Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Milankovitch theory viewed from Devils Hole

Abstract

VARIATIONS in the oxygen isotope content (δ18O) of late Quaternary deep-sea sediments mainly reflect changes in continental ice mass1, and hence provide important information about the timing of past ice ages. Because these sediments cannot yet be dated directly beyond the range of radiocarbon dating (40-50 kyr), ages for the δ18O record have been generated2,3 by matching the phase of the changes in δ18O to that of variations in the Earth's precession and obliquity. Adopting this timescale yields a close correspondence between the time-varying amplitudes of these orbital variations and those of a wide range of climate proxies4, lending support to the Milankovitch theory that the Earth's glacial-interglacial cycles are driven by orbital variations. Recently Winograd et al.5 reported a record of δ18O variations in a fresh-water carbonate sequence from Devils Hole, Nevada, dated by U–Th disequilibrium6. They concluded that the timing of several of the features in the record, which reflects changes in the temperature of precipitation over Nevada as well as changes in the isotopic composition of the moisture source5,7, showed significant deviations from that predicted by Milanko-vitch theory. Here we demonstrate that applying the Devils Hole chronology to ocean cores requires physically implausible changes in sedimentation rate. Moreover, spectral analysis of the Devils Hole record shows clear evidence of orbital influence. We therefore conclude that transfer of the Devils Hole chronology to the marine record is inappropriate, and that the evidence in favour of Milankovitch theory remains strong.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Shackleton, N. J. & Opdyke, N. D. Quat. Res. 3, 39–55 (1973).

    Article  CAS  Google Scholar 

  2. Imbrie, J. et al. in Milankovitch and Climate, Part 1 (eds Berger, A. L., Imbrie, J., Hays, J., Kukla, G. & Saltzman, B.) 269–305 (Reidel, Dordrecht, 1984).

    Google Scholar 

  3. Martinson, D. G. et al. Quat. Res. 27, 1–30 (1987).

    Article  CAS  Google Scholar 

  4. Imbrie, J. et al. Paleoceanography 7, 701–738 (1992).

    Article  ADS  Google Scholar 

  5. Winograd, I. J. et al. Science 258, 255–260 (1992).

    Article  ADS  CAS  Google Scholar 

  6. Ludwig, K. R. et al. Science 258, 284–287 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Benson, L. & Klieforth, H. in Aspects of Climate Variability in the Pacific and the Western Americas (ed. Peterson, D. H.) 41–59 (Am. geophys. Un. Geophys. Monogr. 55, Washington DC, 1989).

    Google Scholar 

  8. Edwards, R. L., Chen, J. H. & Wasserburg, G. J. Earth planet. Sci. Lett. 81, 175–192 (1986).

    Article  ADS  Google Scholar 

  9. Martinson, D. G., Menke, W. & Stoffa, P. J. geophys. Res. 87, 4807–4818 (1982).

    Article  ADS  Google Scholar 

  10. Edwards, R. L. & Gallup, C. D. Science 259, 1626 (1993).

    Article  ADS  CAS  Google Scholar 

  11. Shackleton, N. J. Nature 362, 596 (1993).

    Article  ADS  Google Scholar 

  12. Mix, A. C. et al. Paleoceanography 6, 205–226 (1991)

    Article  ADS  Google Scholar 

  13. Mix, A. C. in The Last Interglacial/Glacial Transition in North America (eds Clark, P. U. & Lea, P. D.) 19–30 (Geol. Soc. Am., Spec. Pap. 270, Boulder, 1992).

    Book  Google Scholar 

  14. Hays, J. D., Imbrie, J. & Shackleton, N. J. Science 194, 1121–1132 (1976).

    Article  ADS  CAS  Google Scholar 

  15. Mix, A. C. & Ruddiman, W. F. Quat. Sci. Rev. 4, 59–108 (1985).

    Article  ADS  CAS  Google Scholar 

  16. Broecker, W. S. et al. Radiocarbon 30, 261–295 (1988).

    Article  CAS  Google Scholar 

  17. Shackleton, N. J. et al. Nature 335, 708–711 (1988).

    Article  ADS  Google Scholar 

  18. Bard, E. et al. in Geological History of the Polar Oceans: Arctic versus Antarctic (eds Bleil, U. & Thiede, J.) 405–416 (Kluwer, Dordrecht, 1990).

