Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Do carbonate skeletons limit the rate of body growth?

Abstract

Many marine invertebrates produce mineralized skeletons whose form suggests an economical construction. Porous as opposed to solid skeletal components are produced by sclerac-tinian corals1,2, balanoid and coronuloid barnacles3, ostreid and hippuritid bivalves4, and almost all modern echinoderm classes5,6. They were also produced by rudist bivalves which were widely successful in Cretaceous tropical seas7. Marine proso-branch gastropods produce a stout external shell sculpture in place of a uniformly thick, ultimately stronger shell8,9. The costs implied by these patterns of economical skeleton construction, however, are unknown10–12. The term ‘cost’ refers to an evolutionary cost measured in terms of reduced fitness. Note that not all such costs are energetic; non-energetic constraints may also influence fitness. I present here evidence that both thick- and thin-shelled morphs of Thais (=Nucella) lamellosa (Gastropoda, Prosobranchia) produce shell material at a remarkably similar rate during maximal growth. Thick-shelled animals, however, exhibit a significantly slower rate of body growth. These results suggest that rates of skeletal growth can limit the rate of body growth and that this limitation represents a potentially important evolutionary cost.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Chamberlain, J. A. Jr Palaeobiology 4, 419–435 (1978).

    Article  Google Scholar 

  2. Sorauf, J. E. Palaeontology 15, 88–107 (1972).

    Google Scholar 

  3. Newman, W. A. & Ross, A. San Diego Soc. nat. Hist. Mem. 9, 1–108 (1976).

    Google Scholar 

  4. Carter, J. G. in Skeletal Growth of Aquatic Organisms (eds Rhoads, D. C. & Lutz, R. A.) 69–114 (Plenum, New York, 1980).

    Book  Google Scholar 

  5. Raup, D. M. in The Physiology of Echinodermata (ed. Boolootian, R. A.) 379–395 (Wiley, New York, 1966).

    Google Scholar 

  6. Weber, J., Greer, R., Voight, B., White, E. & Roy, R. J. ultrastruct. Res. 26, 355–366 (1969).

    Article  CAS  Google Scholar 

  7. Kauffman, E. G. & Sohl, N. F. Verh. naturf. Ges. Basel 84, 399–467 (1974).

    Google Scholar 

  8. Palmer, A. R. Evolution 33, 697–713 (1979).

    Article  Google Scholar 

  9. Vermeij, G. J. Biogeography and Adaptation: Patterns of Marine Life, 416 (Harvard University Press, Cambridge, 1978).

    Google Scholar 

  10. Rachootin, S. in Encyclopedia of Paleontology (Dowden, Hutchinson & Ross, Stroudsburg, 1979).

    Google Scholar 

  11. Simkiss, K. in The Mechanisms of Mineralization in Invertebrates and Plants (eds Watabe, N. & Wilbur, K. M.) 1–32 (University of South Carolina Press, 1976).

    Google Scholar 

  12. Taylor, J. D. & Layman, M. Paleontology 15, 73–87 (1972).

    Google Scholar 

  13. Bourget, E. & Crisp, D. J. J. mar. biol. Ass. U.K. 55, 231–249 (1975).

    Article  Google Scholar 

  14. Zischke, J. A., Watabe, N. & Wilbur, K. M. Malacologia 10, 423–429 (1970).

    Google Scholar 

  15. Galtsoff, P. S. Ecol. Monogr. 4, 481–490 (1934).

    Article  CAS  Google Scholar 

  16. Worsnop, E. & Orton, J. H. Nature 111, 14–15 (1923).

    Article  ADS  Google Scholar 

  17. Rhoads, D. C. & Lutz, R. A. J. mar. Res. 28, 150–178 (1970).

    Google Scholar 

  18. Zolotarev, V. N. & Ignat'ev, A. V. Sov. J. mar. Biol. 3, 352–358 (1977).

    Google Scholar 

  19. Highsmith, R. C. J. exp. mar. Biol. Ecol. 37, 105–125 (1979).

    Article  Google Scholar 

  20. Buddemeier, R. W. & Kinzie, R. A. III Oceanogr. mar. Biol. A. Rev. 14, 183–225 (1976).

    Google Scholar 

  21. Buddemeier, R. W., Maragos, J. E. & Knutson, D. W. J. exp. mar. Biol. Ecol. 14, 179–200 (1974).

    Article  Google Scholar 

  22. Polyakov, D. M. & Krasnov, E. V. Sov. J. mar. Biol. 2, 391–396 (1976).

    Google Scholar 

  23. Goreau, T. F. Biol. Bull. 116, 59–75 (1959).

    Article  CAS  Google Scholar 

  24. Hickman, R. W. Mar. Biol. 51, 311–327 (1979).

    Article  Google Scholar 

  25. Swan, E. F. Ecology 33, 365–374 (1952).

    Article  Google Scholar 

  26. Raup, D. M. J. Geol. 66, 668–677 (1958).

    Article  ADS  Google Scholar 

  27. Raup, D. M. in Physiology of Echinodermata (ed. Boolootian, R. A.) 379–395 (Interscience, New York, 1966).

    Google Scholar 

  28. Seed, R. & Brown, R. A. J. Anim. Ecol. 47, 283–292 (1978).

    Article  Google Scholar 

  29. Darwin, C. A Monograph of the Subclass Cirripedia. The Balanidae, the Verrucidae, etc. (Ray Society, London, 1854).

    Google Scholar 

  30. Pilsbry, H. R. U.S. nat. Mus. Bull. 93, 1–366 (1916).

    Article  Google Scholar 

  31. Abbott, R. T. American Seashells, 663 (Van Nostrand Reinhold, New York, 1974).

    Google Scholar 

  32. Keen, A. M. Sea Shells of Tropical West America, 1064 (Stanford University Press, 1971).

    Google Scholar 

  33. White, E. I. in Studies on Fossil Vertebrates (ed. Westoll, T. S.) 212–234 (Athlone, London, 1958).

    Google Scholar 

  34. Crenshaw, M. A. in Skeletal Growth of Aquatic Organisms (eds Rhoads, D. C. & Lutz, R. A.) 115–132 (Plenum, New York, 1980).

    Book  Google Scholar 

  35. Ingle, S. E. Mar. Chem. 3, 301–319 (1975).

    Article  CAS  Google Scholar 

  36. Li, Y. H., Takahashi, T. & Broecker, W. S. J. geophys. Res. 74, 5507–5525 (1969).

    Article  ADS  CAS  Google Scholar 

  37. Lees, A. Mar. Geol. 19, 159–198 (1975).

    Article  ADS  Google Scholar 

  38. Jones, D. S. Palaeobiology 6, 331–340 (1980).

    Article  Google Scholar 

  39. Taylor, J. D. Palaeontology 16, 519–534 (1973).

    Google Scholar 

  40. Palmer, A. R. Malacologia (in the press).

  41. Palmer, A. R. thesis, Univ. Washington (1980).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palmer, A. Do carbonate skeletons limit the rate of body growth?. Nature 292, 150–152 (1981). https://doi.org/10.1038/292150a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/292150a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing