immunol 2009; 183: 1617–1624.

    Article  CAS  PubMed  Google Scholar 

  245. Lin SC, Lo YC, Wu H . Helical assembly in the MyD88–IRAK4–IRAK2 complex in TLR/IL-1R signalling. Nature 2010; 465: 885–890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize to the many authors whose work could not be cited directly because of space limitations. This work was supported in part by a grant from the Lupus Research Institute, Andrew J. Semesco Foundation, and National Institutes of Health (grant AI47859). MAN was supported by NIAMS Rheumatology training grant T32 AR007603.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward KL Chan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nahid, M., Satoh, M. & Chan, E. MicroRNA in TLR signaling and endotoxin tolerance. Cell Mol Immunol 8, 388–403 (2011). https://doi.org/10.1038/cmi.2011.26

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2011.26

Keywords

This article is cited by

Search

Quick links