Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Recombinant vaccinia viruses expressing immunoglobulin variable regions efficiently and selectively protect mice against tumoral B-cell growth

Abstract

The variable regions of the immunoglobulin (Ig) expressed on the surface of a malignant B cell can be considered tumor-specific antigens and, as such, could be targets for immunotherapeutic approaches. However, because until now the immunization procedures have been complex and have given only partial protection, it was necessary to find new methods of immunotherapy. Here, we present a successful method of vaccination against B-cell tumors in a murine model. We produced recombinant vaccinia viruses (rVV) expressing the heavy and the light chain of surface Ig of a patient's malignant B cells and we tested the ability of these rVV to protect immunized mice against tumor growth of transfectomas producing the same human Ig. The protection of the mice was complete and specific to the variable region of the immunizing heavy chain although specific lymphoproliferative and cytotoxic responses were not detectable in vitro. The protection was strictly dependent on the presence of CD4 T cells and asialo GM1+ cells. Furthermore, tumor protection clearly required γ-interferon and was partially inhibited by blocking the Fas–Fas ligand interaction. We also show, in a murine syngeneic model, that rVV expressing a poorly mutated Ig protects against the growth of Ig-producing tumor. Cancer Gene Therapy (2001) 8, 815–826

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Levy R, Hatzubai A, Brown S, et al . Immunoglobulin idiotype: a tumor-specific antigen for human B-cell lymphomas Malig Lymphomas 1982 10: 95–105

    Google Scholar 

  2. George AJT, Tutt AL, Stevenson FK . Anti-idiotypic mechanisms involved in suppression of a mouse B-cell lymphoma J Immunol 1987 138: 628–634

    CAS  Google Scholar 

  3. George AJT, Folkard SG, Hamblin TJ, et al . Idiotypic vaccination as a treatment for a B-cell lymphoma J Immunol 1988 141: 2168–2174

    CAS  PubMed  Google Scholar 

  4. Tao M-H, Levy R . Idiotype/granulocyte–macrophage colony-stimulating factor as a vaccine for B-cell lymphoma Nature 1993 362: 755–758

    Article  CAS  Google Scholar 

  5. Kwak LW, Campbell MJ, Czerwinski DK, et al . Induction of immune responses in patients with B-cell lymphoma against the surface-immunoglobulin idiotype expressed by their tumors N Engl J Med 1992 327: 1209–1215

    Article  CAS  Google Scholar 

  6. Chen T, Tao M-H, Levy R . Idiotype–cytokine fusion proteins as cancer vaccines J Immunol 1994 153: 4775–4787

    CAS  PubMed  Google Scholar 

  7. Hsu FJ, Caspar CB, Czerwinski D, et al . Tumor-specific idiotype vaccines in the treatment of patients with B-cell lymphoma long-term results of a clinical trial Blood 1997 89: 3129–3135

    CAS  Google Scholar 

  8. Hsu FJ, Benike C, Fagnoni F, et al . Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells Nat Med 1996 2: 52–58

    Article  CAS  Google Scholar 

  9. Lim S, Bailey-Wood R . Idiotypic protein-pulsed dendritic cell vaccination in multiple myeloma Int J Cancer 1999 83: 215–222

    Article  CAS  Google Scholar 

  10. Syrengelas A, Chen T, Levy R . DNA immunization induces protective immunity against B-cell lymphoma Nat Med 1996 2: 1038–1041

    Article  CAS  Google Scholar 

  11. Hakim I, Levy S, Levy R . A nine-amino acid peptide from IL-1beta augments antitumor immune responses induced by protein and DNA vaccines J Immunol 1996 157: 5503–5511

    CAS  PubMed  Google Scholar 

  12. King C, Spellerberg M, Zhu D, et al . DNA vaccines with single-chain Fv fused to fragment C of tetanus toxin induce protective immunity against lymphoma and myeloma Nat Med 1998 4: 1281–1286

    Article  CAS  Google Scholar 

  13. Kipps TJ, Tomhave E, Chen PP, et al . Autoantibody-associated K light chain variable region gene expressed in chronic lymphocytic leukemia with little or no somatic mutation J Exp Med 1988 167: 840–852

    Article  CAS  Google Scholar 

  14. Kipps T, Tomhave E, Pratt L, et al . Developmentally restricted immunoglobulin heavy chain variable region gene expressed at high frequency in chronic lymphocytic leukemia Proc Natl Acad Sci USA 1989 86: 5913–5917

    Article  CAS  Google Scholar 

  15. Meeker TC, Grimaldi JC, O'Rourke R, et al . Lack of detectable somatic hypermutation in the V region of the IgH chain gene of a human chronic lymphocytic leukemia J Immunol 1988 141: 3994–3998

    CAS  PubMed  Google Scholar 

  16. Cleary ML, Galili N, Trela M, et al . Single cell origin of bigenotypic and biphenotypic B-cell proliferations in human follicular lymphomas J Exp Med 1988 167: 582–597

    Article  CAS  Google Scholar 

  17. Cleary ML, Meeker TC, Levy S, et al . Clustering of extensive somatic mutations in the variable region of an immunoglobulin heavy chain gene from a human B-cell lymphoma Cell 1986 44: 97–106

    Article  CAS  Google Scholar 

  18. Moss B . Vaccinia virus: a tool for research and vaccine development Science 1991 252: 1662–1667

    Article  CAS  Google Scholar 

  19. Moss B . Replicating and host-restricted non-replicating vaccinia virus vectors for vaccine development Dev Biol Stand 1994 82: 55–63

    CAS  PubMed  Google Scholar 

  20. Perkus ME, Tartaglia J, Paoletti E . Poxvirus-based vaccine candidates for cancer, AIDS, and other infectious diseases J Leukocyte Biol 1995 58: 1–13

    Article  CAS  Google Scholar 

  21. Moss B . Genetically engineered poxviruses for recombinant gene expression, vaccination, and safety Proc Natl Acad Sci USA 1996 93: 11341–11348

    Article  CAS  Google Scholar 

  22. Korganow A, Martin T, Weber J, et al . Molecular analysis of rearranged VH genes during B-cell chronic lymphocytic leukemia: intraclonal stability is frequent but not constant Leuk Lymphoma 1994 14: 55–69

    Article  CAS  Google Scholar 

  23. Caton AJ . Comparative sequence analysis of CO17-1A antigen-specific monoclonal antibodies Hybridoma 1986 5: 11–16

    Google Scholar 

  24. Sun LK, Curtis P, Rakowicz-Szulczynska E, et al . Chimeric antibody with human constant regions and mouse variable regions directed against carcinoma-associated antigen 17-1A Proc Natl Acad Sci USA 1987 84: 214–218

    Article  CAS  Google Scholar 

  25. Kieny MP, Rautmann G, Schmitt D, et al . AIDS virus env protein expressed from a recombinant vaccinia virus Biotechnology 1986 4: 790–795

    CAS  Google Scholar 

  26. Anilionis A, Wurner WH, Curtis PJ . Structure of the glycoprotein gene in rabies virus Nature 1981 294: 275–278

    Article  CAS  Google Scholar 

  27. Kieny MP, Lathe R, Drillien R, et al . Expression of the rabies virus glycoprotein from a recombinant vaccinia virus Nature 1984 312: 163–166

    Article  CAS  Google Scholar 

  28. Martin T, Dully S, Carson D, et al . Evidence for somatic selection of natural autoantibodies J Exp Med 1992 175: 983–991

    Article  CAS  Google Scholar 

  29. Herlyn M, Steplewski Z, Herlyn D, et al . Colorectal carcinoma-specific antigen: detection by means of monoclonal antibodies Proc Natl Acad Sci USA 1979 76: 1438–1442

    Article  CAS  Google Scholar 

  30. Herlyn DM, Steplwski Z, Herlyn MF, et al . Inhibition of growth of colorectal carcinoma in nude mice by monoclonal antibody Cancer Res 1980 40: 717–721

    CAS  PubMed  Google Scholar 

  31. Cobbold S, Martin G, Waldmann H . The induction of skin graft tolerance in major histocompatibility complex-mismatched or primed recipients: primed T cells can be tolerized in the periphery with anti-CD4 and anti-CD8 antibodies Eur J Immunol 1990 20: 2747–2755

    Article  CAS  Google Scholar 

  32. Kayagaki N, Yamaguchi N, Nagao F, et al . Polymorphism of murine Fas ligand that affects the biological activity Proc Natl Acad Sci USA 1997 94: 3914–3919

    Article  CAS  Google Scholar 

  33. Martin T, Crouzier R, Weber J-C, et al . Polyreactivity is dependent on somatically generated sequences in the third complementary-determining region of the antibody heavy chain J Immunol 1994 152: 5988–5996

    CAS  PubMed  Google Scholar 

  34. Wang B, Gonzalez A, Benoist C, et al . The role of CD8+ T cells in the initiation of insulin-dependent diabetes mellitus Eur J Immunol 1996 26: 1762–1769

    Article  CAS  Google Scholar 

  35. Ehl S, Nuesch R, Tanaka T, et al . A comparison of efficacy and specificity of three NK depleting antibodies J Immunol Methods 1996 199: 149–153

    Article  CAS  Google Scholar 

  36. Kurago Z, Lutz C, Smith K, et al . NK cell natural cytotoxicity and IFN-γ production are not always coordinately regulated: engagement of DX9 KIR+ NK cells by HLA-B7 variants and target cells J Immunol 1998 160: 1573–1580

    CAS  PubMed  Google Scholar 

  37. Arase H, Arase N, Saito T . Fas-mediated cytotoxicity by freshly isolated natural killer cells J Exp Med 1995 181: 1235–1238

    Article  CAS  Google Scholar 

  38. Hanabuchi S, Koyanagi M, Kawasaki A, et al . Fas and its ligand in a general mechanism of T-cell–mediated cytotoxicity Proc Natl Acad Sci USA 1994 91: 4930–4934

    Article  CAS  Google Scholar 

  39. Arai H, Gordon D, Nabel E, et al . Gene transfer of Fas ligand induces tumor regression in vivo Proc Natl Acad Sci USA 1997 94: 13862–13867

    Article  CAS  Google Scholar 

  40. Tsutsui T, Mu J, Ogawa M, et al . Administration of IL-12 induces CD3+CD4−CD8−B220+ lymphoid population capable of eliciting cytolysis against Fas-positive tumor cells J Immunol 1997 159: 2599–2605

    CAS  PubMed  Google Scholar 

  41. Keane M, Ettenberg S, Lowrey G, et al . Fas expression and function in normal and malignant breast cell lines Cancer Res 1996 56: 4791–4798

    CAS  PubMed  Google Scholar 

  42. Asakura K, Miller DJ, Pogulis RJ, et al . Oligodendrocyte-reactive O1, O4, and HNK-1 monoclonal antibodies are encoded by germline immunoglobulin genes Mol Brain Res 1995 34: 283–293

    Article  CAS  Google Scholar 

  43. Massaia M, Borrione P, Battaglio S, et al . Idiotype vaccination in human myeloma: generation of tumor-specific immune responses after high-dose chemotherapy Blood 1999 94: 673–683

    CAS  Google Scholar 

  44. Syrengelas AD, Levy R . DNA vaccination against the idiotype of a murine B-cell lymphoma: mechanism of tumor protection J Immunol 1999 162: 4790–4795

    CAS  Google Scholar 

  45. Greenberg PD . Adoptive T cell therapy of tumors: mechanisms operative in the recognition and elimination of tumor cells Adv Immunol 1991 49: 281–355

    Article  CAS  Google Scholar 

  46. Hung K, Hayashi R, Lafond-Walker A, et al . The central role of CD4+ T cells in the antitumor immune response J Exp Med 1998 188: 2357–2368

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Sémia BenAmmar-Ceccoli was supported by a fellowship from the Association de la Recherche contre le Cancer and the Ligue de Recherche contre le Cancer du Haut-Rhin et du Bas-Rhin. The research was supported by grants from the Association de la Recherche contre le Cancer and the Ligue Nationale Française de Recherche contre le Cancer.

We thank K. Dott and E. Lozay for technical assistance; S. Chouaib for helpful discussions; C. Benoist and D. Mathis for providing 14.4.4., H97, YTS177.9.6.1, YTS105.18.10, and R46A2 antibodies; E. Vivier for the antiasialo GM1 antibody; H. Yagita for the MFL1 mAb; and R. Drillien and D. Spehner for supplying BHK-21 cells and help in VVr purification.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Martin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

BenAmmar-Ceccoli, S., Humblot, S., Crouzier, R. et al. Recombinant vaccinia viruses expressing immunoglobulin variable regions efficiently and selectively protect mice against tumoral B-cell growth. Cancer Gene Ther 8, 815–826 (2001). https://doi.org/10.1038/sj.cgt.7700376

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700376

Keywords

This article is cited by

Search

Quick links