Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Polyethylenimine-mediated in vivo gene transfer of a transmembrane superantigen fusion construct inhibits B16 murine melanoma growth

Abstract

Immunotherapy has been proposed as a therapeutic strategy in advanced-stage melanomas in which other therapeutic options have little effect. The Staphylococcus enterotoxin A (SEA) has been used to stimulate an antitumoral immune response but its use is hampered by severe systemic side effects. Here, we show that SEA can be targeted to melanoma cells to limit these side effects. More specifically, we used a nonviral vector, the cationic polymer, polyethylenimine (PEI), to express a transmembrane SEA fusion construct (pSEA-TM) in B16F10-induced subcutaneous melanoma in mice. The efficacy of this in vivo transfection was enhanced by concomitant infusion of epinephrine to induce local vasoconstriction. In these conditions, repeated injections of pSEA-TM/PEI complexes elicited a significant response, as evidenced by tumor growth inhibition, without systemic adverse effects. T cell infiltration of the tumors, together with positive lymphocyte proliferation tests, suggested local and systemic immune responses. Altogether, PEI-mediated targeting of SEA to melanoma tumor cells in vivo efficiently stimulates the antitumor immune response without inducing the side effects observed with systemic administration of SEA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Diepgen TL, Mahler V . The epidemiology of skin cancer. Br J Dermatol 2002; 146 (Suppl 61): 1–6.

    Article  PubMed  Google Scholar 

  2. Stitz R, Kidd MR, Kenny LM, Howard AM . Skin cancer medicine in primary care: towards an agenda for quality health outcomes. Med J Aust 2006; 184: 251.

    PubMed  Google Scholar 

  3. Jemal A, Devesa SS, Hartge P, Tucker MA . Recent trends in cutaneous melanoma incidence among whites in the United States. J Natl Cancer Inst 2001; 93: 678–683.

    Article  CAS  PubMed  Google Scholar 

  4. Komenaka I, Hoerig H, Kaufman HL . Immunotherapy for melanoma. Clin Dermatol 2004; 22: 251–265.

    Article  PubMed  Google Scholar 

  5. Baskar S . Gene-modified tumor cells as cellular vaccine. Cancer Immunol Immunother 1996; 43: 165–173.

    Article  CAS  PubMed  Google Scholar 

  6. Liu M, Acres B, Balloul JM, Bizouarne N, Paul S, Slos P et al. Gene-based vaccines and immunotherapeutics. Proc Natl Acad Sci USA 2004; 101 (Suppl 2): 14567–14571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kyte JA, Kvalheim G, Lislerud K, thor Straten P, Dueland S, Aamdal S et al. T cell responses in melanoma patients after vaccination with tumor-mRNA transfected dendritic cells. Cancer Immunol Immunother 2007; 56: 659–675.

    Article  CAS  PubMed  Google Scholar 

  8. Hill HC, Conway Jr TF, Sabel MS, Jong YS, Mathiowitz E, Bankert RB et al. Cancer immunotherapy with interleukin 12 and granulocyte-macrophage colony-stimulating factor-encapsulated microspheres: coinduction of innate and adaptive antitumor immunity and cure of disseminated disease. Cancer Res 2002; 62: 7254–7263.

    CAS  PubMed  Google Scholar 

  9. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 2006; 314: 126–129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dohlsten M, Kalland T, Gunnarsson P, Antonsson P, Molander A, Olsson J et al. Man-made superantigens: tumor-selective agents for T-cell-based therapy. Adv Drug Deliv Rev 1998; 31: 131–142.

    Article  CAS  PubMed  Google Scholar 

  11. Kominsky SL, Torres BA, Hobeika AC, Lake FA, Johnson HM . Superantigen enhanced protection against a weak tumor-specific melanoma antigen: implications for prophylactic vaccination against cancer. Int J Cancer 2001; 94: 834–841.

    Article  CAS  PubMed  Google Scholar 

  12. Torres BA, Kominsky S, Perrin GQ, Hobeika AC, Johnson HM . Superantigens: the good, the bad, and the ugly. Exp Biol Med 2001; 226: 164–176.

    Article  CAS  Google Scholar 

  13. Baker MD, Acharya KR . Superantigens: structure-function relationships. Int J Med Microbiol 2004; 293: 529–537.

    Article  CAS  PubMed  Google Scholar 

  14. Dohlsten M, Abrahmsén L, Björk P, Lando PA, Hedlund G, Forsberg G et al. Monoclonal antibody-superantigen fusion proteins: tumor-specific agents for T-cell-based tumor therapy. Proc Natl Acad Sci USA 1994; 91: 8945–8949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dohlsten M, Hansson J, Ohlsson L, Litton M, Kalland T . Antibody-targeted superantigens are potent inducers of tumor-infiltrating T lymphocytes in vivo. Proc Natl Acad Sci USA 1995; 92: 9791–9795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hansson J, Ohlsson L, Persson R, Andersson G, Ilbäck NG, Litton MJ et al. Genetically engineered superantigens as tolerable antitumor agents. Proc Natl Acad Sci USA 1997; 94: 2489–2494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Søgaard M, Ohlsson L, Kristensson K, Rosendahl A, Sjoberg A, Forsberg G et al. Treatment with tumor-reactive Fab-IL-2 and Fab-staphylococcal enterotoxin A fusion proteins leads to sustained T cell activation, and long-term survival of mice with established tumors. Int J Oncol 1999; 15: 873–882.

    PubMed  Google Scholar 

  18. Rosendahl A, Kristensson K, Carlsson M, Skartved NJ, Riesbeck K, Søgaard M et al. Long-term survival and complete cures of B16 melanoma-carrying animals after therapy with tumor-targeted IL-2 and SEA. Int J Cancer 1999; 81: 156–163.

    Article  CAS  PubMed  Google Scholar 

  19. Schrayer DP, Kouttab N, Hearing VJ, Wanebo HJ . Synergistic effect of interleukin-2 and a vaccine of irradiated melanoma cells transfected to secrete staphylococcal enterotoxin A. Clin Exp Metastasis 2002; 19: 43–53.

    Article  CAS  PubMed  Google Scholar 

  20. Huang C, Yu H, Wang Q, Yang G, Ma W, Xia D et al. A novel anticancer approach: SEA-anchored tumor cells expressing heat shock protein 70 onto the surface elicit strong anticancer efficacy. Immunol Lett 2005; 101: 71–80.

    Article  CAS  PubMed  Google Scholar 

  21. Si SY, Hu PZ, Huang YY, Yc J, Huang Y, Li ZS et al. Tumor cells with B7.1 and transmembrane anchored staphylococcal enterotoxin A generate effective antitumor immunity. Biochem Biophys Res Commun 2006; 347: 208–214.

    Article  CAS  PubMed  Google Scholar 

  22. Dow SW, Elmslie RE, Willson AP, Roche L, Gorman C, Potter TA . In vivo tumor transfection with superantigen plus cytokine genes induces tumor regression and prolongs survival in dogs with malignant melanoma. J Clin Invest 1998; 101: 2406–2414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li ZS, Yang XW, Chen Z, Dong HL, Ye J, Qu P et al. In vivo tumor co-transfection with superantigen and CD80 induces systemic immunity without tolerance and prolongs survival in mice with hepatocellular carcinoma. Cancer Biol Ther 2004; 3: 660–666.

    Article  CAS  PubMed  Google Scholar 

  24. Si S, Sun Y, Li Z, Ge W, Zhang X, Hu P et al. Gene therapy by membrane-expressed superantigen for alpha-fetoprotein-producing hepatocellular carcinoma. Gene Ther 2006; 13: 1603–1610.

    Article  CAS  PubMed  Google Scholar 

  25. Carlsson G, Gullberg B, Hafstrom L . Estimation of liver tumor volume using different formulas—an experimental study in rats. J Cancer Res Clin Oncol 1983; 105: 20–23.

    Article  CAS  PubMed  Google Scholar 

  26. Dohlsten M, Hedlund G, Akerblom E, Lando PA, Kalland T . Monoclonal antibody-targeted superantigens: a different class of antitumor agents. Proc Natl Acad Sci USA 1991; 88: 9287–9291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ma W, Yu H, Wang Q, Jin H, Solheim J, Labhasetwar V . A novel approach for cancer immunotherapy: tumor cells with anchored superantigen SEA generate effective antitumor immunity. J Clin Immunol 2004; 24: 294–301.

    Article  CAS  PubMed  Google Scholar 

  28. Liu Q, Muruve DA . Molecular basis of the inflammatory response to adenovirus vectors. Gene Ther 2003; 10: 935–940.

    Article  CAS  PubMed  Google Scholar 

  29. Sun JY, Anand-Jawa V, Chatterjee S, Wong KK . Immune responses to adeno-associated virus and its recombinant vectors. Gene Ther 2003; 10: 964–976.

    Article  CAS  PubMed  Google Scholar 

  30. Vorburger SA, Hunt KK . Adenoviral gene therapy. Oncologist 2002; 7: 46–59.

    Article  CAS  PubMed  Google Scholar 

  31. Muruve DA . The innate immune response to adenovirus vectors. Hum Gene Ther 2004; 15: 1157–1166.

    Article  CAS  PubMed  Google Scholar 

  32. Kircheis R, Wightman L, Schreiber A, Robitza R, Rössler V, Kursa M et al. Polyethylenimine/DNA complexes shielded by transferrin target gene expression to tumors after systemic application. Gene Ther 2001; 8: 28–40.

    Article  CAS  PubMed  Google Scholar 

  33. Boussif O, Lezoualc′h F, Zanta MA, Mergny MD, Scherman D, Demeneix B et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA 1995; 92: 7297–7301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Louis MH, Dutoit S, Denoux Y, Erbacher P, Deslandes E, Behr JP et al. Intraperitoneal linear polyethylenimine (L-PEI)-mediated gene delivery to ovarian carcinoma nodes in mice. Cancer Gene Ther 2006; 13: 367–374.

    Article  CAS  PubMed  Google Scholar 

  35. Dolivet G, Merlin JL, Barberi-Heyob M, Ramacci C, Erbacher P, Parache RM et al. In vivo growth inhibitory effect of iterative wild-type p53 gene transfer in human head and neck carcinoma xenografts using glucosylated polyethylenimine nonviral vector. Cancer Gene Ther 2002; 9: 708–714.

    Article  CAS  PubMed  Google Scholar 

  36. Williams JH, Sirsi SR, Latta DR, Lutz GJ . Induction of dystrophin expression by exon skipping in mdx mice following intramuscular injection of antisense oligonucleotides complexed with PEG-PEI copolymers. Mol Ther 2006; 14: 88–96.

    Article  CAS  PubMed  Google Scholar 

  37. Gautam A, Waldrep JC, Kleinerman ES, Xu B, Fung YK, T’Ang A et al. Aerosol gene therapy for metastatic lung cancer using PEI-p53 complexes. Methods Mol Med 2003; 75: 607–618.

    CAS  PubMed  Google Scholar 

  38. Zou SM, Erbacher P, Remy JS, Behr JP . Systemic linear polyethylenimine (L-PEI)-mediated gene delivery in the mouse. J Gene Med 2000; 2: 128–134.

    Article  CAS  PubMed  Google Scholar 

  39. Duvillard C, Benoit L, Moretto P, Beltramo JL, Brunet-Lecomte P, Correia M et al. Epinephrine enhances penetration and anti-cancer activity of local cisplatin on rat sub-cutaneous and peritoneal tumors. Int J Cancer 1999; 81: 779–784.

    Article  CAS  PubMed  Google Scholar 

  40. Duvillard C, Romanet P, Cosmidis A, Beaudouin N, Chauffert B . Phase 2 study of intratumoral cisplatin and epinephrine treatment for locally recurrent head and neck tumors. Ann Otol Rhinol Laryngol 2004; 113: 229–233.

    Article  PubMed  Google Scholar 

  41. Wahlsten JL, Mills CD, Ramakrishnan S . Antitumor response elicited by a superantigen-transmembrane sequence fusion protein anchored onto tumor cells. J Immunol 1998; 161: 6761–6767.

    CAS  PubMed  Google Scholar 

  42. Dufes C, Keith WN, Bilsland A, Proutski I, Uchegbu IF, Schatzlein AG . Synthetic anticancer gene medicine exploits intrinsic antitumor activity of cationic vector to cure established tumors. Cancer Res 2005; 65: 8079–8084.

    Article  CAS  PubMed  Google Scholar 

  43. Moghimi SM, Symonds P, Murray JC, Hunter AC, Debska G, Szewczyk A . A two-stage poly(ethylenimine)-mediated cytotoxicity: implications for gene transfer/therapy. Mol Ther 2005; 11: 990–995.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Franck Ménétrier for his technical assistance and to Charles Thomas, Véronique Laurens and Pierre Emmanuel Puig for helpful discussions. This study was supported by grants from the ‘Ligue Nationale contre le Cancer’ (commitees of Alsace and Côte d’Or to JC; commitee of Nièvre for BC; national label to ES group).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Chluba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeudy, G., Salvadori, F., Chauffert, B. et al. Polyethylenimine-mediated in vivo gene transfer of a transmembrane superantigen fusion construct inhibits B16 murine melanoma growth. Cancer Gene Ther 15, 742–749 (2008). https://doi.org/10.1038/cgt.2008.42

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2008.42

Keywords

This article is cited by

Search

Quick links