Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Conditionally replicative adenovirus driven by the human telomerase promoter provides broad-spectrum antitumor activity without liver toxicity

Abstract

The human telomerase reverse transcriptase (hTERT) promoter is known to selectively drive transgene expression in many human cancer cells expressing hTERT, the catalytic component of the telomerase ribonucleoprotein complex. We have created a conditionally replicative adenovirus where the viral E1A gene, which is required for viral replication, is under the control of the hTERT promoter (AdhTERTp-E1A). In vitro studies with AdhTERTp-E1A virus on a variety of normal and tumor cell lines have shown that viral genome replication and productive infection is primarily restricted to telomerase-positive tumor cells. Lytic replication was not observed in normal primary fibroblast and epithelial cell lines tested. In vivo administration of the virus into nude mice bearing human liver or prostate tumor xenografts produced significant tumor reduction and, in some cases, resulted in complete tumor regression. AdhTERTp-E1A virus did not actively express E1A in normal mouse liver, in contrast to a control oncolytic vector in which the CMV promoter (AdCMVp-E1A) was driving the E1A gene. In addition, AdhTERTp-E1A virus produced no apparent toxicity to the liver in systemically injected mice. The hTERT promoter-driven oncolytic virus also produced significantly less toxicity to freshly cultured human hepatocytes. These studies demonstrate that an oncolytic virus driven by the telomerase promoter can be used to effectively kill a wide variety of cancer cell types and has the potential to treat primary and metastatic cancer of diverse origins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Vorburger SA, Hunt KK . Adenoviral gene therapy. Oncologist. 2002;7:46–59.

    Article  CAS  PubMed  Google Scholar 

  2. Bauerschmitz GJ, Barker SD, Hemminki A . Adenoviral gene therapy for cancer: from vectors to targeted and replication competent agents (review). Int J Oncol. 2002;21:1161–1174.

    CAS  PubMed  Google Scholar 

  3. Moolten FL . Tumor chemosensitivity conferred by inserted herpes thymidine kinase genes: paradigm for a prospective cancer control study. Cancer Res. 1986;46:5276–5281.

    CAS  PubMed  Google Scholar 

  4. Moolten FL . Drug sensitivity (suicide) genes for selective cancer chemotherapy. Cancer Gene Ther. 1994;1:279–287.

    CAS  PubMed  Google Scholar 

  5. Freeman SM, Whartenby KA, Freeman JL, Abboud CN, Marrogi AJ . In situ use of suicide genes for cancer therapy. Semin Oncol. 1996;23:31–45.

    CAS  PubMed  Google Scholar 

  6. Norris JS, Hyer ML, Voelkel-Johnson C, et al. The use of Fas Ligand, TRAIL and Bax in gene therapy of prostate cancer. Curr Gene Ther. 2001;1:123–136.

    Article  CAS  PubMed  Google Scholar 

  7. Horowitz J . Adenovirus-mediated p53 gene therapy: overview of preclinical studies and potential clinical applications. Curr Opin Mol Ther. 1999;1:500–509.

    CAS  PubMed  Google Scholar 

  8. Alemany R, Balague C, Curiel DT . Replicative adenoviruses for cancer therapy. Nat Biotech. 2000;18:723–727.

    Article  CAS  Google Scholar 

  9. Wildner O . Onlolytic viruses as therapeutic agents. Ann Med. 2001;33:291–304.

    Article  CAS  PubMed  Google Scholar 

  10. Biederer C, Ries S, Brandts CH, McCormick F . Replication-selective viruses for cancer therapy. J Mol Med. 2002;80:163–175.

    Article  CAS  PubMed  Google Scholar 

  11. Kirn D . Clinical research results with dl1520 (Onyx-015), a replication-selective adenovirus for the treatment of cancer: what have we learned? Gene Ther. 2001;8:89–98.

    Article  CAS  PubMed  Google Scholar 

  12. Rodriguez R, Schuur R, Lim HY, et al. Prostate attenuated replication competent adenovirus (ARCA) CN706: a selective cytotoxic for prostate-specific antigen-positive prostate cancer cells. Cancer Res. 1997;57:1559–2563.

    Google Scholar 

  13. Yu DC, Sakamoto GT, Henderson DR . Identification of the transcriptional regulatory sequences of human kallikrein2 and their use in the construction of calydon virus 764, an attenuated replication competent adenovirus for prostate cancer therapy. Cancer Res. 1999;59:1498–1504.

    CAS  PubMed  Google Scholar 

  14. Hallenbeck PL, Chang Y-N, Hay C, et al. A novel tumor-specific replication-restricted adenoviral vector for gene therapy of hepatocellular carcinoma. Hum Gene Ther. 1999;10:1721–1733.

    Article  CAS  PubMed  Google Scholar 

  15. Doronin K, Toth K, Kuppuswamy M, et al. Tumor-specific, replication-competent adenovirus vectors overexpressing the adenovirus death protein. J Virol. 2000;74:6147–6155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kurihara T, Brough DE, Kovesdi I, Kufe DW . Selectivity of a replication-competent adenovirus for human breast carcinoma cells expressing the MUC1 antigen. J Clin Invest. 2000;106:763–771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Matsubara S, Wada Y, Gardner TA, et al. A conditional replication-competent adenoviral vector, Ad-OC-E1A, to cotarget prostate cancer and bone stroma in an experimental model of androgen-independent prostate cancer bone metastasis. Cancer Res. 2001;61:6012–6019.

    CAS  PubMed  Google Scholar 

  18. Ramachandra M, Rahaman A, Zou A, et al. Reengineering adenovirus regulatory pathways to enhance oncolytic specificity and efficacy. Nat Biotechnol. 2001;19:1035–1041.

    Article  CAS  PubMed  Google Scholar 

  19. Nakamura TM, Morin GB, Chapman KB, et al. Telomerase catalytic subunit homologs from fission yeast and human. Science. 1997;277:955–959.

    Article  CAS  PubMed  Google Scholar 

  20. Meyerson M, Counter CM, Eaton EN, et al. hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell. 1997;90:785–795.

    Article  CAS  PubMed  Google Scholar 

  21. Kilian A, Bowtell DD, Abud HE, et al. Isolation of a candidate human telomerase catalytic subunit gene, which reveals complex splicing patterns in different cell types. Hum Mol Genet. 1997;6:2011–2019.

    Article  CAS  PubMed  Google Scholar 

  22. Wright WE, Piatyszek MA, Rainey WE, Byrd W, Shay JW . Telomerase activity in human germline and embryonic tissues and cells. Dev Genet. 1996;18:173–179.

    Article  CAS  PubMed  Google Scholar 

  23. Chiu CP, Dragowska W, Kim NW, et al. Differential expression of telomerase activity in hematopoietic progenitors from adult human bone marrow. Stem Cells. 1996;14:239–248.

    Article  CAS  PubMed  Google Scholar 

  24. Kim NW, Piatyszek MA, Prowse KR, et al. Specific association of human telomerase activity with immortal cells and cancer. Science. 1994;266:2011–2015.

    Article  CAS  PubMed  Google Scholar 

  25. Shay JW, Bacchetti S . A survey of telomerase activity in human cancer. Eur J Cancer. 1997;33:787–791.

    Article  CAS  PubMed  Google Scholar 

  26. Harley CB, Futcher AB, Greider CW . Telomeres shorten during ageing of human fibroblasts. Nature. 1990;345:458–460.

    Article  CAS  PubMed  Google Scholar 

  27. Harley CB . Telomere loss: mitotic clock or genetic time bomb? Mutat Res. 1991;256:271–282.

    Article  CAS  PubMed  Google Scholar 

  28. Günes Ç, Lichtsteiner S, Vasserot AP, Englert C . Expression of the hTERT gene is regulated at the level of transcriptional initiation and repressed by Mad1. Cancer Res. 2000;60:2116–2121.

    PubMed  Google Scholar 

  29. Cong YS, Wen J, Bacchetti S . The human telomerase catalytic subunit hTERT: organization of the gene and characterization of the promoter. Hum Mol Genet. 1999;8:137–142.

    Article  CAS  PubMed  Google Scholar 

  30. Takakura M, Kyo S, Kanaya T, et al. Cloning of human telomerase catalytic subunit (hTERT) gene promoter and identification of proximal core promoter sequences essential for transcriptional activation in immortalized and cancer cells. Cancer Res. 1999;59:551–557.

    CAS  PubMed  Google Scholar 

  31. Horikawa I, Cable PL, Afshari C, Barrett JC . Cloning and characterization of the promoter region of human telomerase reverse transcriptase gene. Cancer Res. 1999;59:826–830.

    CAS  PubMed  Google Scholar 

  32. Koga S, Hirohata S, Kondo, et al. A novel telomerase-specific gene therapy: gene transfer of caspase-8 utilizing the human telomerase catalytic subunit gene promoter. Hum Gene Ther. 2000;11:1397–1406.

    Article  CAS  PubMed  Google Scholar 

  33. Gu J, Kagawa S, Takakura M, et al. Tumor-specific transgene expression from the human telomerase reverse transcriptase promoter enables targeting of the therapeutic effects of the Bax gene to cancers. Cancer Res. 2000;60:5359–5364.

    CAS  PubMed  Google Scholar 

  34. Komata T, Kondo Y, Kanzawa T, et al. Treatment of malignant glioma cells with the transfer of constitutively active caspase-6 using the human telomerase catalytic subunit (human telomerase reverse transcriptase) gene promoter. Cancer Res. 2001;61:5796–5802.

    CAS  PubMed  Google Scholar 

  35. Majumdar AS, Hughes DE, Lichtsteiner SP, et al. The telomerase reverse transcriptase promoter drives efficacious tumor suicide gene therapy while preventing hepatotoxicity encountered with constitutive promoters. Gene Ther. 2001;8:568–578.

    Article  CAS  PubMed  Google Scholar 

  36. Kim NW, Fred W . Advances in quantification and characterization of telomerase activity by the telomeric repeat amplification protocol (TRAP). Nucleic Acid Res. 1997;25:2595–2597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Majumdar AS, Zolotorev A, et al. Efficacy of herpes simplex virus thymidine kinase in combination with cytokine gene therapy in an experimental metastatic breast cancer model. Cancer Gene Ther. 2000;7:1086–1099.

    Article  CAS  PubMed  Google Scholar 

  38. Cerone MA, Londono-Vallejo JA, Bacchetti S . Telomere maintenance by recombination can coexist in human cells. Hum Mol Genet. 2001;10:1945–1952.

    Article  CAS  PubMed  Google Scholar 

  39. Mergny J-L, Riou J-F, Maillie P, Teulade-Fichou M-P, Gilson E . Natural and pharmacological regulation of telomerase. Nucleic Acids Res. 2002;30:839–865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vonderheide RH, Hahn WC, Schultze JL, Nadler LM . The telomerase catalytic subunit is a widely expressed tumor-associated antigen recognized by cytotoxic T lymphocytes. Immunity. 1999;10:673–679.

    Article  CAS  PubMed  Google Scholar 

  41. Minev B, Hipp J, Firat H, et al. Cytotoxic T cell immunity against telomerase reverse transcriptase in humans. Proc Natl Acad Sci USA. 2000;25:4796–4801.

    Article  Google Scholar 

  42. Nair SK, Heiser A, Boczkowski D, et al. Induction of cytotoxic T cell response and tumor immunity against unrelated tumors using telomerase reverse transcriptase RNA transfected dendritic cells. Nat Med. 2000;6:1011–1017.

    Article  CAS  PubMed  Google Scholar 

  43. Frolkis M, Fischer MB, Wang Z, et al. Dendritic cells reconstituted with human telomerase gene induce potent cytotoxic T cell response against different types of tumors. Cancer Gene Ther. 2003;10:239–249.

    Article  CAS  PubMed  Google Scholar 

  44. Tsukuda K, Wiewrodt R, Molnar-Kimber K, Jovanovic VP, Amin KM . An E2F-responsive replication-selective adenovirus targeted to the defective cell cycle in cancer cells: potent antitumor efficacy but no toxicity to normal cells. Cancer Res. 2002;62:3438–3447.

    CAS  PubMed  Google Scholar 

  45. Johnson L, Shen A, Boyle L, et al. Selectively replicating adenoviruses targeting deregulated E2f activity are potent, systemic antitumor agents. Cancer Cell. 2002;1:325–337.

    Article  CAS  PubMed  Google Scholar 

  46. Jakubczak JL, Ryan P, Gorziglia M, et al. An oncolytic adenovirus selective for retinoblastoma tumor suppressor protein pathway-defective tumors: dependence on E1A, and E2F-1 promoter, and viral replication for selectivity and efficacy. Cancer Res. 2003;63:1490–1499.

    CAS  PubMed  Google Scholar 

  47. Brand K, Arnold W, Bartels T, et al. Liver-associated toxicity of HSV-tk/GCV approach and adenoviral vectors. Cancer Gene Ther. 1997;4:9–16.

    CAS  PubMed  Google Scholar 

  48. Gu J, Andreeff M, Roth JA, Fang B . hTERT promoter induces tumor-specific Bax gene expression and cell killing in syngenic mouse tumor model and prevents systemic toxicity. Gene Ther. 2002;9:30–37.

    Article  CAS  PubMed  Google Scholar 

  49. Lee SH, Kim JW, Lee HW, et al. Interferon regulatory factor-1 (IRF-1) is a mediator for interferon-gamma induced attenuation of telomerase activity and human telomerase reverse transcriptase (hTERT) expression. Oncogene. 2003;22:381–391.

    Article  CAS  PubMed  Google Scholar 

  50. Wirth T, Zender L, Schulte B, et al. A telomerase-dependent conditionally replicating adenovirus for selective treatment of cancer. Cancer Res. 2003;63:3181–3188.

    CAS  PubMed  Google Scholar 

  51. Huang TG, Savontaus MJ, Shinozaki K, Sauter BV, Woo SL . Telomerase-dependent oncolytic adenovirus for cancer treatment. Gene Ther. 2003;10:1241–1247.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Bonnie Lemos, Angela Jacks, and Kim Katleba for technical assistance in animal experiments. We also thank Drs C-P Chiu and C Harley for input and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anish S Majumdar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Irving, J., Wang, Z., Powell, S. et al. Conditionally replicative adenovirus driven by the human telomerase promoter provides broad-spectrum antitumor activity without liver toxicity. Cancer Gene Ther 11, 174–185 (2004). https://doi.org/10.1038/sj.cgt.7700666

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700666

Keywords

This article is cited by

Search

Quick links