Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Interhemispheric asymmetry in OH abundance inferred from measurements of atmospheric 14CO

Abstract

THE hydroxyl radical, OH, is the chief oxidizing agent in the atmosphere, and is responsible for removing many natural and anthropogenic trace gases1. At present, OH cannot be measured directly with sufficient accuracy over the spatial and temporal scales needed for global models of atmospheric chemistry2. Consequently, estimates of atmospheric OH abundance rely on a combination of models incorporating OH chemistry and observations of trace gases sensitive to OH. 14CO is an important diagnostic of OH abundance3–6. It is produced in the atmosphere mainly by the immediate oxidation of 14C produced by cosmic radiation, and it is subsequently removed more slowly through oxidation to 14CO2 by hydroxyl radicals7. The mean lifetime of14CO in clean air during summer in the middle and low latitudes is about one month, which makes 14CO a more sensitive indicator of OH than the longer-lived trace gases commonly used. Until now, only a few Northern Hemisphere 14CO determinations have been published3,8. Using accelerator mass spectrometry we present here an extensive set of 14CO data in New Zealand and several new Northern Hemisphere results. We find that Southern Hemisphere14CO concentrations are 40% lower than at comparable latitudes in the Northern Hemisphere. Such a large difference is surprising because the dominant sources and sinks are believed to be similar in both hemispheres. Although there are several complicating factors, from our results we suggest that OH abundances may be significantly higher in the Southern Hemisphere than in the Northern Hemisphere, in contrast to predictions using current photochemical models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Levy, H. Science 173, 141–143 (1971).

    Article  ADS  CAS  Google Scholar 

  2. Altshuller, A. P. J. Air. Poll. Contr. Ass. 39, 704–708 (1989).

    CAS  Google Scholar 

  3. Volz, A., Ehhalt, D. H. & Derwent, R. G. J. geophys. Res. 86, 5163–5171 (1981).

    Article  ADS  CAS  Google Scholar 

  4. Derwent, R. G. & Volz-Thomas, A. Global Ozone Research and Monitoring Project Rep. No. 20, Vol. 2, 127–146 (World Meteorological Organization, 1989).

  5. Weinstock, B. & Chang, T. Y. Enviro. Biogeochemistry, Vol. 1, 39–49 (Ann Arbor Science, Ann Arbor, 1976).

    Google Scholar 

  6. Prather, M. Global Ozone Research and Monitoring Project Rep. No. 20, Vol. 2, 149–158 (World Meteorological Organization, 1989).

    Google Scholar 

  7. Weinstock, B. Science 166, 224–225 (1969).

    Article  ADS  CAS  Google Scholar 

  8. MacKay, C., Pandow, M. & Wolfgang, R. J. geophys. Res. 68, 3929–3931 (1963).

    Article  ADS  CAS  Google Scholar 

  9. Stevens, C. M. & Krout, L. Int. J. Mass Spectrom. Ion Phys. 8, 265–275 (1972).

    Article  ADS  CAS  Google Scholar 

  10. Lowe, D. C. & Judd, W. J. Nucl. Instrum. Meth. B28, 113–116 (1987).

    Article  Google Scholar 

  11. Wallace, G., Sparks, R. J., Lowe, D. C. & Pohl, K. P. Nucl. Instrum. Meth. B29, 124–128 (1987).

    Article  Google Scholar 

  12. Brenninkmeijer, C. A. M. Analyt. Chem. 63, 1182–1184 (1991).

    Article  CAS  Google Scholar 

  13. Stuiver, M. & Polach, H. A. Radiocarbon 19, 355–363 (1977).

    Article  Google Scholar 

  14. Singh, H. B., Salas, L. J., Shiegeishi, H. & Scribner, H. Science 203, 899–903 (1979).

    Article  ADS  CAS  Google Scholar 

  15. Isaksen, I. S. A. & Hov, O. Telus B39, 271–285 (1987).

    Article  ADS  Google Scholar 

  16. O'Brien, K. J. geophys. Res. 84, 423–431 (1979).

    Article  ADS  CAS  Google Scholar 

  17. Lingenfelter, R. E. & Ramaty, R. Radiocarbon Variations and Absolute Chronology, 513–535 (ed. Olsson, I. U.) (Wiley, New York, 1970).

    Google Scholar 

  18. Sauer, H. H., Zwickl, R. D. & Ness, M. J. Summary Data for the Solar Energetic Events of August through December 1989 (NOAA, Boulder, 1990).

    Google Scholar 

  19. Mathews, T. & Venkatesan, D. Nature 345, 600–603 (1990).

    Article  ADS  Google Scholar 

  20. Cunnold, D. M. et al. J. geophys. Res. 88, 8379–8400 (1983).

    Article  ADS  CAS  Google Scholar 

  21. Levin, I. et al. Radiocarbon 27, 1–19 (1985).

    Article  CAS  Google Scholar 

  22. Manning, M. R. et al. Radiocarbon 32, 37–58 (1990).

    Article  Google Scholar 

  23. Telegadas, K. United States Atomic Energy Commission HASL-243, TID-4500. (New York, 1971).

  24. Holton, J. R. J. atmos. Sci. 47, 392–395 (1990).

    Article  ADS  Google Scholar 

  25. Gidel, L. T. & Shariro, M. A. J. geophys. Res. 85, 4049–4058 (1980).

    Article  ADS  CAS  Google Scholar 

  26. Lingenfelter, R. E. Rev. Geophys. 1, 35–55 (1963).

    Article  ADS  CAS  Google Scholar 

  27. McConnel, J. C., McElroy, M. B. & Wofsy, S. C. Nature 233, 187–188 (1971).

    Article  ADS  Google Scholar 

  28. Zimmerman, P. R., Chatfield, R. B., Fishman, J., Crutzen, P. J. & Hanst, P. L. Geophys. Res. Lett. 5, 679–682 (1978).

    Article  ADS  CAS  Google Scholar 

  29. Crutzen, P. J., Heidt, L. E., Krasnec, J. P., Pollock, W. H. & Seiler, W. Nature 282, 253–256 (1979).

    Article  ADS  CAS  Google Scholar 

  30. Spivakovsky, C. M., Yevich, R., Logan, J. A., Wofsy, S. C. & McElroy, M. B. J. geophys. Res. 95, 18,441–18,471 (1990).

    Article  ADS  CAS  Google Scholar 

  31. Schnell, R. C. et al. Nature 351, 726–729 (1991).

    Article  ADS  CAS  Google Scholar 

  32. Liu, S. C., McKeen, S. C. & Madronich, S. Geophys. Res. Lett. (in the press).

  33. Kelly, K. K., Tuck, A. F. & Davies, T. Nature 353, 244–247 (1991).

    Article  ADS  Google Scholar 

  34. Jacob, P. & Klockow, D. J. atmos. Chem. (in the press).

  35. Manning, M. R. & Pohl, K. P. INS-R-350 (Institute of Nuclear Sciences, DSIR Wellington, 1986).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brenninkmeijer, C., Manning, M., Lowe, D. et al. Interhemispheric asymmetry in OH abundance inferred from measurements of atmospheric 14CO. Nature 356, 50–52 (1992). https://doi.org/10.1038/356050a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/356050a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing