Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Current advances in humanized mouse models

Abstract

Humanized mouse models that have received human cells or tissue transplants are extremely useful in basic and applied human disease research. Highly immunodeficient mice, which do not reject xenografts and support cell and tissue differentiation and growth, are indispensable for generating additional appropriate models. Since the early 2000s, a series of immunodeficient mice appropriate for generating humanized mice has been successively developed by introducing the IL-2Rγnull gene (e.g., NOD/SCID/γcnull and Rag2nullγcnull mice). These strains show not only a high rate of human cell engraftment, but also generate well-differentiated multilineage human hematopoietic cells after human hematopoietic stem cell (HSC) transplantation. These humanized mice facilitate the analysis of human hematology and immunology in vivo. However, human hematopoietic cells developed from HSCs are not always phenotypically and functionally identical to those in humans. More recently, a new series of immunodeficient mice compensates for these disadvantages. These mice were generated by genetically introducing human cytokine genes into NOD/SCID/γcnull and Rag2nullγcnull mice. In this review, we describe the current knowledge of human hematopoietic cells developed in these mice. Various human disease mouse models using these humanized mice are summarized.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Shultz LD, Ishikawa F, Greiner DL . Humanized mice in translational biomedical research. Nat Rev Immunol 2007; 7: 118–130.

    Article  CAS  PubMed  Google Scholar 

  2. Ito M, Kobayashi K, Nakahata T . NOD/Shi-scid IL2rγnull (NOG) mice more appropriate for humanized mouse models. Curr Top Microbiol Immunol 2008; 324: 53–76.

    CAS  PubMed  Google Scholar 

  3. Legrand N, Weijer K, Spits H . Experimental models to study development and function of the human immune system in vivo. J Immunol 2006; 176: 2053–2058.

    CAS  PubMed  Google Scholar 

  4. Zhang B, Duan Z, Zhao Y . Mouse models with human immunity and their application in biomedical research. J Cell Mol Med 2009; 13: 1043–1058.

    CAS  PubMed  Google Scholar 

  5. Issacson J, Cattanach B . Report. Mouse News Lett 1962; 27: 31.

    Google Scholar 

  6. Bosma GC, Custer RP, Bosma MJ . A severe combined immunodeficiency mutation in the mouse. Nature 1983; 301: 527–530.

    CAS  PubMed  Google Scholar 

  7. Shultz LD, Schweitzer PA, Christianson SW, Gott B, Schweitzer IB, Tennent B et al. Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J Immunol 1995; 154: 180–191.

    CAS  PubMed  Google Scholar 

  8. Koyanagi Y, Tanaka Y, Tanaka R, Misawa N, Kawano Y, Tanaka T et al. High levels of viremia in hu-PBL-NOD-scid mice with HIV-1 infection. Leukemia 1 1997; Suppl 3, 109–112.

  9. Christianson SW, Greiner DL, Hesselton RA, Leif JH, Wagar EJ, Schweitzer IB et al. Enhanced human CD4+ T cell engraftment in β2-microglobulin-deficient NOD-scid mice. J Immunol 1997; 158: 3578–3586.

    CAS  PubMed  Google Scholar 

  10. Shultz LD, Banuelos S, Lyons B, Samuels R, Burzenski L, Gott B et al. NOD/LtSz-Rag1nullPfpnull mice: a new model system with increased levels of human peripheral leukocyte and hematopoietic stem-cell engraftment. Transplantation 2003; 76: 1036–1042.

    PubMed  Google Scholar 

  11. Ito M, Hiramatsu H, Kobayashi K, Suzue K, Kawahata M, Hioki K et al. NOD/SCID/γcnull mouse: an excellent recipient mouse model for engraftment of human cells. Blood 2002; 100: 3175–3182.

    CAS  PubMed  Google Scholar 

  12. Shultz LD, Lyons BL, Burzenski LM, Gott B, Chen X, Chaleff S et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2Rγnull mice engrafted with mobilized human hemopoietic stem cells. J Immunol 2005; 174: 6477–6489.

    CAS  PubMed  Google Scholar 

  13. Goldman JP, Blundell MP, Lopes L, Kinnon C, Di Santo JP, Thrasher AJ . Enhanced human cell engraftment in mice deficient in RAG2 and the common cytokine receptor gamma chain. Br J Haematol 1998; 103: 335–342.

    CAS  PubMed  Google Scholar 

  14. Traggiai E, Chicha L, Mazzucchelli L, Bronz L, Piffaretti JC, Lanzavecchia A et al. Development of a human adaptive immune system in cord blood cell-transplanted mice. Science 2004; 304: 104–107.

    CAS  PubMed  Google Scholar 

  15. Pearson T, Shultz LD, Miller D, King M, Laning J, Fodor W et al. Non-obese diabetic-recombination activating gene-1 (NOD-Rag1null) interleukin (IL)-2 receptor common gamma chain (IL2rγnull) null mice: a radioresistant model for human lymphohaematopoietic engraftment. Clin Exp Immunol 2008; 154: 270–284.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Brehm MA, Cuthbert A, Yang C, Miller DM, DiIorio P, Laning J et al. Parameters for establishing humanized mouse models to study human immunity: analysis of human hematopoietic stem cell engraftment in three immunodeficient strains of mice bearing the IL2rγnull mutation. Clin Immunol 2010; 135: 84–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Yahata T, Ando K, Nakamura Y, Ueyama Y, Shimamura K, Tamaoki N et al. Functional human T lymphocyte development from cord blood CD34+ cells in nonobese diabetic/Shi-scid, IL-2 receptor γnull mice. J Immunol 2002; 169: 204–209.

    CAS  PubMed  Google Scholar 

  18. Hiramatsu H, Nishikomori R, Heike T, Ito M, Kobayashi K, Katamura K et al. Complete reconstitution of human lymphocytes from cord blood CD34+ cells using the NOD/SCID/γcnull mice model. Blood 2003; 102: 873–880.

    CAS  PubMed  Google Scholar 

  19. Ishikawa F, Shimazu H, Shultz LD, Fukata M, Nakamura R, Lyons B et al. Purified human hematopoietic stem cells contribute to the generation of cardiomyocytes through cell fusion. FASEB J 2006; 20: 950–952.

    CAS  PubMed  Google Scholar 

  20. Willinger T, Rongvaux A, Strowig T, Manz MG, Flavell RA . Improving human hemato-lymphoid-system mice by cytokine knock-in gene replacement. Trends Immunol 2011; 32: 321–327.

    CAS  PubMed  Google Scholar 

  21. Ishikawa F, Yasukawa M, Lyons B, Yoshida S, Miyamoto T, Yoshimoto G et al. Development of functional human blood and immune systems in NOD/SCID/IL2 receptor γ chainnull mice. Blood 2005; 106: 1565–1573.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lepus CM, Gibson TF, Gerber SA, Kawikova I, Szczepanik M, Hossain J et al. Comparison of human fetal liver, umbilical cord blood, and adult blood hematopoietic stem cell engraftment in NOD-scid/γc−/−, Balb/c-Rag1−/−γc−/−, and C.B-17-scid/bg immunodeficient mice. Hum Immunol 2009; 70: 790–802.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Matsumura T, Kametani Y, Ando K, Hirano Y, Katano I, Ito R et al. Functional CD5+ B cells develop predominantly in the spleen of NOD/SCID/γcnull (NOG) mice transplanted either with human umbilical cord blood, bone marrow, or mobilized peripheral blood CD34+ cells. Exp Hematol 2003; 31: 789–797.

    PubMed  Google Scholar 

  24. Hayakawa J, Hsieh MM, Uchida N, Phang O, Tisdale JF . Busulfan produces efficient human cell engraftment in NOD/LtSz-Scid IL2Rγnull mice. Stem Cells 2009; 27: 175–182.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Watanabe Y, Takahashi T, Okajima A, Shiokawa M, Ishii N, Katano I et al. The analysis of the functions of human B and T cells in humanized NOD/shi-scid/γcnull (NOG) mice (hu-HSC NOG mice). Int Immunol 2009; 21: 843–858.

    CAS  PubMed  Google Scholar 

  26. McCune J, Kaneshima H, Krowka J, Namikawa R, Outzen H, Peault B et al. The SCID-hu mouse: a small animal model for HIV infection and pathogenesis. Annu Rev Immunol 1991; 9: 399–429.

    CAS  PubMed  Google Scholar 

  27. McCune JM, Namikawa R, Kaneshima H, Shultz LD, Lieberman M, Weissman IL . The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function. Science 1988; 241: 1632–1639.

    CAS  PubMed  Google Scholar 

  28. Kirberg J, Berns A, von Boehmer H . Peripheral T cell survival requires continual ligation of the T cell receptor to major histocompatibility complex-encoded molecules. J Exp Med 1997; 186: 1269–1275.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Custer RP, Bosma GC, Bosma MJ . Severe combined immunodeficiency (SCID) in the mouse. Pathology, reconstitution, neoplasms. Am J Pathol 1985; 120: 464–477.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Bosma MJ . B and T cell leakiness in the scid mouse mutant. Immunodefic Rev 1992; 3: 261–276.

    CAS  PubMed  Google Scholar 

  31. Kato C, Fujii E, Chen YJ, Endaya BB, Matsubara K, Suzuki M et al. Spontaneous thymic lymphomas in the non-obese diabetic/Shi-scid, IL-2Rγnull mouse. Lab Anim 2009; 43: 402–404.

    CAS  PubMed  Google Scholar 

  32. Katano I, Ito R, Eto T, Aiso S, Ito M . Immunodeficient NOD-scid IL-2Rγnull mice do not display T and B cell leakiness. Exp Anim 2011; 60: 181–186.

    CAS  PubMed  Google Scholar 

  33. Sugamura K, Asao H, Kondo M, Tanaka N, Ishii N, Ohbo K et al. The interleukin-2 receptor gamma chain: its role in the multiple cytokine receptor complexes and T cell development in XSCID. Annu Rev Immunol 1996; 14: 179–205.

    CAS  PubMed  Google Scholar 

  34. Okada S, Harada H, Ito T, Saito T, Suzu S . Early development of human hematopoietic and acquired immune systems in new born NOD/Scid/Jak3null mice intrahepatic engrafted with cord blood-derived CD34+ cells. Int J Hematol 2008; 88: 476–482.

    PubMed  Google Scholar 

  35. Sato Y, Takata H, Kobayashi N, Nagata S, Nakagata N, Ueno T et al. Failure of effector function of human CD8+ T cells in NOD/SCID/JAK3/ immunodeficient mice transplanted with human CD34+ hematopoietic stem cells. PLoS One 2010; 5: e13109.

    PubMed  PubMed Central  Google Scholar 

  36. Miyakawa Y, Fukuchi Y, Ito M, Kobayashi K, Kuramochi T, Ikeda Y et al. Establishment of human granulocyte–macrophage colony stimulating factor produing transgenic SCID mice. Br J Haematol 1996; 95: 437–442.

    CAS  PubMed  Google Scholar 

  37. Fukuchi Y, Miyakawa Y, Kobayashi K, Kuramochi T, Shimamura K, Tamaoki N et al. Cytokine dependent growth of human TF-1 leukemic cell line in human GM-CSF and IL-3 producing transgenic SCID mice. Leuk Res 1998; 22: 837–843.

    CAS  PubMed  Google Scholar 

  38. Takenaka K, Prasolava TK, Wang JC, Mortin-Toth SM, Khalouei S, Gan OI et al. Polymorphism in Sirpa modulates engraftment of human hematopoietic stem cells. Nat Immunol 2007; 8: 1313–1323.

    CAS  PubMed  Google Scholar 

  39. Takizawa H, Manz MG . Macrophage tolerance: CD47-SIRP-α-mediated signals matter. Nat Immunol 2007; 8: 1287–1289.

    CAS  PubMed  Google Scholar 

  40. Rongvaux A, Willinger T, Takizawa H, Rathinam C, Auerbach W, Murphy AJ et al. Human thrombopoietin knockin mice efficiently support human hematopoiesis in vivo. Proc Natl Acad Sci USA 2011; 108: 2378–2383.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Willinger T, Rongvaux A, Takizawa H, Yancopoulos GD, Valenzuela DM, Murphy AJ et al. Human IL-3/GM-CSF knock-in mice support human alveolar macrophage development and human immune responses in the lung. Proc Natl Acad Sci USA 2011; 108: 2390–2395.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Shultz LD, Saito Y, Najima Y, Tanaka S, Ochi T, Tomizawa M et al. Generation of functional human T-cell subsets with HLA-restricted immune responses in HLA class I expressing NOD/SCID/IL2rγnull humanized mice. Proc Natl Acad Sci USA 2010; 107: 13022–13027.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Danner R, Chaudhari SN, Rosenberger J, Surls J, Richie TL, Brumeanu TD et al. Expression of HLA class II molecules in humanized NOD.Rag1KO.IL2RgcKO mice is critical for development and function of human T and B cells. PLoS One 2011; 6: e19826.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Hiramatsu H, Nishikomori R, Heike T, Ito M, Kobayashi K, Katamura K et al. Complete reconstitution of human lymphocytes from cord blood CD34+ cells using the NOD/SCID/γcnull mice model. Blood 2003; 102: 873–880.

    CAS  PubMed  Google Scholar 

  45. Yajima M, Imadome K, Nakagawa A, Watanabe S, Terashima K, Nakamura H et al. T cell-mediated control of Epstein–Barr virus infection in humanized mice. J Infect Dis 2009; 200: 1611–1615.

    CAS  PubMed  Google Scholar 

  46. Shultz LD, Saito Y, Najima Y, Tanaka S, Ochi T, Tomizawa M et al. Generation of functional human T-cell subsets with HLA-restricted immune responses in HLA class I expressing NOD/SCID/IL2rγnull humanized mice. Proc Natl Acad Sci USA 2010; 107: 13022–13027.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Strowig T, Gurer C, Ploss A, Liu YF, Arrey F, Sashihara J et al. Priming of protective T cell responses against virus-induced tumors in mice with human immune system components. J Exp Med 2009; 206: 1423–1434.

    PubMed  PubMed Central  Google Scholar 

  48. Suwanai H, Wilcox MA, Mathis D, Benoist C . A defective Il15 allele underlies the deficiency in natural killer cell activity in nonobese diabetic mice. Proc Natl Acad Sci USA 01; 107: 9305–9310.

    CAS  Google Scholar 

  49. Huntington ND, Legrand N, Alves NL, Jaron B, Weijer K, Plet A et al. IL-15 trans-presentation promotes human NK cell development and differentiation in vivo. J Exp Med 2009; 206: 25–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Chen Q, Khoury M, Chen J . Expression of human cytokines dramatically improves reconstitution of specific human-blood lineage cells in humanized mice. Proc Natl Acad Sci USA 2009; 106: 21783–21788.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Shiokawa M, Takahashi T, Murakami A, Kita S, Ito M, Sugamura K et al. In vivo assay of human NK-dependent ADCC using NOD/SCID/γcnull (NOG) mice. Biochem Biophys Res Commun 2010; 399: 733–737.