    Book  Google Scholar 

  19. Pisias, N. G. et al. Mar. Geol. 56, 119–136 (1984).

    Article  ADS  CAS  Google Scholar 

  20. Prell, W. L. et al. Paleoceanography 1, 137–162 (1986).

    Article  ADS  Google Scholar 

  21. Ruddiman, W. F., Raymo, M. E., Martinson, D. G., Clement, B. M. & Backman, J. Paleoceanography 4, 353–412 (1989).

    Article  ADS  Google Scholar 

  22. Johnson, R. G. Quat. Res. 17, 135–147 (1982).

    Article  ADS  CAS  Google Scholar 

  23. Shackleton, N. J., Berger, A. & Peltier, W. R. Trans. R. Soc. Edin: Earth Sci. 81, 251–261 (1990).

    Article  Google Scholar 

  24. Pisias, N. G., Mix, A. C. & Zahn, R. Paleoceanography 5, 147–160 (1990).

    Article  ADS  Google Scholar 

  25. Hamelin, B., Bard, E., Zindler, A. & Fairbanks, R. G. Earth planet. Sci. Lett. 106, 169–180 (1991).

    Article  ADS  CAS  Google Scholar 

  26. Chen, J. H., Curran, H. A., White, B. & Wasserburg, G. J. Geol. Soc. Am. Bull. 103, 82–97 (1991).

    Article  ADS  CAS  Google Scholar 

  27. Weertman, J. J. Glaciol. 5. 145–158 (1964).

    Article  ADS  Google Scholar 

  28. Fairbanks, R. G. Nature 342, 637–642 (1989).

    Article  ADS  Google Scholar 

  29. Pisias, N. G. & Rea, D. K. Paleoceanography 3, 21–37 (1988).

    Article  ADS  Google Scholar 

  30. Clemens, S. C. & Prell, W. L. J. geophys. Res. 96, 22683–22700 (1991).

    Article  ADS  Google Scholar 

  31. Maasch, K. A. & Saltzman, B. J. geophys. Res. 95, 1955–1963 (1990).

    Article  ADS  Google Scholar 

  32. Short, D. A., Mengel, J. G., Crowley, T. J., Hyde, W. T. & North, G. R. Quat. Res. 35, 157–173 (1991).

    Article  Google Scholar 

  33. Gallée, H. et al J. geophys. Res. 97, 15713–15740 (1992).

    Article  ADS  Google Scholar 

  34. Arthur, M. A. & Garrison, R. E. (eds) Paleoceanography 1, 369–586 (1986).

  35. Hilgen, F. J. Earth Planet. Sci. Lett. 104, 226–244 (1991).

    Article  ADS  Google Scholar 

  36. Baksi, A. K., Hsu, V., McWilliams, M. O. & Farrar, E. Science 256, 356–357 (1992).

    Article  ADS  CAS  Google Scholar 

  37. Tauxe, L., Deino, A. D., Behrensmeyer, A. K. & Potts, R. Earth planet. Sci. Lett. 109, 561–572 (1992).

    Article  ADS  Google Scholar 

  38. Jenkins, G. M. & Watts, D. G. Spectral Analysis and Its Applications (Holden-Day, San Francisco, 1968).

    MATH  Google Scholar 

  39. Berger, A. & Loutre, M. F. Quat. Sci. Rev. 10, 297–317 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imbrie, J., Mix, A. & Martinson, D. Milankovitch theory viewed from Devils Hole. Nature 363, 531–533 (1993). https://doi.org/10.1038/363531a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/363531a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing