Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Enhanced inhibition of syngeneic murine tumors by combinatorial therapy with genetically engineered HSV-1 expressing CCL2 and IL-12

Abstract

Herpes simplex viruses type 1 (HSV-1) that lack the γ134.5 gene are unable to replicate in the central nervous system (CNS), but maintain replication competence in actively dividing tumors. To determine if antitumor therapy by M002, a γ134.5 HSV that expresses interleukin-12 (IL-12), could be augmented by combinatorial therapy with another γ134.5-deleted HSV-1 engineered to express the chemokine CCL2, Neuro-2a tumors were established subcutaneously in the syngeneic A/J mouse strain. Tumors received multiple injections intratumorally either of saline, the parent, non-cytokine-expressing virus R3659, M002, M010 (γ134.5 HSV expressing CCL2), or a combination of M002 and M010. Efficacies were evaluated by monitoring inhibition of tumor growth over time. Results demonstrated the following: (1) inhibition of tumor growth was most pronounced in tumors treated with a combination of M002 and M010; (2) enhanced tumor growth inhibition for the combinatorial treatment group was statistically significant compared to either M002 or M010 alone; and (3) the variability between slopes of the tumor growth rates within an individual treatment group appeared to be virus-dependent, and was reproducible between experiments. Our results demonstrate that combinatorial cytokine/chemokine γ134.5 HSV therapies can provide superior antitumor effects in experimental tumors as a model for malignancies arising in the brain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Shapiro WR, Shapiro JR, Walker RW . Central nervous system. In: Abeloff MD, Armitage JO, Lichter AS et al, eds. Clinical Oncology. 2nd edn. New York, NY: Churchill Livingstone; 2000: 1103.

    Google Scholar 

  2. Markert JM, Gillespie GY, Weichselbaum RR, Roizman B, Whitley RJ . Genetically engineered HSV in the treatment of glioma: a review. Rev Med Virol. 2000;10:17–30.

    Article  CAS  PubMed  Google Scholar 

  3. Markert JM, Parker JN, Gillespie GY, Whitley RJ . Genetically engineered human herpes simplex virus in the treatment of brain tumours. Herpes. 2001;8:17–22.

    CAS  PubMed  Google Scholar 

  4. Andreansky SS, He B, Gillespie GY, et al. The application of genetically engineered herpes simplex viruses to the treatment of experimental brain tumors. Proc Natl Acad Sci USA. 1996;93:11313–11318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Martuza RL, Malick A, Markert JM, Ruffner KL, Coen DM . Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science. 1991;252:854–856.

    Article  CAS  PubMed  Google Scholar 

  6. Mineta T, Rabkin SD, Yazaki T, Hunter WD, Martuza RL . Attenuated multi-mutated herpes simplex virus-1 for the treatment of malignant gliomas. Nat Med. 1995;1:938–943.

    Article  CAS  PubMed  Google Scholar 

  7. Kramm CM, Chase M, Herrlinger U, et al. Therapeutic efficiency and safety of a second-generation replication-conditional HSV1 vector for brain tumor gene therapy. Hum Gene Ther. 1997;8:2057–2068.

    Article  CAS  PubMed  Google Scholar 

  8. Pyles RB, Warnick RE, Chalk CL, Szanti BE, Parysek LM . A novel multiply-mutated HSV-1 strain for the treatment of human brain tumors. Hum Gene Ther. 1997;8:533–544.

    Article  CAS  PubMed  Google Scholar 

  9. Markert JM, Malick A, Coen DM, Martuza RL . Reduction and elimination of encephalitis in an experimental glioma therapy model with attenuated herpes simplex mutants that retain susceptibility to acyclovir. Neurosurgery. 1993;32:597–603.

    Article  CAS  PubMed  Google Scholar 

  10. Chambers R, Gillespie GY, Soroceanu L, et al. Comparison of genetically engineered herpes simplex viruses for the treatment of brain tumors in a scid mouse model of human malignant glioma. Proc Natl Acad Sci USA. 1995;92:1411–1415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chou J, Kern ER, Whitley RJ, Roizman B . Mapping of herpes simplex virus-1 neurovirulence to gamma 134.5, a gene nonessential for growth in culture. Science. 1990;250:1262–1266.

    Article  CAS  PubMed  Google Scholar 

  12. Mineta T, Markert JM, Takamiya Y, et al. CNS tumor therapy by attenuated herpes simplex viruses. Gene Therapy. 1994;1(Suppl 1):S78.

    PubMed  Google Scholar 

  13. Andreansky S, Soroceanu L, Flotte ER, et al. Evaluation of genetically engineered herpes simplex viruses as oncolytic agents for human malignant brain tumors. Cancer Res. 1997;57:1502–1509.

    CAS  PubMed  Google Scholar 

  14. Andreansky S, He B, van Cott J, et al. Treatment of intracranial gliomas in immunocompetent mice using herpes simplex viruses that express murine interleukins. Gene Therapy. 1998;5:121–130.

    Article  CAS  PubMed  Google Scholar 

  15. Kaplitt MG, Tjuvajev JG, Leib DA, et al. Mutant herpes simplex virus induced regression of tumors growing in immunocompetent rats. J Neuro-Oncol. 1994;19:137–147.

    Article  CAS  Google Scholar 

  16. Yazaki T, Manz HJ, Rabkin SD, Martuza RL . Treatment of human malignant meningiomas by G207, a replication-competent multimutated herpes simplex virus 1. Cancer Res. 1995;55:4752–4756.

    CAS  PubMed  Google Scholar 

  17. Markert JM, Medlock MD, Rabkin SD, et al. Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial. Gene Therapy. 2000;7:867–874.

    Article  CAS  PubMed  Google Scholar 

  18. Rampling R, Cruickshank G, Papanastassiou V, et al. Toxicity evaluation of replication-competent herpes simplex virus (ICP 34.5 null mutant 1716) in patients with recurrent malignant glioma. Gene Therapy. 2000;7:859–866.

    Article  CAS  PubMed  Google Scholar 

  19. Papanastassiou V, Rampling R, Fraser M, et al. The potential for efficacy of the modified (ICP 34.5(−)) herpes simplex virus HSV1716 following intratumoral injection into human malignant glioma: a proof of principle study. Gene Therapy. 2002;9:398–406.

    Article  CAS  PubMed  Google Scholar 

  20. Okada H, Giezeman-Smits KM, Tahara H, et al. Effective cytokine gene therapy against an intracranial glioma using a retrovirally transduced IL-4 plus HSVtk tumor vaccine. Gene Therapy. 1999;6:219–226.

    Article  CAS  PubMed  Google Scholar 

  21. Wei MX, Li F, Ono Y, Gauldie J, Chiocca EA . Effects on brain tumor cell proliferation by an adenovirus vector that bears the interleukin-4 gene. J Neurovirol. 1998;4:237–241.

    Article  CAS  PubMed  Google Scholar 

  22. Benedetti S, Dimeco F, Pollo B, et al. Limited efficacy of the HSV-TK/GCV system for gene therapy of malignant gliomas and perspectives for the combined transduction of the interleukin-4 gene. Hum Gene Ther. 1997;8:1345–1353.

    Article  CAS  PubMed  Google Scholar 

  23. Tseng SH, Hwang LH, Lin SM . Induction of antitumor immunity by intracerebrally implanted rat C6 glioma cells genetically engineered to secrete cytokines. J Immunother. 1997;20:334–342.

    Article  CAS  PubMed  Google Scholar 

  24. Nishimura T, Watanabe K, Yahata T, et al. The application of IL-12 to cytokine therapy and gene therapy for tumors. Ann NY Acad Sci. 1996;795:375–378.

    Article  CAS  PubMed  Google Scholar 

  25. Tahara H, Lotze MT . Antitumor effects of interleukin-12 (IL-12): applications for the immunotherapy and gene therapy of cancer. [Review] [32 refs]. Gene Therapy. 1995;2:96–106.

    CAS  PubMed  Google Scholar 

  26. Lamont AG, Adorini L . IL-12: a key cytokine in immune regulation. Immunol Today. 1996;17:214–217.

    Article  CAS  PubMed  Google Scholar 

  27. Brunda MJ, Luistro L, Rumennik L, et al. Antitumor activity of interleukin 12 in preclinical models. Cancer Chemother Pharmacol. 1996;38:S16–S21.

    Article  CAS  PubMed  Google Scholar 

  28. Parker JN, Gillespie GY, Love CE, et al. Engineered herpes simplex virus expressing IL-12 in the treatment of experimental murine brain tumors. Proc Natl Acad Sci USA. 2000;97:2208–2213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Carr JA, Rogerson J, Mulqueen MJ, Roberts NA, Booth RFG . Interleukin-12 exhibits potent antiviral activity in experimental herpesvirus infections. J Virol. 1997;71:7799–7803.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Loetscher P, Seitz M, Clark-Lewis I, Baggiolini M, Moser B . Monocyte chemotactic proteins MCP-1, MCP-2, and MCP-3 are major attractants for human CD4+ and CD8+ T lymphocytes. FASEB J. 1994;8:1055–1060.

    Article  CAS  PubMed  Google Scholar 

  31. Traynor TR, Herring AC, Dorf ME, et al. Differential roles of CC chemokine ligand 2/monocyte chemotactic protein-1 and CCR2 in the development of T1 immunity. J Immunol. 2002;168:4659–4666.

    Article  CAS  PubMed  Google Scholar 

  32. Luther SA, Cyster JG . Chemokines as regulators of T cell differentiation. Nat Immunol. 2001;2:102–107.

    Article  CAS  PubMed  Google Scholar 

  33. Post LE, Roizman B . A generalized technique for deletion of specific genes in large genomes: alpha gene 22 of herpes simplex virus 1 is not essential for growth. Cell. 1981;25:227–232.

    Article  CAS  PubMed  Google Scholar 

  34. Jenkins F, Roizman B . Herpes simplex virus 1 recombinants with noninverting genomes frozen in different isomeric arrangements are capable of independent replication. J Virol. 1986;59:494–499.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Lagunoff M, Roizman B . The regulation of synthesis and properties of the protein product of open reading frame P of the herpes simplex virus 1 genome. J Virol. 1995;69:3615–3623.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lagunoff M, Roizman B . Expression of a herpes simplex virus 1 open reading frame antisense to the gamma134.5 gene and transcribed by an RNA 3′ coterminal with the unspliced latency-associated transcript. J Virol. 1994;68:6021–6028.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Yoshimura T, Robinson EA, Tanaka S, Appella E, Leonard EJ . Purification and amino acid analysis of two human monocyte chemoattractants produced by phytohemagglutinin-stimulated human blood mononuclear leukocytes. J Immunol. 1989;142:1956–1962.

    CAS  PubMed  Google Scholar 

  38. Lopez C . Genetics of natural resistance to herpesvirus infections in mice. Nature. 1975;258:152–153.

    Article  CAS  PubMed  Google Scholar 

  39. Macklis JD, Madison RD . Neuroblastoma grafts are noninvasively removed within mouse neocortex by selective laser activation of intracellular photolytic chromophore. J Neurosci. 1991;11:2055–2062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kikuchi T, Joki T, Saitoh S, et al. Anti-tumor activity of interleukin-2-producing tumor cells and recombinant interleukin 12 against mouse glioma cells located in the central nervous system. Int J Cancer. 1999;80:425–430.

    Article  CAS  PubMed  Google Scholar 

  41. Parney IF, Farr-Jones MA, Chang LJ, Petruk KC . Human glioma immunobiology in vitro: implications for immunogene therapy. Neurosurgery. 2000;46:1169–1177; discussion 1177–1178.

    Article  CAS  PubMed  Google Scholar 

  42. Dzenko KA, Andjelkovic AV, Kuziel WA, Pachter JS . The chemokine receptor CCR2 mediates the binding and internalization of monocyte chemoattractant protein-1 along brain microvessels. J Neurosci. 2001;21:9214–9223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sakai Y, Kaneko S, Nakamoto Y, et al. Enhanced anti-tumor effects of herpes simplex virus thymidine kinase/ganciclovir system by codelivering monocyte chemoattractant protein-1 in hepatocellular carcinoma. Cancer Gene Ther. 2001;8:695–704.

    Article  CAS  PubMed  Google Scholar 

  44. Tsuchiyama T, Kaneko S, Nakamoto Y, et al. Enhanced antitumor effects of a bicistronic adenovirus vector expressing both herpes simplex virus thymidine kinase and monocyte chemoattractant protein-1 against hepatocellular carcinoma. Cancer Gene Ther. 2003;10:260–269.

    Article  CAS  PubMed  Google Scholar 

  45. Russell SW, Gillespie GY . Nature, function and distribution of inflammatory cells in regressing and progressing Moloney sarcomas. J Reticuloendothelial Soc. 1977;22:159–168.

    CAS  Google Scholar 

  46. Gillespie GY, Hansen CB, Hoskins RG, Russell SW . Inflammatory cells in solid murine neoplasms. IV. Cytolytic T lymphocytes isolated from regressing or progressing Moloney sarcomas. J Immunol. 1977;119:564–570.

    CAS  PubMed  Google Scholar 

  47. Gillespie GY, Russell SW . Level of activation determines whether inflammatory peritoneal and intratumoral macrophages will promote or suppress in vitro development of cytolytic T lymphocyte activity. J Reticuloendothelial Soc. 1980;27:535–545.

    CAS  Google Scholar 

  48. Gillespie GY, Barth RF . Cyclic variations in cell-mediated immunity to skin allografts detected by the technetium-99m microcytotoxicity assay. Cell Immunol. 1974;13:472–483.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Bernard Roizman, University of Chicago, for helpful discussion and comments throughout the course of this work. We thank Cammy Love, Karen Mardis and Sharon Samuel for excellent technical assistance with this work. Studies performed by the authors were initiated and supported in part by NCI P01 CA 71933 (RJW), by the Brain Tumor Society's Neal P Levitan Leadership Chair of Research Award (JNP), the NINDS Mentored Clinical Scientist Development Award (1K08NSO1942) (JMM), the American Association for Neurological Surgeons Young Investigator Award (JMM), the American Cancer Society Institutional Awards (JMM) and the American Brain Tumor Association (JMM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M Markert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parker, J., Meleth, S., Hughes, K. et al. Enhanced inhibition of syngeneic murine tumors by combinatorial therapy with genetically engineered HSV-1 expressing CCL2 and IL-12. Cancer Gene Ther 12, 359–368 (2005). https://doi.org/10.1038/sj.cgt.7700784

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700784

Keywords

This article is cited by

Search

Quick links