Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Immunotherapy for murine K1735 melanoma: Combinatorial use of recombinant adenovirus expressing CD40L and other immunomodulators

Abstract

We have constructed and tested five recombinant adenoviruses (Ads) that express a variety of immunomodulators, including CD40 ligand (CD40L), a potent costimulator of several components of the immune system. We demonstrate that CD40L expressed from Ad in K1735 mouse melanoma cells leads to a strong reduction in tumorigenicity and to efficient protective immunity in a vaccination setting. Subsequently, using a therapeutic approach, we found that local, intratumoral coinjection of CD40L- and IL-2–expressing Ads was superior to any other agents tested and resulted in an at least 1.9-fold increase in mean survival time, in contrast to systemic application of recombinant CD40L or GM-CSF proteins, which had no significant effects. When using vaccination as a therapeutic approach, the combinations of CD40L plus IL-2 or GM-CSF plus IL-2 from Ad gave rise to an extended (2.8-fold) increase in mean survival time. A detailed analysis of immune cells present within regressing tumors indicated that mainly CD4+ and CD8+ T cells, and to a lesser extent dendritic cells, infiltrated the tumor mass, but not NK cells, macrophages, or granulocytes. These results propose that a combination of CD40L plus IL-2 has an improved efficacy over the use of single agents when applied for direct in situ therapy or vaccination therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 7
Figure 6

Similar content being viewed by others

References

  1. Landis SH, Murray T, Bolden S, Wingo PA . Cancer statistics, 1998 CA-Cancer J Clin 1998 48: 6–29

    Article  CAS  PubMed  Google Scholar 

  2. Boon T, Van den Eynde BJ . Tumor antigens recognized by T lymphocytes Int J Clin Lab Res 1997 27: 81–86

    Article  PubMed  Google Scholar 

  3. Townsend SE, Allison JP . Tumor rejection after direct costimulation of CD8+ T cells by B7-transfected melanoma cells Science 1993 259: 368–370

    Article  CAS  PubMed  Google Scholar 

  4. Fearon ER, Pardoll DM, Itaya T et al. Interleukin-2 production by tumor cells bypasses T helper function in the generation of an antitumor response Cell 1990 60: 397–403

    Article  CAS  PubMed  Google Scholar 

  5. Tahara H, Zeh H Jr, Storkus WJ et al. Fibroblasts genetically engineered to secrete interleukin 12 can suppress tumor growth and induce antitumor immunity to a murine melanoma in vivo Cancer Res 1994 54: 182–189

    CAS  PubMed  Google Scholar 

  6. Dranoff G, Jaffee E, Lazenby A et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte–macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity Proc Natl Acad Sci USA 1993 90: 3539–3543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Soiffer R, Lynch T, Mihm M et al. Vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte–macrophage colony-stimulating factor generates potent antitumor immunity in patients with metastatic melanoma Proc Natl Acad Sci USA 1998 95: 13141–13146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen L, Ashe S, Brady WA et al. Costimulation of antitumor immunity by the B7 counterreceptor for the T lymphocyte molecules CD28 and CTLA-4 Cell 1992 71: 1093–1102

    Article  CAS  PubMed  Google Scholar 

  9. Parmiani G, Rodolfo M, Melani C . Immunological gene therapy with ex vivo gene-modified tumor cells: a critique and a reappraisal Hum Gene Ther 2000 11: 1269–1275

    Article  CAS  PubMed  Google Scholar 

  10. Banchereau J, Steinman RM . Dendritic cells and the control of immunity Nature 1998 392: 245–252

    Article  CAS  PubMed  Google Scholar 

  11. Dilloo D, Brown M, Roskrow M et al. CD40 ligand induces an antileukemia immune response in vivo Blood 1997 90: 1927–1933

    CAS  PubMed  Google Scholar 

  12. Nakajima A, Kodama T, Morimoto S et al. Antitumor effect of CD40 ligand: elicitation of local and systemic antitumor responses by IL-12 and B7 J Immunol 1998 161: 1901–1907

    CAS  PubMed  Google Scholar 

  13. Grossmann ME, Brown MP, Brenner MK . Antitumor responses induced by transgenic expression of CD40 ligand Hum Gene Ther 1997 8: 1935–1943

    Article  CAS  PubMed  Google Scholar 

  14. Kikuchi T, Crystal RG . Anti-tumor immunity induced by in vivo adenovirus vector-mediated expression of CD40 ligand in tumor cells Hum Gene Ther 1999 10: 1375–1387

    Article  CAS  PubMed  Google Scholar 

  15. Sun Y, Peng D, Lecanda J et al. In vivo gene transfer of CD40 ligand into colon cancer cells induces local production of cytokines and chemokines, tumor eradication and protective antitumor immunity Gene Ther 2000 7: 1467–1476

    Article  CAS  PubMed  Google Scholar 

  16. Dohring C, Angman L, Spagnoli G, Lanzavecchia A . T-helper– and accessory-cell–independent cytotoxic responses to human tumor cells transfected with a B7 retroviral vector Int J Cancer 1994 57: 754–759

    Article  CAS  PubMed  Google Scholar 

  17. Schneider SD, Rusconi S, Seger RA, Hossle JP . Adenovirus-mediated gene transfer into monocyte-derived macrophages of patients with X-linked chronic granulomatous disease: ex vivo correction of deficient respiratory burst Gene Ther 1997 4: 524–532

    Article  CAS  PubMed  Google Scholar 

  18. Maizel JV Jr, White DO, Scharff MD . The polypeptides of adenovirus. I. Evidence for multiple protein components in the virion and a comparison of types 2, 7A, and 12 Virology 1968 36: 115–125

    Article  PubMed  Google Scholar 

  19. Schoenhaut DS, Chua AO, Wolitzky AG et al. Cloning and expression of murine IL-12 J Immunol 1992 148: 3433–3440

    CAS  PubMed  Google Scholar 

  20. Lowrie DB, Tascon RE, Bonato VL et al. Therapy of tuberculosis in mice by DNA vaccination Nature 1999 400: 269–271

    Article  CAS  PubMed  Google Scholar 

  21. Schmidt W, Schweighoffer T, Herbst E et al. Cancer vaccines: the interleukin 2 dosage effect Proc Natl Acad Sci USA 1995 92: 4711–4714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Caux C, Massacrier C, Vanbervliet B et al. Activation of human dendritic cells through CD40 cross-linking J Exp Med 1994 180: 1263–1272

    Article  CAS  PubMed  Google Scholar 

  23. Botella R, Sarradet MD, Potter LE et al. Inhibition of murine melanoma growth by granulocyte–macrophage colony stimulating factor gene transfection is not haplotype specific Melanoma Res 1998 8: 245–254

    Article  CAS  PubMed  Google Scholar 

  24. Gao GP, Yang Y, Wilson JM . Biology of adenovirus vectors with E1 and E4 deletions for liver-directed gene therapy J Virol 1996 70: 8934–8943

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Peter I, Mezzacasa A, LeDonne P, Dummer R, Hemmi S . Comparative analysis of immunocritical melanoma markers in the mouse melanoma cell lines B16, K1735 and S91-M3 Melanoma Res 2001 11: 21–30

    Article  CAS  PubMed  Google Scholar 

  26. Vereecque R, Buffenoir G, Preudhomme C et al. Gene transfer of GM-CSF, CD80 and CD154 cDNA enhances survival in a murine model of acute leukemia with persistence of a minimal residual disease Gene Ther 2000 7: 1312–1316

    Article  CAS  PubMed  Google Scholar 

  27. Pardoll DM . Therapeutic vaccination for cancer Clin Immunol 2000 95: S44–62

    Article  CAS  PubMed  Google Scholar 

  28. Caux C, Dezutter-Dambuyant C, Schmitt D, Banchereau J . GM-CSF and TNF-alpha cooperate in the generation of dendritic Langerhans cells Nature 1992 360: 258–261

    Article  CAS  PubMed  Google Scholar 

  29. Vonderheide RH, Dutcher JP, Anderson JE et al. Phase I study of recombinant human CD40 ligand in cancer patients J Clin Oncol 2001 19: 3280–3287

    Article  CAS  PubMed  Google Scholar 

  30. Funakoshi S, Longo DL, Beckwith M et al. Inhibition of human B-cell lymphoma growth by CD40 stimulation Blood 1994 83: 2787–2794

    CAS  PubMed  Google Scholar 

  31. Chong H, Hutchinson G, Hart IR, Vile RG . Expression of co-stimulatory molecules by tumor cells decreases tumorigenicity but may also reduce systemic antitumor immunity Hum Gene Ther 1996 7: 1771–1779

    Article  CAS  PubMed  Google Scholar 

  32. Colombo MP, Forni G . Cytokine gene transfer in tumor inhibition and tumor therapy: where are we now? Immunol Today 1994 15: 48–51

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Kanton Zürich and by a grant from the Krebsliga of the Kanton Zürich (to SH). We thank E Horvath for excellent technical assistance and F Ochsenbein for graphic designs. Statistical analysis was performed with the help of W Blanckenhorn, Museum of Zoology, University of Zürich. We further thank R Dummer, Department of Dermatology, University Hospital Zürich, and L Martin, Molecular Biology, for careful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvio Hemmi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peter, I., Nawrath, M., Kamarashev, J. et al. Immunotherapy for murine K1735 melanoma: Combinatorial use of recombinant adenovirus expressing CD40L and other immunomodulators. Cancer Gene Ther 9, 597–605 (2002). https://doi.org/10.1038/sj.cgt.7700475

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700475

Keywords

This article is cited by

Search

Quick links