Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Transcriptional targeting of RGD fiber-mutant adenovirus vectors can improve the safety of suicide gene therapy for murine melanoma

Abstract

Since RGD fiber-mutant adenovirus vector (AdRGD), which contains an αv-integrin tropism, is highly efficient in gene transduction to melanoma, the AdRGD-mediated herpes simplex virus thymidine kinase (HSVtk)/ganciclovir (GCV) system is an attractive approach for melanoma treatment. However, the intratumoral injection of AdRGD causes limited transgene expression in healthy normal tissue, due to unwanted vector spread. Herein, we describe our attempt to overcome this limitation related to the safety of HSVtk/GCV treatment by using AdRGD carrying either melanoma-specific tyrosinase (Tyr) promoter or tumor-specific telomerase reverse transcriptase (TERT) promoter instead of universal cytomegalovirus promoter. Our in vitro study revealed that Tyr promoter-regulated AdRGD exhibited high transgene expression specificity for melanoma cells, and that TERT promoter-regulated AdRGD could induce efficient gene expression in tumor cells, but was relatively quiescent in normal cells. Anti-B16BL6 melanoma effects in mice injected intratumorally with AdRGD-Tyr/HSVtk or AdRGD-TERT/HSVtk, after which GCV was injected intraperitoneally for 10 days, were comparable to those in mice injected with AdRGD-CMV/HSVtk at 10 times less vector dosage. On the other hand, AdRGD-Tyr/HSVtk and AdRGD-TERT/HSVtk did not induce severe adverse effects even when they were intravenously injected into mice at 109 plaque-forming units (PFU), whereas mice injected with AdRGD-CMV/HSVtk at 108 PFU exhibited body weight reduction and serum level increase of biochemical enzymes for hepatotoxicity. These results indicate that AdRGD combined with transcriptional regulation using Tyr or TERT promoter is a potentially useful and safe vector system for suicide gene therapy for melanoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

Ad:

adenovirus vector

AdRGD:

RGD fiber-mutant adenovirus vector

FBS:

fetal bovine serum

GCV:

ganciclovir

GOT:

glutamic oxaloacetic transaminase

GPT:

glutamic pyruvic transaminase

HSVtk:

herpes simplex virus thymidine kinase

MOI:

multiplicity of infection

MTT, 3-(4,5-dimethylthiazol-2-yl)-2:

5-diphenyl tetrazolium bromide

PFU:

plaque-forming unit

PBS:

phosphate-buffered saline

RLU:

relative light unit

TERT:

telomerase reverse transcriptase

Tyr:

tyrosinase

References

  1. Schadendorf D . Gene-based therapy of malignant melanoma. Semin Oncol. 2002;29:503–512.

    Article  CAS  PubMed  Google Scholar 

  2. Prehn RT . The paradoxical association of regression with a poor prognosis in melanoma contrasted with a good prognosis in keratoacanthoma. Cancer Res. 1996;56:937–940.

    CAS  PubMed  Google Scholar 

  3. Wildemore IV JK, Schuchter L, Mick R, et al. Locally recurrent malignant melanoma characteristics and outcomes: a single-institution study. Ann Plast Surg. 2001;46:488–494.

    Article  PubMed  Google Scholar 

  4. Ram Z, Culver KW, Walbridge S, Blaese RM, Oldfield EH . In situ retroviral-mediated gene transfer for the treatment of brain tumors in rats. Cancer Res. 1993;53:83–88.

    CAS  PubMed  Google Scholar 

  5. Sterman DH, Treat J, Litzky LA, et al. Adenovirus-mediated herpes simplex virus thymidine kinase/ganciclovir gene therapy in patients with localized malignancy: results of a phase I clinical trial in malignant mesothelioma. Hum Gene Ther. 1998;9:1083–1092.

    Article  CAS  PubMed  Google Scholar 

  6. Klatzmann D, Valery CA, Bensimon G, et al. A phase I/II study of herpes simplex virus type 1 thymidine kinase ‘suicide’ gene therapy for recurrent glioblastoma. Study Group on Gene Therapy for Glioblastoma. Hum Gene Ther. 1998;9:2595–2604.

    CAS  Google Scholar 

  7. Shand N, Weber F, Mariani L, et al. A phase 1-2 clinical trial of gene therapy for recurrent glioblastoma multiforme by tumor transduction with the herpes simplex thymidine kinase gene followed by ganciclovir. GLI328 European-Canadian Study Group. Hum Gene Ther. 1999;10:2325–2335.

    Article  CAS  PubMed  Google Scholar 

  8. Morris JC, Ramsey WJ, Wildner O, et al. A phase I study of intralesional administration of an adenovirus vector expressing the HSV-1 thymidine kinase gene (AdV.RSV-TK) in combination with escalating doses of ganciclovir in patients with cutaneous metastatic malignant melanoma. Hum Gene Ther. 2000;11:487–503.

    Article  CAS  PubMed  Google Scholar 

  9. Fillat C, Carrio M, Cascante A, Sangro B . Suicide gene therapy mediated by the Herpes Simplex virus thymidine kinase gene/Ganciclovir system: fifteen years of application. Curr Gene Ther. 2003;3:13–26.

    Article  CAS  PubMed  Google Scholar 

  10. Okada T, Caplen NJ, Ramsey WJ, et al. In situ generation of pseudotyped retroviral progeny by adenovirus-mediated transduction of tumor cells enhances the killing effect of HSV-tk suicide gene therapy in vitro and in vivo. J Gene Med. 2004;6:288–299.

    Article  CAS  PubMed  Google Scholar 

  11. Mesnil M, Piccoli C, Tiraby G, Willecke K, Yamasaki H . Bystander killing of cancer cells by herpes simplex virus thymidine kinase gene is mediated by connexins. Proc Natl Acad Sci USA. 1996;93:1831–1835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mesnil M, Yamasaki H . Bystander effect in herpes simplex virus-thymidine kinase/ganciclovir cancer gene therapy: role of gap-junctional intercellular communication. Cancer Res. 2000;60:3989–3999.

    CAS  PubMed  Google Scholar 

  13. Matono S, Tanaka T, Sueyoshi S, Yamana H, Fujita H, Shirouzu K . Bystander effect in suicide gene therapy is directly proportional to the degree of gap junctional intercellular communication in esophageal cancer. Int J Oncol. 2003;23:1309–1315.

    CAS  PubMed  Google Scholar 

  14. Okada Y, Okada N, Nakagawa S, et al. Tumor necrosis factor α-gene therapy for an established murine melanoma using RGD (Arg-Gly-Asp) fiber-mutant adenovirus vectors. Jpn J Cancer Res. 2002;93:436–444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Okada Y, Okada N, Nakagawa S, et al. Fiber-mutant technique can augment gene transduction efficacy and anti-tumor effects against established murine melanoma by cytokine-gene therapy using adenovirus vectors. Cancer Lett. 2002;177:57–63.

    Article  CAS  PubMed  Google Scholar 

  16. Okada Y, Okada N, Mizuguchi H, et al. Optimization of antitumor efficacy and safety of in vivo cytokine gene therapy using RGD fiber-mutant adenovirus vector for preexisting murine melanoma. Biochim Biophys Acta. 2004;1670:172–180.

    Article  CAS  PubMed  Google Scholar 

  17. Mizuguchi H, Hayakawa T . Enhanced antitumor effect and reduced vector dissemination with fiber-modified adenovirus vectors expressing herpes simplex virus thymidine kinase. Cancer Gene Ther. 2002;9:236–242.

    Article  CAS  PubMed  Google Scholar 

  18. Okada Y, Okada N, Mizuguchi H, Hayakawa T, Mayumi T, Mizuno N . An investigation of adverse effects caused by the injection of high-dose TNFα-expressing adenovirus vector into established murine melanoma. Gene Therapy. 2003;10:700–705.

    Article  CAS  PubMed  Google Scholar 

  19. van der Eb MM, Cramer SJ, Vergouwe Y, et al. Severe hepatic dysfunction after adenovirus-mediated transfer of the herpes simplex virus thymidine kinase gene and ganciclovir administration. Gene Therapy. 1998;5:451–458.

    Article  CAS  PubMed  Google Scholar 

  20. Brand K, Loser P, Arnold W, Bartels T, Strauss M . Tumor cell-specific transgene expression prevents liver toxicity of the adeno-HSVtk/GCV approach. Gene Therapy. 1998;5:1363–1371.

    Article  CAS  PubMed  Google Scholar 

  21. Bustos M, Sangro B, Alzuguren P, et al. Liver damage using suicide genes. A model for oval cell activation. Am J Pathol. 2000;157:549–559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hearing VJ, Jimenez M . Analysis of mammalian pigmentation at the molecular level. Pigment Cell Res. 1989;2:75–85.

    Article  CAS  PubMed  Google Scholar 

  23. Hearing VJ, Tsukamoto K . Enzymatic control of pigmentation in mammals. FASEB J. 1991;5:2902–2909.

    Article  CAS  PubMed  Google Scholar 

  24. Gu J, Kagawa S, Takakura M, et al. Tumor-specific transgene expression from the human telomerase reverse transcriptase promoter enables targeting of the therapeutic effects of the Bax gene to cancers. Cancer Res. 2000;60:5359–5364.

    CAS  PubMed  Google Scholar 

  25. Koga S, Hirohata S, Kondo Y, et al. A novel telomerase-specific gene therapy: gene transfer of caspase-8 utilizing the human telomerase catalytic subunit gene promoter. Hum Gene Ther. 2000;11:1397–1406.

    Article  CAS  PubMed  Google Scholar 

  26. Gu J, Andreeff M, Roth JA, Fang B . hTERT promoter induces tumor-specific Bax gene expression and cell killing in syngenic mouse tumor model and prevents systemic toxicity. Gene Therapy. 2002;9:30–37.

    Article  CAS  PubMed  Google Scholar 

  27. Wirth T, Zender L, Schulte B, et al. A telomerase-dependent conditionally replicating adenovirus for selective treatment of cancer. Cancer Res. 2003;63:3181–3188.

    CAS  PubMed  Google Scholar 

  28. Kolquist KA, Ellisen LW, Counter CM, et al. Expression of TERT in early premalignant lesions and a subset of cells in normal tissues. Nat Genet. 1998;19:182–186.

    Article  CAS  PubMed  Google Scholar 

  29. Takakura M, Kyo S, Kanaya T, et al. Cloning of human telomerase catalytic subunit (hTERT) gene promoter and identification of proximal core promoter sequences essential for transcriptional activation in immortalized and cancer cells. Cancer Res. 1999;59:551–557.

    CAS  PubMed  Google Scholar 

  30. Braunstein I, Cohen-Barak O, Shachaf C, et al. Human telomerase reverse transcriptase promoter regulation in normal and malignant human ovarian epithelial cells. Cancer Res. 2001;61:5529–5536.

    CAS  PubMed  Google Scholar 

  31. Mizuguchi H, Kay MA . Efficient construction of a recombinant adenovirus vector by an improved in vitro ligation method. Hum Gene Ther. 1998;9:2577–2583.

    Article  CAS  PubMed  Google Scholar 

  32. Mizuguchi H, Kay MA . A simple method for constructing E1- and E1/E4-deleted recombinant adenoviral vectors. Hum Gene Ther. 1999;10:2013–2017.

    Article  CAS  PubMed  Google Scholar 

  33. Mizuguchi H, Koizumi N, Hosono T, et al. A simplified system for constructing recombinant adenoviral vectors containing heterologous peptides in the HI loop of their fiber knob. Gene Therapy. 2001;8:730–735.

    Article  CAS  PubMed  Google Scholar 

  34. Park BJ, Brown CK, Hu Y, et al. Augmentation of melanoma-specific gene expression using a tandem melanocyte-specific enhancer results in increased cytotoxicity of the purine nucleoside phosphorylase gene in melanoma. Hum Gene Ther. 1999;10:889–898.

    Article  CAS  PubMed  Google Scholar 

  35. Mosmann T . Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63.

    Article  CAS  PubMed  Google Scholar 

  36. Hemmi S, Geertsen R, Mezzacasa A, Peter I, Dummer R . The presence of human coxsackievirus and adenovirus receptor is associated with efficient adenovirus-mediated transgene expression in human melanoma cell cultures. Hum Gene Ther. 1998;9:2363–2373.

    Article  CAS  PubMed  Google Scholar 

  37. McCart JA, Wang ZH, Xu H, et al. Development of a melanoma-specific adenovirus. Mol Ther. 2002;6:471–480.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr David L Bartlett (Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD) for providing pTyrex-2. The present study was supported in part by the Sasakawa Scientific Research Grant from The Japan Science Society, and by grants from the Ministry of Health, Labour and Welfare in Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuka Okada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okada, Y., Okada, N., Mizuguchi, H. et al. Transcriptional targeting of RGD fiber-mutant adenovirus vectors can improve the safety of suicide gene therapy for murine melanoma. Cancer Gene Ther 12, 608–616 (2005). https://doi.org/10.1038/sj.cgt.7700824

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700824

Keywords

This article is cited by

Search

Quick links