Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Review Article

RNA viruses as virotherapy agents

Abstract

RNA viruses are rapidly emerging as extraordinarily promising agents for oncolytic virotherapy. Integral to the lifecycles of all RNA viruses is the formation of double-stranded RNA, which activates a spectrum of cellular defense mechanisms including the activation of PKR and the release of interferon. Tumors are frequently defective in their PKR signaling and interferon response pathways, and therefore provide a relatively permissive substrate for the propagation of RNA viruses. For most of the oncolytic RNA viruses currently under study, tumor specificity is either a natural characteristic of the virus, or a serendipitous consequence of adapting the virus to propagate in human tumor cell lines. Further refinement and optimization of these oncolytic agents can be achieved through virus engineering. This article provides a summary of the current status of oncolytic virotherapy efforts for seven different RNA viruses, namely, mumps, Newcastle disease virus, measles virus, vesicular stomatitis virus, influenza, reovirus, and poliovirus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Russell SJ . Replicating vectors for gene therapy of cancer: risks, limitations and prospects Eur J Cancer 1994 8: 1165–1171

    Article  Google Scholar 

  2. Russell SJ . Replicating vectors for cancer therapy: a question of strategy Semin Cancer Biol 1994 5: 437–443

    CAS  PubMed  Google Scholar 

  3. Asada T . Treatment of human cancer with mumps virus Cancer 1974 34: 1907–1928

    Article  CAS  PubMed  Google Scholar 

  4. Lamb R, Kolakofsky D . Paramyxoviridae: the viruses and their replication In: Knipe D, Howley P, eds Fields' Virology Philadelphia: Lippincott, Williams and Wilkins 2001 1305–1340

    Google Scholar 

  5. Shimizu Y, Hasumi K, Okudaira Y et al. Immunotherapy of advanced gynecologic cancer: patients utilizing mumps virus Cancer Detect Prev 1988 12: 487–495

    CAS  PubMed  Google Scholar 

  6. Beard CW, Hanson RP . Newcastle disease In: Hofstad MS, ed Disease of Poultry 8th ed Ames: Iowa State University Press 1984 452–470

    Google Scholar 

  7. Reichard KW, Lorence RM, Cascino CJ et al. Newcastle disease virus selectively kills human tumor cells J Surg Res 1992 52: 448–453

    Article  CAS  PubMed  Google Scholar 

  8. Phuangsab A, Lorence RM, Reichard KW et al. Newcastle disease virus therapy of human tumor xenografts: antitumor effects of local or systemic administration Cancer Lett 2001 172: 27–36

    Article  CAS  PubMed  Google Scholar 

  9. Lorence RM, Katubig BB, Reichard KW et al. Complete regression of human fibrosarcoma xenografts after local Newcastle disease virus therapy Cancer Res 1994 54: 6017–6021

    CAS  PubMed  Google Scholar 

  10. Lorence RM, Reichard KW, Katubig BB et al. Complete regression of human neuroblastoma xenografts in athymic mice after local Newcastle disease virus therapy J Natl Cancer Inst 1994 86: 1228–1233

    Article  CAS  PubMed  Google Scholar 

  11. Nagai Y . Paramyxovirus replication and pathogenesis. Reverse genetics transforms understanding Rev Med Virol 1999 9: 83–99

    Article  CAS  PubMed  Google Scholar 

  12. Pecora AL, Rizvi N, Cohen GI et al. Phase I trial of intravenous administration of PV701, an oncolytic virus, in patients with advanced solid cancers J Clin Oncol 2002 20: 2251–2266

    Article  CAS  PubMed  Google Scholar 

  13. Griffin D . Measles virus In: Knipe DM, Howley PM, eds Fields' Virology 4th edition Philadelphia: Lippincott, Williams and Wilkins 2001 Vol. 1: 1401–1441

    Google Scholar 

  14. Bluming AZ, Ziegler JL . Regression of Burkitt's lymphoma in association with measles infection Lancet 1971 105–106

  15. Grote D, Russell SJ, Cornu TI et al. Live attenuated measles virus induces regression of human lymphoma xenografts in immunodeficient mice Blood 2001 97: 3746–3754

    Article  CAS  PubMed  Google Scholar 

  16. Peng K-W, TenEyck C, Galanis E et al. Intraperitoneal therapy of ovarian cancer using an engineered measles virus Cancer Res 2002 62: 4656–4662

    CAS  PubMed  Google Scholar 

  17. Peng KW, Ahmann GJ, Pham L et al. Systemic therapy of myeloma xenografts by an attenuated measles virus Blood 2001 98: 2002–2007

    Article  CAS  PubMed  Google Scholar 

  18. Peng KW, Facteau S, Wegman T et al. Non-invasive in vivo monitoring of trackable viruses expressing soluble marker peptides Nat Med 2002 8: 527–531

    Article  CAS  PubMed  Google Scholar 

  19. Ono N, Tatsuo H, Hidaka Y et al. Measles viruses on throat swabs from measles patients use signaling lymphocytic activation molecule (CDw150) but not CD46 as a cellular receptor J Virol 2001 75: 4399–4401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jurianz K, Ziegler S, Garcia-Schuler H et al. Complement resistance of tumor cells: basal and induced mechanisms Mol Immunol 1999 36: 929–939

    Article  CAS  PubMed  Google Scholar 

  21. Erlenhofer C, Duprex WP, Rima BK et al. Analysis of receptor (CD46, CD150) usage by measles virus J Gen Virol 2002 83: 1431–1436

    Article  CAS  PubMed  Google Scholar 

  22. Esolen LM, Park SW, Hardwick JM et al. Apoptosis as a cause of death in measles virus–infected cells J Virol 1995 69: 3955–3958

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Radecke F, Spielhofer P, Schneider H et al. Rescue of measles viruses from cloned DNA EMBO J 1995 14: 5773–5784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hammond AL, Plemper RK, Zhang J et al. Single-chain antibody displayed on a recombinant measles virus confers entry through the tumor-associated carcinoembryonic antigen J Virol 2001 75: 2087–2096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Peng K, Donovan K, Schneider U et al. Oncolytic measles viruses displaying a single chain antibody against CD38, a myeloma cell marker submitted for publication

  26. Schneider U, Bullough F, Vongpunsawad S et al. Recombinant measles viruses efficiently entering cells through targeted receptors J Virol 2000 74: 9928–9936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rose JK, Whitt MA . Rhabdoviridae: the viruses and their replication In: Knipe DM, Howley PM, eds Fields' Virology 4th edition Philadelphia: Lippincott, Williams and Wilkins 2001 Vol. 1: 1221–1244

    Google Scholar 

  28. Belkowski LS, Sen GC . Inhibition of vesicular stomatitis viral mRNA synthesis by interferons J Virol 1987 61: 653–660

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Stojdl DF, Lichty B, Knowles S et al. Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus Nat Med 2000 6: 821–825

    Article  CAS  PubMed  Google Scholar 

  30. Balachandran S, Porosnicu M, Barber GN . Oncolytic activity of vesicular stomatitis virus is effective against tumors exhibiting aberrant p53, Ras, or myc function and involves the induction of apoptosis J Virol 2001 75: 3474–3479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Stojdl DF, Abraham N, Knowles S et al. The murine double-stranded RNA-dependent protein kinase PKR is required for resistance to vesicular stomatitis virus J Virol 2000 74: 9580–9585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. DePolo NJ, Reed JD, Sheridan PL et al. VSV-G pseudotyped lentiviral vector particles produced in human cells are inactivated by human serum Mol Ther 2000 2: 218–222

    Article  CAS  PubMed  Google Scholar 

  33. Fernandez M, Porosnicu M, Markovic D et al. Genetically engineered vesicular stomatitis virus in gene therapy: application for treatment of malignant disease J Virol 2002 76: 895–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tyler KL, Fields BN . Mammalian reoviruses In: Fields BN, Knipe DM, Howley PM, eds Fields' Virology Philadelphia: Lippincott-Raven 1996 1597–1623

    Google Scholar 

  35. Mundschau LJ, Faller DV . Endogenous inhibitors of the dsRNA-dependent eIF-2 alpha protein kinase PKR in normal and ras-transformed cells Biochimie 1994 76: 792–800

    Article  CAS  PubMed  Google Scholar 

  36. Strong JE, Coffey MC, Tang D et al. The molecular basis of viral oncolysis: usurpation of the Ras signaling pathway by reovirus EMBO J 1998 17: 3351–3362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Coffey MC, Strong JE, Forsyth PA et al. Reovirus therapy of tumors with activated Ras pathway Science 1998 282: 1332–1334

    Article  CAS  PubMed  Google Scholar 

  38. Hirasawa K, Nishikawa SG, Norman KL et al. Oncolytic reovirus against ovarian and colon cancer Cancer Res 2002 62: 1696–1701

    CAS  PubMed  Google Scholar 

  39. Norman KL, Coffey MC, Hirasawa K et al. Reovirus oncolysis of human breast cancer Hum Gene Ther 2002 13: 641–652

    Article  CAS  PubMed  Google Scholar 

  40. Wilcox ME, Yang W, Senger D et al. Reovirus as an oncolytic agent against experimental human malignant gliomas J Natl Cancer Inst 2001 93: 903–912

    Article  CAS  PubMed  Google Scholar 

  41. Roner MR . Rescue systems for dsRNA viruses of higher organisms Adv Virus Res 1999 53: 355–367

    Article  CAS  PubMed  Google Scholar 

  42. Dock G . Influence of complicating diseases upon leukaemia Am J Med Sci 1904 127: 563–592

    Article  Google Scholar 

  43. Bergmann M, Romirer I, Sachet M et al. A genetically engineered influenza A virus with ras-dependent oncolytic properties Cancer Res 2001 61: 8188–8193

    CAS  PubMed  Google Scholar 

  44. Neumann G, Kawaoka Y . Reverse genetics of influenza virus Virology 2001 287: 243–250

    Article  CAS  PubMed  Google Scholar 

  45. Hatada E, Saito S, Fukuda R . Mutant influenza viruses with a defective NS1 protein cannot block the activation of PKR in infected cells J Virol 1999 73: 2425–2433

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Racaniello VR . Picornaviridae: the viruses and their replication In: Knipe DM, Howley PM, eds Fields' Virology 4th edition Philadelphia: Lippincott, Williams and Wilkins 2001 Vol. 1: 685–722

    Google Scholar 

  47. Evans DJ . Reverse genetics of picornaviruses Adv Virus Res 1999 53: 209–228

    Article  CAS  PubMed  Google Scholar 

  48. Gromeier M, Lachmann S, Rosenfeld MR et al. Intergeneric poliovirus recombinants for the treatment of malignant glioma Proc Natl Acad Sci USA 2000 97: 6803–6808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Harold W Siebens Foundation, the George W Eisenberg Foundation, and NIH Grants PO1 HL66958-02 and RO1 CA83181-03. We would also like to thank Maureen Craft for her secretarial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J Russell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Russell, S. RNA viruses as virotherapy agents. Cancer Gene Ther 9, 961–966 (2002). https://doi.org/10.1038/sj.cgt.7700535

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700535

This article is cited by

Search

Quick links