Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Antiquity of clonal salamander lineages revealed by mitochondrial DNA

Abstract

THE existence of clonally reproducing vertebrates has often served as a foil in attempts to explain the near-ubiquity of sexual reproduction in eukaryotes, but the absence of recombination, with its attendant limitation of new genotypes to those produced through mutations, restricts the adaptive ability of clonal organisms1–3. It has been argued, therefore, that clonal vertebrate taxa have short lifespans4–14. Variation in mitochondrial DNA (mtDNA) within clonal populations is interpreted instead as reflecting multiple, although limited, independent hybridization events8–13,15. On the basis of an analysis of an average of 373 nucleotide pairs, we report here that the mtDNA of clonal, hybrid, gynogenetic mole salamanders (Ambystoma, Ambystomatidae) differs by 5% or more from mtDNA of their closest possible sexual relatives (A. jeffersonianum, A. laterale and A. texanum). Assuming usual rates of mtDNA divergence, these lineages have persisted for about 5 million years, far longer than estimated for other clonal vertebrate populations. The low mtDNA variability in the clonal lineages suggests that they have undergone population reductions during the Pleistocene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Williams, G. C. Sex and Evolution (Princeton Univ. Press, Princeton, 1975).

    Google Scholar 

  2. Maynard Smith, J. The Evolution of Sex (Cambridge Univ. Press, Cambridge and New York, 1978).

    Google Scholar 

  3. Bell, G. The Masterpiece of Nature (Univ. California Press, Berkeley, 1982).

    Google Scholar 

  4. Densmore, L. D., Wright, J. W. & Brown, W. M. Evolution 43, 943–957 (1989).

    PubMed  Google Scholar 

  5. Moritz, C. C., Wright, J. W. & Brown, W. M. Evolution 43, 958–968 (1989).

    PubMed  Google Scholar 

  6. Densmore, L. D., Moritz, C. C., Wright, J. W. & Brown, W. M. Evolution 43, 969–983 (1989).

    PubMed  Google Scholar 

  7. Wright, J. W., Spolsky, C. & Brown, W. M. Herpetologica 39, 410–416 (1983).

    Google Scholar 

  8. Moritz, C. et al. Bull. N.Y. St. Mus. 466, 87–112 (1989).

    ADS  Google Scholar 

  9. Moritz, C. et al. Genetica (in the press).

  10. Avise, J. C. & Vrijenhoek, R. C. Molec. Biol. Evol. 4, 514–525 (1987).

    CAS  Google Scholar 

  11. Quattro, J. M., Avise, J. C. & Vrijenhoek, R. C. Proc. natn. Acad. Sci. U.S.A. 89, 348–352 (1992).

    Article  ADS  CAS  Google Scholar 

  12. Echelle, A. A., Dowling, T. E., Moritz, C. C. & Brown, W. M. Evolution 43, 984–993 (1989).

    Article  Google Scholar 

  13. Goddard, K. A., Dawley, R. M. & Dowling, T. E. Bull. N.Y. St. Mus. 466, 268–297 (1989).

    Google Scholar 

  14. Spolsky, C. & Uzzell, T. Molec. Biol. Evol. 3, 44–56 (1986).

    CAS  PubMed  Google Scholar 

  15. Quattro, J. M., Avise, J. C. & Vrijenhoek, R. C. Genetics 127, 391–398 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Uzzell, T. M. Jr Copeia 1964, 247–300 (1964).

    Article  Google Scholar 

  17. Clanton, W. Occ. Pap. Mus. Zool. Univ. Mich. 290, 1–14 (1934).

    Google Scholar 

  18. Minton, S. A. Herpetologica 10, 173–179 (1954).

    Google Scholar 

  19. Uzzell, T. M. Jr & Goldblatt, S. M. Evolution 21, 345–354 (1967).

    Article  Google Scholar 

  20. Macgregor, H. C. & Uzzell, T. M. Jr Science 143, 1043–1045 (1964).

    Article  ADS  CAS  Google Scholar 

  21. Bogart, J. P. Bull. N.Y. St. Mus. 466, 170–179 (1989).

    Google Scholar 

  22. Lowcock, L. A. Bull. N.Y. St. Mus. 466, 180–208 (1989).

    Google Scholar 

  23. Kraus, F. & Miyamoto, M. M. Proc. natn. Acad. Sci. U.S.A. 87, 2235–2238 (1990).

    Article  ADS  CAS  Google Scholar 

  24. Felsenstein, J. in Cladistics: Perspectives in the Reconstruction of Evolutionary Biology (eds Duncan, T. & Steussy, T. F.) 169–191 (Columbia Univ. Press, New York, 1984).

    Google Scholar 

  25. Sheldon, F. H. Molec. Biol. Evol. 4, 56–69 (1987).

    CAS  PubMed  Google Scholar 

  26. Brown, W. M., George, M. Jr & Wilson, A. C. Proc. natn. Acad. Sci U.S.A. 76, 1967–1971 (1979).

    Article  ADS  CAS  Google Scholar 

  27. Shields, G. F. & Wilson, A. C. J. Molec. Evol. 24, 212–217 (1987).

    Article  ADS  CAS  Google Scholar 

  28. Brower, A. V. Z. & Boyce, T. M. Evolution 45, 1281–1286 (1991).

    Article  CAS  Google Scholar 

  29. Spolsky, C. M., Phillips, C. A. & T. Uzzell, Evolution (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spolsky, C., Phillips, C. & Uzzell, T. Antiquity of clonal salamander lineages revealed by mitochondrial DNA. Nature 356, 706–708 (1992). https://doi.org/10.1038/356706a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/356706a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing