Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A chimeric fusion of the hASH1 and EZH2 promoters mediates high and specific reporter and suicide gene expression and cytotoxicity in small cell lung cancer cells

Abstract

Transcriptionally targeted gene therapy is a promising experimental modality for treatment of systemic malignancies such as small cell lung cancer (SCLC). We have identified the human achaete-scute homolog 1 (hASH1) and enhancer of zeste homolog 2 (EZH2) genes as highly upregulated in SCLC compared to a panel of representative normal tissues. Here, we evaluate the use of regulatory regions from the hASH1- and EZH2-promoter regions alone and in combination for suicide gene therapy of SCLC. Two hASH1-promoter regions comprising 0.3 and 0.7 kb immediately upstream of (and including) the transcription start site were tested. Both constructs induced reporter gene activity (up to sevenfold SV40-promoter activity) in all tested classic (hASH1 positive) SCLC and in two hASH1-negative SCLC cell lines, whereas gene activity was low or absent (<4% of SV40 activity) in one hASH1-negative SCLC and in all control cell lines tested. To evaluate its therapeutic potential, the 0.7 kb hASH1 proximal-promoter region was evaluated for cytotoxicity in a suicide gene assay. The construct induced SCLC cytotoxicity at levels equivalent to those observed with the SV40 promoter, while control cells remained unaffected by the treatment. Analogously, a 1.1 kb EZH2-promoter region was evaluated by reporter and suicide gene assays. The EZH2 promoter potently induced reporter gene activity in SCLC (up to 25-fold of SV40 activity) while moderate reporter activity (up to 12% of SV40 activity), was detected in the control cells. However, in the suicide gene assay both control and SCLC cells demonstrated sensitivity indicating lack of promoter specificity. Finally, we fused the 0.7 kb hASH1 promoter to the EZH2 promoter generating a chimeric hASH1EZH2 regulatory construct. The chimeric promoter demonstrated increased activity in SCLC cells compared to the hASH1 promoter alone while retaining specificity in control cells. The hASH1EZH2 promoter thus constitutes a promising transcriptional regulator for SCLC gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Ciombor KK, Rocha Lima CM . Management of small cell lung cancer. Curr Treat Options Oncol 2006; 7: 59–68.

    Article  PubMed  Google Scholar 

  2. Poulsen TT, Pedersen N, Poulsen HS . Replacement and suicide gene therapy for targeted treatment of lung cancer. Clin Lung Cancer 2005; 6: 227–236.

    Article  CAS  PubMed  Google Scholar 

  3. Moolten FL . Tumor chemosensitivity conferred by inserted herpes thymidine kinase genes: paradigm for a prospective cancer control strategy. Cancer Res 1986; 46: 5276–5281.

    CAS  PubMed  Google Scholar 

  4. Fillat C, Carrio M, Cascante A, Sangro B . Suicide gene therapy mediated by the herpes simplex virus thymidine kinase gene/ganciclovir system: fifteen years of application. Curr Gene Ther 2003; 3: 13–26.

    Article  CAS  PubMed  Google Scholar 

  5. Tanaka M, Inase N, Miyake S, Yoshizawa Y . Neuron specific enolase promoter for suicide gene therapy in small cell lung carcinoma. Anticancer Res 2001; 21: 291–294.

    CAS  PubMed  Google Scholar 

  6. Song JS, Kim HP . Adenovirus-mediated HSV-TK gene therapy using the human telomerase promoter induced apoptosis of small cell lung cancer cell line. Oncol Rep 2004; 12: 443–447.

    PubMed  Google Scholar 

  7. Song JS . Adenovirus-mediated suicide SCLC gene therapy using the increased activity of the hTERT promoter by the MMRE and SV40 enhancer. Biosci Biotechnol Biochem 2005; 69: 56–62.

    Article  CAS  PubMed  Google Scholar 

  8. Uchino J, Takayama K, Harada A, Kawakami Y, Inoue H, Curiel DT et al. Infectivity enhanced, hTERT promoter-based conditionally replicative adenoviruses are useful for SCLC treatment. Cancer Gene Ther 2005; 12: 737–748.

    Article  CAS  PubMed  Google Scholar 

  9. Inase N, Horita K, Tanaka M, Miyake S, Ichioka M, Yoshizawa Y . Use of gastrin-releasing peptide promoter for specific expression of thymidine kinase gene in small-cell lung carcinoma cells. Int J Cancer 2000; 85: 716–719.

    Article  CAS  PubMed  Google Scholar 

  10. Morimoto E, Inase N, Mlyake S, Yoshizawa Y . Adenovirus-mediated suicide gene transfer to small cell lung carcinoma using a tumor-specific promoter. Anticancer Res 2001; 21: 329–331.

    CAS  PubMed  Google Scholar 

  11. Pedersen N, Mortensen S, Sørensen SB, Pedersen MW, Rieneck K, Bovin LF et al. Transcriptional gene expression profiling of small cell lung cancer cells. Cancer Res 2003; 63: 1943–1953.

    CAS  PubMed  Google Scholar 

  12. Pedersen N, Pedersen MW, Lan MS, Breslin MB, Poulsen HS . The insulinoma-associated 1: a novel promoter for targeted cancer gene therapy for small cell lung cancer. Cancer Gene Ther 2006; 13: 375–384.

    Article  CAS  PubMed  Google Scholar 

  13. Borges M, Linnoila RI, van de Velde HJ, Chen H, Nelkin BD, Mabry M et al. An achaete-scute homologue essential for neuroendocrine differentiation in the lung. Nature 1997; 386: 852–855.

    Article  CAS  PubMed  Google Scholar 

  14. Ito T, Udaka N, Yazawa T, Okudela K, Hayashi H, Sudo T et al. Basic helix-loop-helix transcription factors regulate the neuroendocrine differentiation of fetal mouse pulmonary epithelium. Development 2000; 127: 3913–3921.

    CAS  PubMed  Google Scholar 

  15. Franco dA, Gendron-Maguire M, Swiatek PJ, Gridley T . Cloning, sequencing and expression of the mouse mammalian achaete-scute homolog 1 (MASH1). Biochim Biophys Acta 1993; 1171: 323–327.

    Article  Google Scholar 

  16. Parras CM, Galli R, Britz O, Soares S, Galichet C, Battiste J et al. Mash1 specifies neurons and oligodendrocytes in the postnatal brain. EMBO J 2004; 23: 4495–4505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen H, Biel MA, Borges MW, Thiagalingam A, Nelkin BD, Baylin SB et al. Tissue-specific expression of human achaete-scute homologue-1 in neuroendocrine tumors: transcriptional regulation by dual inhibitory regions. Cell Growth Differ 1997; 8: 677–686.

    CAS  PubMed  Google Scholar 

  18. Chen H, Thiagalingam A, Chopra H, Borges MW, Feder JN, Nelkin BD et al. Conservation of the Drosophila lateral inhibition pathway in human lung cancer: a hairy-related protein (HES-1) directly represses achaete-scute homolog-1 expression. Proc Natl Acad Sci USA 1997; 94: 5355–5360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sriuranpong V, Borges MW, Strock CL, Nakakura EK, Watkins DN, Blaumueller CM et al. Notch signaling induces rapid degradation of achaete-scute homolog 1. Mol Cell Biol 2002; 22: 3129–3139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kunnimalaiyaan M, Vaccaro AM, Ndiaye MA, Chen H . Overexpression of the NOTCH1 intracellular domain inhibits cell proliferation and alters the neuroendocrine phenotype of medullary thyroid cancer cells. J Biol Chem 2006; 281: 39819–39830.

    Article  CAS  PubMed  Google Scholar 

  21. Bracken AP, Pasini D, Capra M, Prosperini E, Colli E, Helin K . EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J 2003; 22: 5323–5335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 2002; 419: 624–629.

    Article  CAS  PubMed  Google Scholar 

  23. Bachmann IM, Halvorsen OJ, Collett K, Stefansson IM, Straume O, Haukaas SA et al. EZH2 expression is associated with high proliferation rate and aggressive tumor subgroups in cutaneous melanoma and cancers of the endometrium, prostate, and breast. J Clin Oncol 2006; 24: 268–273.

    Article  CAS  PubMed  Google Scholar 

  24. Hensel CH, Hsieh CL, Gazdar AF, Johnson BE, Sakaguchi AY, Naylor SL et al. Altered structure and expression of the human retinoblastoma susceptibility gene in small cell lung cancer. Cancer Res 1990; 50: 3067–3072.

    CAS  PubMed  Google Scholar 

  25. Rygaard K, Sorenson GD, Pettengill OS, Cate CC, Spang-Thomsen M . Abnormalities in structure and expression of the retinoblastoma gene in small cell lung cancer cell lines and xenografts in nude mice. Cancer Res 1990; 50: 5312–5317.

    CAS  PubMed  Google Scholar 

  26. Yuan J, Knorr J, Altmannsberger M, Goeckenjan G, Ahr A, Scharl A et al. Expression of p16 and lack of pRB in primary small cell lung cancer. J Pathol 1999; 189: 358–362.

    Article  CAS  PubMed  Google Scholar 

  27. Eymin B, Gazzeri S, Brambilla C, Brambilla E . Distinct pattern of E2F1 expression in human lung tumours: E2F1 is upregulated in small cell lung carcinoma. Oncogene 2001; 20: 1678–1687.

    Article  CAS  PubMed  Google Scholar 

  28. Cooper CS, Nicholson AG, Foster C, Dodson A, Edwards S, Fletcher A et al. Nuclear overexpression of the E2F3 transcription factor in human lung cancer. Lung Cancer 2006; 54: 155–162.

    Article  PubMed  Google Scholar 

  29. Pedersen N, Poulsen TT, Poulsen HS . Cre-loxP recombination vectors for promoter studies. Electron J Biotechnol 2007; 10: 315–321.

    Article  CAS  Google Scholar 

  30. Hansen LT, Lundin C, Helleday T, Poulsen HS, Sørensen CS, Petersen LN et al. DNA repair rate and etoposide (VP16) resistance of tumor cell subpopulations derived from a single human small cell lung cancer. Lung Cancer 2003; 40: 157–164.

    Article  PubMed  Google Scholar 

  31. Aster JC, Xu L, Karnell FG, Patriub V, Pui JC, Pear WS . Essential roles for ankyrin repeat and transactivation domains in induction of T-cell leukemia by notch1. Mol Cell Biol 2000; 20: 7505–7515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bhattacharjee A, Richards WG, Staunton J, Li C, Monti S, Vasa P et al. Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci USA 2001; 98: 13790–13795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sriuranpong V, Borges MW, Ravi RK, Arnold DR, Nelkin BD, Baylin SB et al. Notch signaling induces cell cycle arrest in small cell lung cancer cells. Cancer Res 2001; 61: 3200–3205.

    CAS  PubMed  Google Scholar 

  34. Müller H, Bracken AP, Vernell R, Moroni MC, Christians F, Grassilli E et al. E2Fs regulate the expression of genes involved in differentiation, development, proliferation, and apoptosis. Genes Dev 2001; 15: 267–285.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Carney DN, Gazdar AF, Bepler G, Guccion JG, Marangos PJ, Moody TW et al. Establishment and identification of small cell lung cancer cell lines having classic and variant features. Cancer Res 1985; 45: 2913–2923.

    CAS  PubMed  Google Scholar 

  36. Bepler G, Jaques G, Neumann K, Aumuller G, Gropp C, Havemann K . Establishment, growth properties, and morphological characteristics of permanent human small cell lung cancer cell lines. J Cancer Res Clin Oncol 1987; 113: 31–40.

    Article  CAS  PubMed  Google Scholar 

  37. Brambilla E, Travis WD, Colby TV, Corrin B, Shimosato Y . The new World Health Organization classification of lung tumours. Eur Respir J 2001; 18: 1059–1068.

    Article  CAS  PubMed  Google Scholar 

  38. Jiang SX, Kameya T, Asamura H, Umezawa A, Sato Y, Shinada J et al. hASH1 expression is closely correlated with endocrine phenotype and differentiation extent in pulmonary neuroendocrine tumors. Mod Pathol 2004; 17: 222–229.

    Article  CAS  PubMed  Google Scholar 

  39. Westerman BA, Neijenhuis S, Poutsma A, Steenbergen RD, Breuer RH, Egging M et al. Quantitative reverse transcription-polymerase chain reaction measurement of HASH1 (ASCL1), a marker for small cell lung carcinomas with neuroendocrine features. Clin Cancer Res 2002; 8: 1082–1086.

    CAS  PubMed  Google Scholar 

  40. Kleer CG, Cao Q, Varambally S, Shen R, Ota I, Tomlins SA et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci USA 2003; 100: 11606–11611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tonini T, Bagella L, D'Andrilli G, Claudio PP, Giordano A . Ezh2 reduces the ability of HDAC1-dependent pRb2/p130 transcriptional repression of cyclin A. Oncogene 2004; 23: 4930–4937.

    Article  CAS  PubMed  Google Scholar 

  42. Arvidsson Y, Sumantran V, Watt F, Uramoto H, Funa K . Neuroblastoma-specific cytotoxicity mediated by the Mash1-promoter and E. coli purine nucleoside phosphorylase. Pediatr Blood Cancer 2005; 44: 77–84.

    Article  PubMed  Google Scholar 

  43. Brennan J, O'Connor T, Makuch RW, Simmons AM, Russell E, Linnoila RI et al. myc Family DNA amplification in 107 tumors and tumor cell lines from patients with small cell lung cancer treated with different combination chemotherapy regimens. Cancer Res 1991; 51: 1708–1712.

    CAS  PubMed  Google Scholar 

  44. Yazawa T, Ito T, Kamma H, Suzuki T, Okudela K, Hayashi H et al. Complicated mechanisms of class II transactivator transcription deficiency in small cell lung cancer and neuroblastoma. Am J Pathol 2002; 161: 291–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rygaard K, Vindeløv LL, Spang-Thomsen M . Expression of myc family oncoproteins in small-cell lung-cancer cell lines and xenografts. Int J Cancer 1993; 54: 144–152.

    Article  CAS  PubMed  Google Scholar 

  46. Watt F, Watanabe R, Yang W, Agren N, Arvidsson Y, Funa K . A novel MASH1 enhancer with N-myc and CREB-binding sites is active in neuroblastoma. Cancer Gene Ther 2007; 14: 287–296.

    Article  CAS  PubMed  Google Scholar 

  47. Verma-Kurvari S, Savage T, Gowan K, Johnson JE . Lineage-specific regulation of the neural differentiation gene MASH1. Dev Biol 1996; 180: 605–617.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Tetsuo Sudo, Toray Industries Inc., Kamakura, Japan, for the HES-1 antibody, Dr Jon C Aster, Brigham and Women's Hospital, Boston, MA, USA for the IC and FL Notch1-expression vectors and Professor Kristian Helin, Biotech Research and Innovation Center, Copenhagen, Denmark for the EZH2-promoter construct. The study was supported financially by the Danish Cancer Society and the University of Copenhagen, Copenhagen, Denmark.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H S Poulsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poulsen, T., Pedersen, N., Juel, H. et al. A chimeric fusion of the hASH1 and EZH2 promoters mediates high and specific reporter and suicide gene expression and cytotoxicity in small cell lung cancer cells. Cancer Gene Ther 15, 563–575 (2008). https://doi.org/10.1038/cgt.2008.24

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2008.24

Keywords

This article is cited by

Search

Quick links