Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Suicide gene therapy: conversion of ethanol to acetaldehyde mediated by human beta 2 alcohol dehydrogenase

Abstract

Acetaldehyde (AcH) produced in the physiological metabolism of ethanol can be potentially toxic and immunomodulating. The antitumour activity of a suicide gene system using adenovirus delivered alcohol dehydrogenase (ADH) to convert ethanol to acetaldehyde inside cancer cells has been investigated in vitro and in vivo. In vitro experiments confirmed the toxicity of acetaldehyde to a number of tumour cell lines. Daudi lymphoma cells grown in normal media increased by Day 4 to 650% of their starting number, while those exposed to 250 μM, 500 μM and 1 mM acetaldehyde reached 138, 30 and 5% respectively. Adenocarcinoma cells appeared to be less sensitive with CMT-64 cells and HeLa cells numbering 105 and 53% of their starting number by Day 4 with 1 mM acetaldehyde. After transduction with an adenovirus containing the human ADH beta 2 cDNA, CMT-64 cells exposed to 20 mM ethanol had a reduction in number to 74% by Day 2 and to 36% by Day 4. In a preclinical model with Ad-ADH CMT-64 cells, mice exposed to daily pulses of ethanol for 5 days formed tumours only 30% on Day 6 and 42% on Day 13 of the volume of those in mice exposed to water.The ability of this easily administered suicide gene system to produce significant effects on cell proliferation in vivo suggests that further optimized development is warranted.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Xu G, McLeod HL . Strageties for enzyme/prodrug cancer therapy. Clin Cancer Res. 2001;7:3314–3324.

    CAS  PubMed  Google Scholar 

  2. Bridgewater JA, Springer CJ, Knox RJ, et al. Expression of the bacterial nitroreductase enzyme in mammalian cells renders them selectively sensitive to killing by the prodrug CB1954. Eur J Cancer. 1995;31A:2362–2370.

    Article  CAS  PubMed  Google Scholar 

  3. Huber BE, Austin EA, Good SS, et al. In vivo antitumor activity of 5-fluorocytosine on human colorectal carcinoma cells genetically modified to express cytosine deaminase. Cancer Res. 1993;53:4619–4626.

    CAS  PubMed  Google Scholar 

  4. Greco O, Folkes LK, Wardman P, et al. Development of a novel enzyme/prodrug combination for gene therapy of cancer: horseradish peroxidase/indole-3-acetic acid. Cancer Gene Ther. 2000;7:1414–1420.

    Article  CAS  PubMed  Google Scholar 

  5. Moolten FL, Wells JM . Curability of tumors bearing herpes thymidine kinase genes transferred by retroviral vectors. J Natl Cancer Inst. 1990;82:297–300.

    Article  CAS  PubMed  Google Scholar 

  6. Chen L, Waxman DJ . Intratumoral activation and enhanced chemotherapeutic effect of oxazaphosphorines following cytochrome P-450 gene transfer: development of a combined chemotherapy/cancer gene therapy strategy. Cancer Res. 1995;55:581–589.

    CAS  PubMed  Google Scholar 

  7. Singh NP, Khan A . Acetaldehyde: genotoxicity and cytotoxicity in human lymphocytes. Mutat Res. 1995;337:9–17.

    Article  CAS  PubMed  Google Scholar 

  8. Terabayashi H, Kolber MA . The generation of cytotoxic T lymphocytes against acetaldehyde-modified syngeneic cells. Alcohol Clin Exp Res. 1990;14:893–899.

    Article  CAS  PubMed  Google Scholar 

  9. Higgins PJ, Borenfreund E . Incubation of rat hepatic tumor cells with ethanol and acetaldehyde in vitro: effects on growth rate, albumin secretion and cellular protein content. Digestion. 1986;34:161–168.

    Article  CAS  PubMed  Google Scholar 

  10. Clemens DL, Forman A, Jerrells TR, et al. Relationship between acetaldehyde levels and cell survival in ethanol-metabolizing hepatoma cells. Hepatology. 2002;35:1196–1204.

    Article  CAS  PubMed  Google Scholar 

  11. Clemens DL, Calisto LE, Sorrell MF, et al. Ethanol metabolism results in a G2/M cell-cycle arrest in recombinant Hep G2 cells. Hepatology. 2003;38:385–393.

    Article  CAS  PubMed  Google Scholar 

  12. Liang Q, Carlson EC, Borgerding AJ, et al. A transgenic model of acetaldehyde overproduction accelerates alcohol cardiomyopathy. J Pharmacol Exp Ther. 1999;291:766–772.

    CAS  PubMed  Google Scholar 

  13. Hurley TD, Edenberg HJ, Li T-K . The pharmacogenomics of alcoholism. In: Pharmacogenomics: The Search for Individualized Therapeutics. Licinio J, Wong M-L, eds. Weinheim: Wiley-VCH; 2002: 417–442.

