Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hydration of denatured and molten globule proteins

Abstract

The hydration of nonnative states is central to protein folding and stability but has been probed mainly by indirect methods. Here we use water 17O relaxation dispersion to monitor directly the internal and external hydration of α-lactalbumin, lysozyme, ribonuclease A, apomyoglobin and carbonic anhydrase in native and nonnative states. The results show that nonnative proteins are more structured and less solvent exposed than commonly believed. Molten globule proteins preserve most of the native internal hydration sites and have native-like surface hydration. Proteins denatured by guanidinium chloride are not fully solvent exposed but contain strongly perturbed occluded water. These findings shed new light on hydrophobic stabilization of proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structures of human α-lactalbumin (PDB file 1HML), lysozyme (2LZT) and ribonuclease A (7RSA) showing potentially long-lived internal water molecules, disulfide bonds (yellow), and the Ca2+ ion (green) in α-lactalbumin.
Figure 2: Frequency dependence of water 17O excess longitudinal relaxation rate from solutions of α-lactalbumin, lysozyme and ribonuclease A in the native (), GdmCl-denatured (♦) and GdmCl-denatured-reduced (X) states.
Figure 3: Variation with GdmCl concentration of the hydration parameters NβSβ2 (left) and Nαρα (right) derived from 17O MRD profiles from α-lactalbumin solutions.
Figure 4: Frequency dependence of water 17O excess longitudinal relaxation rate from solutions of α-lactalbumin, apomyoglobin and carbonic anhydrase II in the native () and molten globule () states, and from solutions of acid-denatured apoMb (X) and GdmCl-denatured HCAII (X).
Figure 5: Circular dichroism spectra from aqueous solutions of the proteins studied in the MG state by MRD.
Figure 6: 1H NMR spectra from aqueous solutions of the proteins studied in the MG state by MRD: a, BαLA (N), b, BαLA (MG), c, apoMb (N), d, apoMb (MG), e, apoMb (D), f, HCAII (N), and g, HCAII (MG).

Similar content being viewed by others

References

  1. Tanford, C. Protein denaturation. Adv. Protein Chem. 23, 121–282 (1968).

    Article  CAS  Google Scholar 

  2. Kuwajima, K. The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure. Proteins 6, 87–103 (1989).

    Article  CAS  Google Scholar 

  3. Dill, K.A. & Shortle, D. Denatured states of proteins. Annu. Rev. Biochem. 60, 795–825 (1991).

    Article  CAS  Google Scholar 

  4. Dobson, C.M. Unfolded proteins, compact states and molten globules. Curr. Opin. Struct. Biol. 2, 6–12 ( 1992).

    Article  CAS  Google Scholar 

  5. Ptitsyn, O.B. in Protein folding (ed. Creighton, T.E.) 243–300 (W.H. Freeman & Co., New York; 1992).

    Google Scholar 

  6. Shortle, D. Denatured states of proteins and their roles in folding and stability. Curr. Opin. Struct. Biol. 3, 66–74 (1993).

    Article  CAS  Google Scholar 

  7. Freire, E. Thermodynamics of partly folded intermediates in proteins. Annu. Rev. Biophys. Biomol. Struct. 24, 141– 165 (1995).

    Article  CAS  Google Scholar 

  8. Fink, A.L. Compact intermediate states in protein folding. Annu. Rev. Biophys. Biomol. Struct. 24, 495–522 (1995).

    Article  CAS  Google Scholar 

  9. Shortle, D. The denatured state (the other half of the folding equation) and its role in protein stability. FASEB J. 10, 27– 34 (1996).

    Article  CAS  Google Scholar 

  10. Kuwajima, K. The molten globule state of α-lactalbumin. FASEB J. 10, 102–109 (1996).

    Article  CAS  Google Scholar 

  11. Spolar, R.S., Livingstone, J.R. & Record, M.T. Use of liquid hydrocarbon and amide transfer data to estimate contributions to thermodynamic functions of protein folding from the removal of nonpolar and polar surface from water. Biochemistry 31, 3947–3955 ( 1992).

    Article  CAS  Google Scholar 

  12. Makhatadze, G.I. & Privalov, P.L. Hydration effects in protein unfolding. Biophys. Chem. 51, 291–309 (1994).

    Article  CAS  Google Scholar 

  13. Gast, K., Zirwer, D., Welfle, H., Bychkova, V.E. & Ptitsyn, O.B. Quasielastic light scattering from human α-lactalbumin: comparison of molecular dimensions in native and molten globule states. Int. J. Biol. Macromol. 8, 231–236 (1986).

    Article  CAS  Google Scholar 

  14. Kataoka, M., Kuwajima, K., Tokunaga, F. & Goto, Y. Structural characterization of the molten globule of α-lactalbumin by solution X-ray scattering. Protein Sci. 6, 422– 430 (1997).

    Article  CAS  Google Scholar 

  15. Gast, K. et al. Compactness of protein molten globules: temperature-induced structural changes of the apomyoglobin folding intermediate. Eur. Biophys. J. 23, 297–305 ( 1994).

    Article  CAS  Google Scholar 

  16. Kataoka, M. et al. Structural characterization of the molten globule and native states of apomyoglobin by solution X-ray scattering. J. Mol. Biol. 249, 215–228 ( 1995).

    Article  CAS  Google Scholar 

  17. Nishii, I., Kataoka, M., Tokunaga, F. & Goto, Y. Cold denaturation of the molten globule states of apomyoglobin and a profile for protein folding. Biochemistry 33, 4903– 4909 (1994).

    Article  CAS  Google Scholar 

  18. Uchiyama, H., Perez-Prat, E.M., Watanabe, K., Kumagai, I. & Kuwajima, K. Effects of amino acid substitutions in the hydrophobic core of α-lactalbumin on the stability of the molten globule state. Protein Eng. 8, 1153– 1161 (1995).

    Article  CAS  Google Scholar 

  19. Kharakoz, D.P. & Bychkova, V.E. Molten globule of human α-lactalbumin: hydration, density, and compressibility of the interior. Biochemistry 36, 1882– 1890 (1997).

    Article  CAS  Google Scholar 

  20. Finkelstein, A.V. & Shakhnovich, E.I. Theory of cooperative transitions in protein molecules. II. Phase diagram for a protein molecule in solution. Biopolymers 28, 1681 –1694 (1989).

    Article  CAS  Google Scholar 

  21. Alonso, D.O.V., Dill, K.A. & Stigter, D. The three states of globular proteins: acid denaturation. Biopolymers 31, 1631–1649 (1991).

    Article  CAS  Google Scholar 

  22. Williams, M.A., Thornton, J.M. & Goodfellow, J.M. Modelling protein unfolding: hen egg-white lysozyme. Protein Eng. 10, 895–903 (1997).

    Article  CAS  Google Scholar 

  23. Kunz, I.D. & Kauzmann, W. Hydration of proteins and polypeptides. Adv. Protein Chem. 28, 239– 345 (1974).

    Article  Google Scholar 

  24. Otting, G. NMR studies of water bound to biological molecules. Prog. NMR Spectrosc. 31, 259–285 ( 1997).

    Article  CAS  Google Scholar 

  25. Halle, B., Denisov, V.P. & Venu, K. in Modern techniques in protein NMR Vol. 17 (eds Berliner, L.J. & Krishna, N.R.) in the press (Plenum Press, New York; 1999).

    Google Scholar 

  26. Denisov, V.P. & Halle, B. Thermal denaturation of ribonuclease A characterized by water 17O and 2H magnetic relaxation dispersion. Biochemistry 37, 9595–9604 (1998).

    Article  CAS  Google Scholar 

  27. Denisov, V.P. & Halle, B. Protein hydration dynamics in aqueous solution. Faraday Discuss. 103, 227– 244 (1996).

    Article  CAS  Google Scholar 

  28. Denisov, V.P., Peters, J., Hörlein, H.D. & Halle, B. Using buried water molecules to explore the energy landscape of proteins. Nature Struct. Biol. 3, 505– 509 (1996).

    Article  CAS  Google Scholar 

  29. Denisov, V.P. & Halle, B. Direct observation of calcium-coordinated water in calbindin D9k by nuclear magnetic relaxation dispersion. J. Am. Chem. Soc. 117, 8456– 8465 (1995).

    Article  CAS  Google Scholar 

  30. Ishimura, M. & Uedaira, H. Natural-abundance oxygen-17 magnetic relaxation in aqueous solutions of apolar amino acids and glycine peptides. Bull Chem. Soc. Jpn. 63, 1– 5 (1990).

    Article  CAS  Google Scholar 

  31. Gerstein, M. & Chothia, C. Packing at the protein-water interface. Proc. Natl. Acad. Sci. USA 93, 10167– 10172 (1996).

    Article  CAS  Google Scholar 

  32. Edelhoch, H. Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry 6, 1948–1954 (1967).

    Article  CAS  Google Scholar 

  33. Pace, C.N. Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods Enzymol. 131, 266– 280 (1986).

    Article  CAS  Google Scholar 

  34. Kuwajima, K., Nitta, K., Yoneyama, M. & Sugai, S. Three-state denaturation of α-lactalbumin by guanidine hydrochloride. J. Mol. Biol. 106, 359–373 ( 1976).

    Article  CAS  Google Scholar 

  35. Schellman, J.A. The thermodynamics of solvent exchange. Biopolymers 34, 1015–1026 (1994).

    Article  CAS  Google Scholar 

  36. Schellman, J.A. A simple model for solvation in mixed solvents. Application to the stabilization and destabilization of macromolecular structures. Biophys. Chem. 37, 121–140 ( 1990).

    Article  CAS  Google Scholar 

  37. Makhatadze, G.I. & Privalov, P.L. Protein interactions with urea and guanidinium chloride. A calorimetric study. J. Mol. Biol. 226, 491–505 ( 1992).

    Article  CAS  Google Scholar 

  38. Schellman, J.A. & Gassner, N.C. The enthalpy of transfer of unfolded proteins into solutions of urea and guanidinium chloride. Biophys. Chem. 59, 259– 275 (1996).

    Article  CAS  Google Scholar 

  39. Schulman, B.A., Kim, P.S., Dobson, C.M. & Redfield, C. A residue-specific NMR view of the non-cooperative unfolding of a molten globule. Nature Struct. Biol. 4, 630–634 (1997).

    Article  CAS  Google Scholar 

  40. Dolgikh, D.A. et al. Compact state of a protein molecule with pronounced small-scale mobility: bovine α-lactalbumin. Eur. Biophys. J. 13, 109–121 (1985).

    Article  CAS  Google Scholar 

  41. Kronman, M.J. Metal-ion binding and the molecular conformational properties of α-lactalbumin. Crit. Rev. Biochem. Mol. Biol. 24, 565– 667 (1989).

    Article  CAS  Google Scholar 

  42. Wu, L.C., Peng, Z. & Kim, P.S. Bipartite structure of the α-lactalbumin molten globule. Nature Struct. Biol. 2, 281–286 (1995).

    Article  CAS  Google Scholar 

  43. Lecomte, J.T.J., Kao, Y.H. & Cocco, M.J. The native state of apomyoglobin described by proton NMR spectroscopy: the A-B-G-H interface of wild-type sperm whale apomyoglobin. Proteins 25, 267–285 (1996).

    Article  CAS  Google Scholar 

  44. Eliezer, D., Yao, J., Dyson, H.J. & Wright, P.E. Structural and dynamic characterization of partially folded states of apomyoglobin and implications for protein folding. Nature Struct. Biol. 5, 148–155 (1998).

    Article  CAS  Google Scholar 

  45. Mårtenson, L.-G. et al. Characterization of folding intermediates of human carbonic anhydrase II: Probing substructure by chemical labeling of SH groups introduced by site-directed mutagenesis. Biochemistry 32, 224–231 (1993).

    Article  Google Scholar 

  46. Svensson, M. et al. Mapping the folding intermediate of human carbonic anhydrase II. Probing substructure by chemical reactivity and spin and fluorescence labeling of engineered cysteine residues. Biochemistry 34, 8606–8620 (1995).

    Article  CAS  Google Scholar 

  47. Halle, B., Jóhannesson, H. & Venu, K. Model-free analysis of stretched relaxation dispersions. J. Magn. Reson. 135, 1– 13 (1998).

    Article  CAS  Google Scholar 

  48. Barron, L.D., Hecht, L. & Wilson, G. The lubricant of life: a proposal that solvent water promotes extremely fast conformational fluctuations in mobile heteropolypeptide structure. Biochemistry 36, 13143– 13147 (1997).

    Article  CAS  Google Scholar 

  49. Damaschun, G., Gernat, C., Damaschun, H., Bychkova, V.E. & Ptitsyn, O.B. Comparison of intramolecular packing of a protein in native and 'molten globule' states. Int. J. Biol. Macromol. 8, 226–230 ( 1986).

    Article  CAS  Google Scholar 

  50. Pfeil, W. Is the molten globule a third thermodynamic state of protein? The example of α-lactalbumin. Proteins 30, 43– 48 (1998).

    Article  CAS  Google Scholar 

  51. Griko, Y.V. & Privalov, P.L. Thermodynamic puzzle of apomyoglobin unfolding. J. Mol. Biol. 235, 1318– 1325 (1994).

    Article  CAS  Google Scholar 

  52. Hinz, H.-J., Vogl, T. & Meyer, R. An alternative interpretation of the heat capacity changes associated with protein unfolding. Biophys. Chem. 52, 275 –285 (1994).

    Article  CAS  Google Scholar 

  53. Yang, D., Mok, Y.-K., Forman-Kay, J.D., Farrow, N.A. & Kay, L.E. Contributions to protein entropy and heat capacity from bond vector motions measured by NMR spin relaxation. J. Mol. Biol. 272, 790–804 (1997).

    Article  CAS  Google Scholar 

  54. Matthews, C.R. Pathways of protein folding. Annu. Rev. Biochem. 62 , 653–683 (1993).

    Article  CAS  Google Scholar 

  55. Ptitsyn, O.B. Structures of folding intermediates. Curr. Opin. Struct. Biol. 5, 74–78 (1995 ).

    Article  CAS  Google Scholar 

  56. Shortle, D., Wang, Y., Gillespie, J.R. & Wrabl, J.O. Protein folding for realists: a timeless phenomenon. Protein Sci. 5, 991–1000 ( 1996).

    Article  CAS  Google Scholar 

  57. Miranker, A.D. & Dobson, C.M. Collapse and cooperativity in protein folding. Curr. Opin. Struct. Biol. 6, 31–42 (1996).

    Article  CAS  Google Scholar 

  58. Aronsson, G., Mårtensson, L.-G., Carlsson, U. & Jonsson, B.-H. Folding and stability of the N-terminus of human carbonic anhydrase II. Biochemistry 34, 2153–2162 (1995).

    Article  CAS  Google Scholar 

  59. Teale, F.W.J. Cleavage of the haemprotein link by acid methylethylketone. Biochim. Biophys. Acta 35, 543 (1959).

    Article  CAS  Google Scholar 

  60. Hiraoka, Y. & Sugai, S. Equilibrium and kinetic study of sodium- and potassium-induced conformational changes of apo-α-lactalbumin. Int. J. Pept. Protein Res. 26, 252– 261 (1985).

    Article  CAS  Google Scholar 

  61. Hughson, F.M., Wright, P.E. & Baldwin, R.L. Structural characterization of a partly folded apomyoglobin intermediate. Science 249, 1544– 1548 (1990).

    Article  CAS  Google Scholar 

  62. Wong, K.P. & Hamlin, L.M. Acid denaturation of bovine carbonic anhydrase B. Biochemistry 13, 2678– 2683 (1974).

    Article  CAS  Google Scholar 

  63. Jagannadham, M.V. & Balasubramanian, D. The molten globular intermediate form in the folding pathway of human carbonic anhydrase B. FEBS Lett. 188, 326– 330 (1985).

    Article  CAS  Google Scholar 

  64. Peng, Z. & Kim, P.S. A protein dissection study of a molten globule. Biochemistry 33, 2136– 2141 (1994).

    Article  CAS  Google Scholar 

  65. Loh, S.N., Kay, M.S. & Baldwin, R.L. Structure and stability of a second molten globule intermediate in the apomyoglobin folding pathway. Proc. Natl. Acad. Sci. USA 92, 5446–5450 ( 1995).

    Article  CAS  Google Scholar 

  66. Denisov, V.P. & Halle, B. Protein hydration dynamics in aqueous solution. A comparison of bovine pancreatic trypsin inhibitor and ubiquitin by oxygen-17 spin relaxation dispersion. J. Mol. Biol. 245, 682–697 (1995).

    Article  CAS  Google Scholar 

  67. Myers, J.K., Pace, C.N. & Scholtz, J.M. Denaturant m values and heat capacity changes: relation to changes in accessible surface areas of protein unfolding. Protein Sci. 4, 2138–2148 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Thulin for help with protein purification. This work was supported by the Swedish Natural Science Research Council (NFR) and the Royal Swedish Academy of Sciences (KVA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bertil Halle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Denisov, V., Jonsson, BH. & Halle, B. Hydration of denatured and molten globule proteins. Nat Struct Mol Biol 6, 253–260 (1999). https://doi.org/10.1038/6692

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/6692

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing