Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

An enteric pathogen Salmonella enterica serovar Typhimurium suppresses tumor growth by downregulating CD44high and CD4T regulatory (Treg) cell expression in mice: the critical role of lipopolysaccharide and Braun lipoprotein in modulating tumor growth

Abstract

An antitumor activity associated with several bacterial pathogens, including Salmonella enterica serovar Typhimurium, has been reported; however, the underlying immunological mechanism(s) that lead to an antitumor effect are currently unclear. Furthermore, such pathogens cannot be used to suppress tumor growth because of their potential for causing sepsis. Recently, we reported the characterization of S. Typhimurium isogenic mutants from which Braun lipoprotein genes (lppA and B) and the multicopy repressor of high temperature requirement (msbB) gene were deleted. In a mouse infection model, two mutants, namely, lppB/msbB and lppAB/msbB, minimally induced proinflammatory cytokine production at high doses and were nonlethal to animals. We showed that immunization of mice with these mutants, followed by challenge with the wild-type S. Typhimurium, could significantly suppress tumor growth, as evidenced by an 88% regression in tumor size in lppB/msbB mutant-immunized animals over a 24-day period. However, the lppAB/msbB mutant alone was not effective in modulating tumor growth in mice, although the lppB/msbB mutant alone caused marginal regression in tumor size. Importantly, we showed that CD44+ cells grew much faster than CD44 cells from human liver tumors in mice, leading us to examine the possibility that S. Typhimurium might downregulate CD44 in tumors and splenocytes of mice. Consequently, we found in S. Typhimurium-infected mice that tumor size regression could indeed be related to the downregulation of CD44high and CD4+CD25+ Treg cells. Importantly, the role of lipopolysaccharide and Braun lipoprotein was critical in S. Typhimurium-induced antitumor immune responses. Taken together, we have defined new immune mechanisms leading to tumor suppression in mice by S. Typhimurium.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Pawelek JM, Low KB, Bermudes D . Tumor-targeted Salmonella as a novel anticancer vector. Cancer Res 1997; 57: 4537–4544.

    CAS  PubMed  Google Scholar 

  2. Low KB, Ittensohn M, Le T, Platt J, Sodi S, Amoss M et al. Lipid A mutant Salmonella with suppressed virulence and TNFalpha induction retain tumor-targeting in vivo. Nat Biotechnol 1999; 17: 37–41.

    Article  CAS  PubMed  Google Scholar 

  3. Simmers TA, Mijnhout GS, Van Meyel JJ . Salmonellosis: an unusual complication of hepatocellular carcinoma. Scand J Gastroenterol 1997; 32: 1180–1182.

    Article  CAS  PubMed  Google Scholar 

  4. Noguerado A, Cabanyes J, Vivancos J, Navarro E, Lopez F, Isasia T et al. Abscess caused by Salmonella enteritidis within a glioblastoma multiforme. J Infect 1987; 15: 61–63.

    Article  CAS  PubMed  Google Scholar 

  5. Rodriguez RE, Valero V, Watanakunakorn C . Salmonella focal intracranial infections: review of the world literature (1884–1984) and report of an unusual case. Rev Infect Dis 1986; 8: 31–41.

    Article  CAS  PubMed  Google Scholar 

  6. Pawelek JM, Low KB, Bermudes D . Bacteria as tumour-targeting vectors. Lancet Oncol 2003; 4: 548–556.

    Article  PubMed  Google Scholar 

  7. Pawelek JM, Sodi S, Chakraborty AK, Platt JT, Miller S, Holden DW et al. Salmonella pathogenicity island-2 and anticancer activity in mice. Cancer Gene Ther 2002; 9: 813–818.

    Article  CAS  PubMed  Google Scholar 

  8. Jain RK, Forbes NS . Can engineered bacteria help control cancer? Proc Natl Acad Sci USA 2001; 98: 14748–14750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Galan JE, Curtiss III R . Cloning and molecular characterization of genes whose products allow Salmonella Typhimurium to penetrate tissue culture cells. Proc Natl Acad Sci USA 1989; 86: 6383–6387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Evans ME, Pollack M . Effect of antibiotic class and concentration on the release of lipopolysaccharide from Escherichia coli. J Infect Dis 1993; 167: 1336–1343.

    Article  CAS  PubMed  Google Scholar 

  11. Kohler J, Heumann D, Garotta G, LeRoy D, Bailat S, Barras C et al. IFN-gamma involvement in the severity of gram-negative infections in mice. J Immunol 1993; 151: 916–921.

    CAS  PubMed  Google Scholar 

  12. Galdiero M, De Martino L, Marcatili A, Nuzzo I, Vitiello M, Cipollaro de l’Ero G . Th1 and Th2 cell involvement in immune response to Salmonella Typhimurium porins. Immunology 1998; 94: 5–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gately MK, Renzetti LM, Magram J, Stern AS, Adorini L, Gubler U et al. The interleukin-12/interleukin-12-receptor system: role in normal and pathologic immune responses. Annu Rev Immunol 1998; 16: 495–521.

    Article  CAS  PubMed  Google Scholar 

  14. Aliprantis AO, Yang RB, Mark MR, Suggett S, Devaux B, Radolf JD et al. Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2. Science 1999; 285: 736–739.

    Article  CAS  PubMed  Google Scholar 

  15. Brightbill HD, Libraty DH, Krutzik SR, Yang RB, Belisle JT, Bleharski JR et al. Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science 1999; 285: 732–736.

    Article  CAS  PubMed  Google Scholar 

  16. Reubi JC, Kvols LK, Waser B, Nagorney DM, Heitz PU, Charboneau JW et al. Detection of somatostatin receptors in surgical and percutaneous needle biopsy samples of carcinoids and islet cell carcinomas. Cancer Res 1990; 50: 5969–5977.

    CAS  PubMed  Google Scholar 

  17. Liu T, Konig R, Sha J, Agar SL, Tseng CT, Klimpel GR et al. Immunological responses against Salmonella enterica serovar Typhimurium Braun lipoprotein and lipid A mutant strains in Swiss-Webster mice: potential use as live-attenuated vaccines. Microb Pathog 2008; 44: 224–237.

    Article  PubMed  Google Scholar 

  18. Bluestone JA, Tang Q . How do CD4+CD25+ regulatory T cells control autoimmunity? Curr Opin Immunol 2005; 17: 638–642.

    Article  CAS  PubMed  Google Scholar 

  19. Itoh M, Takahashi T, Sakaguchi N, Kuniyasu Y, Shimizu J, Otsuka F et al. Thymus and autoimmunity: production of CD25+CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. J Immunol 1999; 162: 5317–5326.

    CAS  PubMed  Google Scholar 

  20. Nomura T, Sakaguchi S . Naturally arising CD25+CD4+ regulatory T cells in tumor immunity. Curr Top Microbiol Immunol 2005; 293: 287–302.

    CAS  PubMed  Google Scholar 

  21. Zou W . Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 2006; 6: 295–307.

    Article  CAS  PubMed  Google Scholar 

  22. Shimizu J, Yamazaki S, Sakaguchi S . Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J Immunol 1999; 163: 5211–5218.

    CAS  PubMed  Google Scholar 

  23. Turk MJ, Guevara-Patino JA, Rizzuto GA, Engelhorn ME, Sakaguchi S, Houghton AN . Concomitant tumor immunity to a poorly immunogenic melanoma is prevented by regulatory T cells. J Exp Med 2004; 200: 771–782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sutmuller RP, van Duivenvoorde LM, van Elsas A, Schumacher TN, Wildenberg ME, Allison JP et al. Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25(+) regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J Exp Med 2001; 194: 823–832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bajorath J . Understanding the structural basis of T-cell costimulation. J Mol Graph Model 2000; 18: 176–179.

    CAS  PubMed  Google Scholar 

  26. Lesley J, Kincade PW, Hyman R . Antibody-induced activation of the hyaluronan receptor function of CD44 requires multivalent binding by antibody. Eur J Immunol 1993; 23: 1902–1909.

    Article  CAS  PubMed  Google Scholar 

  27. Martin TA, Harrison G, Mansel RE, Jiang WG . The role of the CD44/ezrin complex in cancer metastasis. Crit Rev Oncol Hematol 2003; 46: 165–186.

    Article  PubMed  Google Scholar 

  28. Ponta H, Sherman L, Herrlich PA . CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol 2003; 4: 33–45.

    Article  CAS  PubMed  Google Scholar 

  29. Stamenkovic I, Amiot M, Pesando JM, Seed B . A lymphocyte molecule implicated in lymph node homing is a member of the cartilage link protein family. Cell 1989; 56: 1057–1062.

    Article  CAS  PubMed  Google Scholar 

  30. Berg EL, Goldstein LA, Jutila MA, Nakache M, Picker LJ, Streeter PR et al. Homing receptors and vascular addressins: cell adhesion molecules that direct lymphocyte traffic. Immunol Rev 1989; 108: 5–18.

    Article  CAS  PubMed  Google Scholar 

  31. Shimizu Y, Van Seventer GA, Siraganian R, Wahl L, Shaw S . Dual role of the CD44 molecule in T cell adhesion and activation. J Immunol 1989; 143: 2457–2463.

    CAS  PubMed  Google Scholar 

  32. Denning SM, Le PT, Singer KH, Haynes BF . Antibodies against the CD44 p80, lymphocyte homing receptor molecule augment human peripheral blood T cell activation. J Immunol 1990; 144: 7–15.

    CAS  PubMed  Google Scholar 

  33. Rafi A, Nagarkatti M, Nagarkatti PS . Hyaluronate-CD44 interactions can induce murine B-cell activation. Blood 1997; 89: 2901–2908.

    CAS  PubMed  Google Scholar 

  34. Aziz KA, Till KJ, Zuzel M, Cawley JC . Involvement of CD44-hyaluronan interaction in malignant cell homing and fibronectin synthesis in hairy cell leukemia. Blood 2000; 96: 3161–3167.

    CAS  PubMed  Google Scholar 

  35. Mummert ME, Mummert DI, Ellinger L, Takashima A . Functional roles of hyaluronan in B16-F10 melanoma growth and experimental metastasis in mice. Mol Cancer Ther 2003; 2: 295–300.

    CAS  PubMed  Google Scholar 

  36. Huang S, Xie K, Bucana CD, Ullrich SE, Bar-Eli M . Interleukin 10 suppresses tumor growth and metastasis of human melanoma cells: potential inhibition of angiogenesis. Clin Cancer Res 1996; 2: 1969–1979.

    CAS  PubMed  Google Scholar 

  37. Stearns ME, Wang M . Antimestatic and antitumor activities of interleukin 10 in transfected human prostate PC-3 ML clones: Orthotopic growth in severe combined immunodeficient mice. Clin Cancer Res 1998; 4: 2257–2263.

    CAS  PubMed  Google Scholar 

  38. Faupel-Badger JM, Kidd LC, Albanes D, Virtamo J, Woodson K, Tangrea JA . Association of IL-10 polymorphisms with prostate cancer risk and grade of disease. Cancer Causes Control 2008; 19: 119–124.

    Article  PubMed  Google Scholar 

  39. Lin W, Haribhai D, Relland LM, Truong N, Carlson MR, Williams CB et al. Regulatory T cell development in the absence of functional Foxp3. Nat Immunol 2007; 8: 359–368.

    Article  CAS  PubMed  Google Scholar 

  40. Toso JF, Gill VJ, Hwu P, Marincola FM, Restifo NP, Schwartzentruber DJ et al. Phase I study of the intravenous administration of attenuated Salmonella Typhimurium to patients with metastatic melanoma. J Clin Oncol 2002; 20: 142–152.

    Article  PubMed  Google Scholar 

  41. Sakaguchi S, Sakaguchi N, Shimizu J, Yamazaki S, Sakihama T, Itoh M et al. Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol Rev 2001; 182: 18–32.

    Article  CAS  PubMed  Google Scholar 

  42. Shevach EM . CD4+ CD25+ suppressor T cells: more questions than answers. Nat Rev Immunol 2002; 2: 389–400.

    Article  CAS  PubMed  Google Scholar 

  43. Yu P, Lee Y, Liu W, Krausz T, Chong A, Schreiber H et al. Intratumor depletion of CD4+ cells unmasks tumor immunogenicity leading to the rejection of late-stage tumors. J Exp Med 2005; 201: 779–791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhou G, Drake CG, Levitsky HI . Amplification of tumor-specific regulatory T cells following therapeutic cancer vaccines. Blood 2006; 107: 628–636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Duan W, So T, Croft M . Antagonism of airway tolerance by endotoxin/lipopolysaccharide through promoting OX40L and suppressing antigen-specific Foxp3+ T regulatory cells. J Immunol 2008; 181: 8650–8659.

    Article  CAS  PubMed  Google Scholar 

  46. Lewkowicz P, Lewkowicz N, Sasiak A, Tchorzewski H . Lipopolysaccharide-activated CD4+CD25+ T regulatory cells inhibit neutrophil function and promote their apoptosis and death. J Immunol 2006; 177: 7155–7163.

    Article  CAS  PubMed  Google Scholar 

  47. Clayton A, Mitchell JP, Court J, Mason MD, Tabi Z . Human tumor-derived exosomes selectively impair lymphocyte responses to interleukin-2. Cancer Res 2007; 67: 7458–7466.

    Article  CAS  PubMed  Google Scholar 

  48. Aggarwal A, Kumar S, Jaffe R, Hone D, Gross M, Sadoff J . Oral Salmonella: malaria circumsporozoite recombinants induce specific CD8+ cytotoxic T cells. J Exp Med 1990; 172: 1083–1090.

    Article  CAS  PubMed  Google Scholar 

  49. Schafer R, Eisenstein TK . Natural killer cells mediate protection induced by a Salmonella aroA mutant. Infect Immun 1992; 60: 791–797.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Tam MA, Rydstrom A, Sundquist M, Wick MJ . Early cellular responses to Salmonella infection: dendritic cells, monocytes, and more. Immunol Rev 2008; 225: 140–162.

    Article  CAS  PubMed  Google Scholar 

  51. Yrlid U, Svensson M, Hakansson A, Chambers BJ, Ljunggren HG, Wick MJ . In vivo activation of dendritic cells and T cells during Salmonella enterica serovar Typhimurium infection. Infect Immun 2001; 69: 5726–5735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rankin EB, Yu D, Jiang J, Shen H, Pearce EJ, Goldschmidt MH et al. An essential role of Th1 responses and interferon gamma in infection-mediated suppression of neoplastic growth. Cancer Biol Ther 2003; 2: 687–693.

    Article  CAS  PubMed  Google Scholar 

  53. Kirby AC, Yrlid U, Wick MJ . The innate immune response differs in primary and secondary Salmonella infection. J Immunol 2002; 169: 4450–4459.

    Article  CAS  PubMed  Google Scholar 

  54. Muranski P, Restifo NP . Adoptive immunotherapy of cancer using CD4(+) T cells. Curr Opin Immunol 2009; 21: 200–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Esendagli G, Bruderek K, Goldmann T, Busche A, Branscheid D, Vollmer E et al. Malignant and non-malignant lung tissue areas are differentially populated by natural killer cells and regulatory T cells in non-small cell lung cancer. Lung Cancer 2008; 59: 32–40.

    Article  CAS  PubMed  Google Scholar 

  56. Peng TS, Qiu JS, Wu HX, Liang HZ, Luo CQ . Expressions of CD44s, MMP-9, and Ki-67: possible association with invasion, metastasis, and recurrence of osteosarcoma]. Ai Zheng 2002; 21: 745–750.

    PubMed  Google Scholar 

  57. Du L, Wang H, He L, Zhang J, Ni B, Wang X et al. CD44 is of functional importance for colorectal cancer stem cells. Clin Cancer Res 2008; 14: 6751–6760.

    Article  CAS  PubMed  Google Scholar 

  58. Okamoto A, Chikamatsu K, Sakakura K, Hatsushika K, Takahashi G, Masuyama K . Expansion and characterization of cancer stem-like cells in squamous cell carcinoma of the head and neck. Oral Oncol 2009; 45: 633–639.

    Article  CAS  PubMed  Google Scholar 

  59. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF . Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100: 3983–3988.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW et al. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA 2007; 104: 10158–10163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Inoue T, Yashiro M, Nishimura S, Maeda K, Sawada T, Ogawa Y et al. Matrix metalloproteinase-1 expression is a prognostic factor for patients with advanced gastric cancer. Int J Mol Med 1999; 4: 73–77.

    CAS  PubMed  Google Scholar 

  62. Kleiner DE, Stetler-Stevenson WG . Matrix metalloproteinases and metastasis. Cancer Chemother Pharmacol 1999; 43 (Suppl): S42–S51.

    Article  CAS  PubMed  Google Scholar 

  63. Sheridan C, Kishimoto H, Fuchs RK, Mehrotra S, Bhat-Nakshatri P, Turner CH et al. CD44+/CD24− breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res 2006; 8: R59.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Gee K, Kozlowski M, Kryworuchko M, Diaz-Mitoma F, Kumar A . Differential effect of IL-4 and IL-13 on CD44 expression in the Burkitt's lymphoma B cell line BL30/B95-8 and in Epstein-Barr virus (EBV) transformed human B cells: loss of IL-13 receptors on Burkitt's lymphoma B cells. Cell Immunol 2001; 211: 131–142.

    Article  CAS  PubMed  Google Scholar 

  65. Gee K, Kozlowski M, Kumar A . Tumor necrosis factor-alpha induces functionally active hyaluronan-adhesive CD44 by activating sialidase through p38 mitogen-activated protein kinase in lipopolysaccharide-stimulated human monocytic cells. J Biol Chem 2003; 278: 37275–37287.

    Article  CAS  PubMed  Google Scholar 

  66. Firan M, Dhillon S, Estess P, Siegelman MH . Suppressor activity and potency among regulatory T cells is discriminated by functionally active CD44. Blood 2006; 107: 619–627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Berg DJ, Davidson N, Kuhn R, Muller W, Menon S, Holland G et al. Enterocolitis and colon cancer in interleukin-10-deficient mice are associated with aberrant cytokine production and CD4(+) TH1-like responses. J Clin Invest 1996; 98: 1010–1020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sturlan S, Oberhuber G, Beinhauer BG, Tichy B, Kappel S, Wang J et al. Interleukin-10-deficient mice and inflammatory bowel disease associated cancer development. Carcinogenesis 2001; 22: 665–671.

    Article  CAS  PubMed  Google Scholar 

  69. Ishida D, Yang H, Masuda K, Uesugi K, Kawamoto H, Hattori M et al. Antigen-driven T cell anergy and defective memory T cell response via deregulated Rap1 activation in SPA-1-deficient mice. Proc Natl Acad Sci USA 2003; 100: 10919–10924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fadl AA, Sha J, Klimpel GR, Olano JP, Galindo CL, Chopra AK . Attenuation of Salmonella enterica serovar Typhimurium by altering biological functions of murein lipoprotein and lipopolysaccharide. Infect Immun 2005; 73: 8433–8436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. al-Ramadi BK, Fernandez-Cabezudo MJ, El-Hasasna H, Al-Salam S, Bashir G, Chouaib S . Potent anti-tumor activity of systemically-administered IL2-expressing Salmonella correlates with decreased angiogenesis and enhanced tumor apoptosis. Clin Immunol 2009; 130: 89–97.

    Article  CAS  PubMed  Google Scholar 

  72. Sha J, Fadl AA, Klimpel GR, Niesel DW, Popov VL, Chopra AK . The two murein lipoproteins of Salmonella enterica serovar Typhimurium contribute to the virulence of the organism. Infect Immun 2004; 72: 3987–4003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Fadl AA, Sha J, Klimpel GR, Olano JP, Niesel DW, Chopra AK . Murein lipoprotein is a critical outer membrane component involved in Salmonella enterica serovar Typhimurium systemic infection. Infect Immun 2005; 73: 1081–1096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Ms Mardelle Susman for assisting in paper preparation. This study was supported by NIH grant AI064389 to AK Chopra.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T Liu or A K Chopra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, T., Chopra, A. An enteric pathogen Salmonella enterica serovar Typhimurium suppresses tumor growth by downregulating CD44high and CD4T regulatory (Treg) cell expression in mice: the critical role of lipopolysaccharide and Braun lipoprotein in modulating tumor growth. Cancer Gene Ther 17, 97–108 (2010). https://doi.org/10.1038/cgt.2009.58

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2009.58

Keywords

This article is cited by

Search

Quick links