    CAS  PubMed  Google Scholar 

  52. Billerbeck E, Barry WT, Mu K, Dorner M, Rice CM, Ploss A . Development of human CD4+FoxP3+ regulatory T cells in human stem cell factor-, granulocytenmacrophage colony-stimulating factor-, and interleukin-3-expressing NOD-SCID IL2Rγnull humanized mice. Blood 2011; 117: 3076–3086.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Williams CM, Galli SJ . The diverse potential effector and immunoregulatory roles of mast cells in allergic disease. J Allergy Clin Immunol 2000; 105: 847–859.

    CAS  PubMed  Google Scholar 

  54. Galli SJ, Wershil BK . The two faces of the mast cell. Nature 1996; 381: 21–22.

    CAS  PubMed  Google Scholar 

  55. Kambe N, Hiramatsu H, Shimonaka M, Fujino H, Nishikomori R, Heike T et al. Development of both human connective tissue-type and mucosal-type mast cells in mice from hematopoietic stem cells with identical distribution pattern to human body. Blood 2004; 103: 860–867.

    CAS  PubMed  Google Scholar 

  56. Machida K, Suemizu H, Kawai K, Ishikawa T, Sawada R, Ohnishi Y et al. Higher susceptibility of NOG mice to xenotransplanted tumors. J Toxicol Sci 2009; 34: 123–127.

    PubMed  Google Scholar 

  57. Suemizu H, Monnai M, Ohnishi Y, Ito M, Tamaoki N, Nakamura M . Identification of a key molecular regulator of liver metastasis in human pancreatic carcinoma using a novel quantitative model of metastasis in NOD/SCID/γcnull (NOG) mice. Int J Oncol 2007; 31: 741–751.

    CAS  PubMed  Google Scholar 

  58. Miyakawa Y, Ohnishi Y, Tomisawa M, Monnai M, Kohmura K, Ueyama Y et al. Establishment of a new model of human multiple myeloma using NOD/SCID/γcnull (NOG) mice. Biochem Biophys Res Commun 2004; 313: 258–262.

    CAS  PubMed  Google Scholar 

  59. Ninomiya M, Kiyoi H, Ito M, Hirose Y, Naoe T . Retinoic acid syndrome in NOD/scid mice induced by injecting an acute promyelocytic leukemia cell line. Leukemia 2004; 18: 442–448.

    CAS  PubMed  Google Scholar 

  60. Ito R, Katano I, Kawai K, Hirata H, Ogura T, Kamisako T et al. Highly sensitive model for xenogenic GVHD using severe immunodeficient NOG mice. Transplantation 2009; 87: 1654–1658.

    CAS  PubMed  Google Scholar 

  61. Zhang L, Meissner E, Chen J, Su L . Current humanized mouse models for studying human immunology and HIV-1 immuno-pathogenesis. Sci China Life Sci 2010; 53: 195–203.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Namikawa R, Kaneshima H, Lieberman M, Weissman IL, McCune JM . Infection of the SCID-hu mouse by HIV-1. Science 1988; 242: 1684–1686.

    CAS  PubMed  Google Scholar 

  63. Mosier DE, Gulizia RJ, Baird SM, Wilson DB . Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature 1988; 335: 256–259.

    CAS  PubMed  Google Scholar 

  64. Koyanagi Y, Tanaka Y, Ito M, Yamamoto N . Humanized mice for human retrovirus infection. Curr Top Microbiol Immunol 2008; 324: 133–148.

    CAS  PubMed  Google Scholar 

  65. Sato K, Nie C, Misawa N, Tanaka Y, Ito M, Koyanagi Y . Dynamics of memory and naive CD8+ T lymphocytes in humanized NOD/SCID/IL-2Rγnull mice infected with CCR5-tropic HIV-1. Vaccine 8 2010; Suppl 2, B32–37.

    CAS  PubMed  Google Scholar 

  66. Watanabe S, Ohta S, Yajima M, Terashima K, Ito M, Mugishima H et al. Humanized NOD/SCID/IL2Rγnull mice transplanted with hematopoietic stem cells under nonmyeloablative conditions show prolonged life spans and allow detailed analysis of human immunodeficiency virus type 1 pathogenesis. J Virol 2007; 81: 13259–13264.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Watanabe S, Terashima K, Ohta S, Horibata S, Yajima M, Shiozawa Y et al. Hematopoietic stem cell-engrafted NOD/SCID/IL2Rγnull mice develop human lymphoid systems and induce long-lasting HIV-1 infection with specific humoral immune responses. Blood 2007; 109: 212–218.

    CAS  PubMed  Google Scholar 

  68. Denton PW, Estes JD, Sun Z, Othieno FA, Wei BL, Wege AK et al. Antiretroviral pre-exposure prophylaxis prevents vaginal transmission of HIV-1 in humanized BLT mice. PLoS Med 2008; 5: e16.

    PubMed  PubMed Central  Google Scholar 

  69. Olesen R, Wahl A, Denton PW, Garcia JV . Immune reconstitution of the female reproductive tract of humanized BLT mice and their susceptibility to human immunodeficiency virus infection. J Reprod Immunol 2011; 88: 195–203.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Choudhary S, Archin N, Cheema M, Dahl N, Garcia JV, Margolis D . Latent HIV-1 infection of resting CD4+ T cells in the humanized Rag2−/−γc−/− mouse. J Virol 2012; 86: 114–120.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Rickinson AB, Kieff E . Epstein–Barr virus. In: Knipe DM, Howley PM (eds.) Fields virology. Philadelphia: Lippincott Williams & Wilkins, 2011: 2575–2628.

  72. Yajima M, Imadome K, Nakagawa A, Watanabe S, Terashima K, Nakamura H et al. A new humanized mouse model of Epstein–Barr virus infection that reproduces persistent infection, lymphoproliferative disorder, and cell-mediated and humoral immune responses. J Infect Dis 2008; 198: 673–682.

    CAS  PubMed  Google Scholar 

  73. Sato K, Misawa N, Nie C, Satou Y, Iwakiri D, Matsuoka M et al. A novel animal model of Epstein–Barr virus-associated hemophagocytic lymphohistiocytosis in humanized mice. Blood 2011; 117: 5663–5673.

    CAS  PubMed  Google Scholar 

  74. Imadome K, Yajima M, Arai A, Nakazawa A, Kawano F, Ichikawa S et al. Novel mouse xenograft models reveal a critical role of CD4+ T cells in the proliferation of EBV-infected T and NK cells. PLoS Pathog 2011; 7: e1002326.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Song J, Willinger T, Rongvaux A, Eynon EE, Stevens S, Manz MG et al. A mouse model for the human pathogen Salmonella typhi. Cell Host Microbe 2010; 8: 369–376.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Libby SJ, Brehm MA, Greiner DL, Shultz LD, McClelland M, Smith KD et al. Humanized nonobese diabetic-scid IL2rγnull mice are susceptible to lethal Salmonella typhi infection. Proc Natl Acad Sci USA 2010; 107: 15589–15594.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Firoz Mian M, Pek EA, Chenoweth MJ, Ashkar AA . Humanized mice are susceptible to Salmonella typhi infection. Cell Mol Immunol 2011; 8: 83–87.

    CAS  PubMed  Google Scholar 

  78. Sauerwein RW, Roestenberg M, Moorthy VS . Experimental human challenge infections can accelerate clinical malaria vaccine development. Nat Rev Immunol 2011; 11: 57–64.

    CAS  PubMed  Google Scholar 

  79. Azuma H, Paulk N, Ranade A, Dorrell C, Al-Dhalimy M, Ellis E et al. Robust expansion of human hepatocytes in Fah−/−/Rag2−/−/Il2rg−/− mice. Nat Biotechnol 2007; 25: 903–910.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Hasegawa M, Kawai K, Mitsui T, Taniguchi K, Monnai M, Wakui M et al. The reconstituted ‘humanized liver’ in TK-NOG mice is mature and functional. Biochem Biophys Res Commun 2011; 405: 405–410.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Mercer DF, Schiller DE, Elliott JF, Douglas DN, Hao C, Rinfret A et al. Hepatitis C virus replication in mice with chimeric human livers. Nat Med 2001; 7: 927–933.

    CAS  PubMed  Google Scholar 

  82. Suemizu H, Hasegawa M, Kawai K, Taniguchi K, Monnai M, Wakui M et al. Establishment of a humanized model of liver using NOD/Shi-scid IL2Rgnull mice. Biochem Biophys Res Commun 2008; 377: 248–252.

    CAS  PubMed  Google Scholar 

  83. Mikolajczak SA, Sacci JB Jr, de la Vega P, Camargo N, VanBuskirk K, Krzych U et al. Disruption of the Plasmodium falciparum liver-stage antigen-1 locus causes a differentiation defect in late liver-stage parasites. Cell Microbiol 2011; 13: 1250–1260.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Jimenez-Diaz MB, Mulet T, Viera S, Gomez V, Garuti H, Ibanez J et al. Improved murine model of malaria using Plasmodium falciparum competent strains and non-myelodepleted NOD-scid IL2Rγnull mice engrafted with human erythrocytes. Antimicrob Agents Chemother 2009; 53: 4533–4536.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Bissig KD, Wieland SF, Tran P, Isogawa M, Le TT, Chisari FV et al. Human liver chimeric mice provide a model for hepatitis B and C virus infection and treatment. J Clin Invest 2010; 120: 924–930.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Haridass D, Yuan Q, Becker PD, Cantz T, Iken M, Rothe M et al. Repopulation efficiencies of adult hepatocytes, fetal liver progenitor cells, and embryonic stem cell-derived hepatic cells in albumin-promoter-enhancer urokinase-type plasminogen activator mice. Am J Pathol 2009; 175: 1483–1492.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Washburn ML, Bility MT, Zhang L, Kovalev GI, Buntzman A, Frelinger JA et al. A humanized mouse model to study hepatitis C virus infection, immune response, and liver disease. Gastroenterology 2011; 140: 1334–1344.

    CAS  PubMed  Google Scholar 

  88. Martino G, Anastasi J, Feng J, Mc Shan C, DeGroot L, Quintans J et al. The fate of human peripheral blood lymphocytes after transplantation into SCID mice. Eur J Immunol 1993; 23: 1023–1028.

    CAS  PubMed  Google Scholar 

  89. van Rijn RS, Simonetti ER, Hagenbeek A, Hogenes MC, de Weger RA, Canninga-van Dijk MR et al. A new xenograft model for graft-versus-host disease by intravenous transfer of human peripheral blood mononuclear cells in RAG2−/− γc−/− double-mutant mice. Blood 2003; 102: 2522–2531.

    CAS  PubMed  Google Scholar 

  90. King MA, Covassin L, Brehm MA, Racki W, Pearson T, Leif J et al. Human peripheral blood leucocyte non-obese diabetic-severe combined immunodeficiency interleukin-2 receptor gamma chain gene mouse model of xenogeneic graft-versus-host-like disease and the role of host major histocompatibility complex. Clin Exp Immunol 2009; 157: 104–118.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), by a grant (22A-9) from the National Center for Child Health and Development, and by a grant from Research on Emerging and Re-emerging Infectious Diseases from Ministry of Health, Labour and Welfare, Japan

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ito, R., Takahashi, T., Katano, I. et al. Current advances in humanized mouse models. Cell Mol Immunol 9, 208–214 (2012). https://doi.org/10.1038/cmi.2012.2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2012.2

Keywords

This article is cited by

Search

Quick links