    Chapter  Google Scholar 

  14. Kitson KE . Ethanol and acetaldehyde metabolism: past, present, and future. Alcohol Clin Exp Res. 1996;20:82A–92A.

    Article  CAS  PubMed  Google Scholar 

  15. Wickramasinghe SN, Malik F . Acetaldehyde causes a prolongation of the doubling time and an increase in the modal volume of cells in culture. Alcohol Clin Exp Res. 1986;10:350–354.

    Article  CAS  PubMed  Google Scholar 

  16. Koivisto T, Salaspuro M . Acetaldehyde alters proliferation, differentiation and adhesion properties of human colon adenocarcinoma cell line Caco-2. Carcinogenesis. 1998;19:2031–2036.

    Article  CAS  PubMed  Google Scholar 

  17. Mapoles JE, Iwahashi M, Lucas D, et al. Acetaldehyde exposure causes growth inhibition in a Chinese hamster ovary cell line that expresses alcohol dehydrogenase. Alcohol Clin Exp Res. 1994;18:632–639.

    Article  CAS  PubMed  Google Scholar 

  18. Holownia A, Ledig M, Mapoles J, et al. Acetaldehyde-induced growth inhibition in cultured rat astroglial cells. Alcohol. 1996;1:93–97.

    Article  Google Scholar 

  19. Zimmerman BT, Crawford GD, Dahl R, et al. Mechanisms of acetaldehyde-mediated growth inhibition: delayed cell cycle progression and induction of apoptosis. Alcohol Clin Exp Res. 1995;19:434–440.

    Article  CAS  PubMed  Google Scholar 

  20. Stone CL, Bosron WF, Dunn MF . Amino acid substitutions at position 47 of human beta 1 beta 1 and beta 2 beta 2 alcohol dehydrogenases affect hydride transfer and coenzyme dissociation rate constants. J Biol Chem. 1993;268:892–899.

    CAS  PubMed  Google Scholar 

  21. Thun MJ, Peto R, Lopez AD, et al. Alcohol consumption and mortality among middle-aged and elderly U.S. adults. N Engl J Med. 1997;337:1705–1714.

    Article  CAS  PubMed  Google Scholar 

  22. Cordain L, Bryan ED, Melby CL, et al. Influence of moderate daily wine consumption on body weight regulation and metabolism in healthy free-living males. J Am Coll Nutr. 1997;16:134–139.

    Article  CAS  PubMed  Google Scholar 

  23. Watzl B, Bub A, Pretzer G, et al. Daily moderate amounts of red wine or alcohol have no effect on the immune system of healthy men. Eur J Clin Nutr. 2004;58:40–45.

    Article  CAS  PubMed  Google Scholar 

  24. Xu YL, Carr LG, Bosron WF, et al. Genotyping of human alcohol dehydrogenases at the ADH2 and ADH3 loci following DNA sequence amplification. Genomics. 1988;2:209–214.

    Article  CAS  PubMed  Google Scholar 

  25. He TC, Zhou S, da Costa LT, et al. A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci USA. 1998;95:2509–2514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Crow KE, Cornell NW, Veech RL . The rate of ethanol metabolism in isolated rat hepatocytes. Alcohol Clin Exp Res. 1977;1:43–50.

    Article  CAS  PubMed  Google Scholar 

  27. Philpott GW, Bower RJ, Parker CW . Selective iodination and cytotoxicity of tumor cells with an antibody–enzyme conjugate. Surgery. 1973;74:51–58.

    CAS  PubMed  Google Scholar 

  28. Ganey PE, Thurman RG . Ethanol potentiates doxorubicin-induced inhibition of cell survival in cultured Chinese hamster ovary cells. Cancer Res. 1991;51:2036–2040.

    CAS  PubMed  Google Scholar 

  29. Couch DB, Baker RC . Ethanol-enhanced cytotoxicity of alkylating agents. Alcohol Clin Exp Res. 2002;26:381–385.

    Article  CAS  PubMed  Google Scholar 

  30. Buttgereit P, Weineck S, Ropke G, et al. Efficient gene transfer into lymphoma cells using adenoviral vectors combined with lipofection. Cancer Gene Ther. 2000;7:1145–1155.

    Article  CAS  PubMed  Google Scholar 

  31. Meskar A, Holownia A, Bardou LG, et al. Effect of acetaldehyde generated from ethanol by ADH-transfected CHO cells on their membrane fatty acid profiles. Alcohol. 1996;13:611–616.

    Article  CAS  PubMed  Google Scholar 

  32. Walia AS, Pruitt KM, Dillehay DL, et al. In vitro effect of acetaldehyde on cell-mediated cytotoxicity by murine spleen cells. Alcohol Clin Exp Res. 1989;13:766–771.

    Article  CAS  PubMed  Google Scholar 

  33. Abel EL . Behavioral teratology of alcohol (animal model studies of the fetal alcohol syndrome). In: Abel EL, ed. Fetal Alcohol Syndrome, Vol III. Animal Studies. Boca Raton, FL: CRC Press; 1982: 59–81.

    Google Scholar 

  34. Faulkner TP, Cantleberry SB, Watts VJ, Hussain AS . Comparative pharmacokinetics of ethanol in inbred strains of mice using doses based on total body water. Alcohol Clin Exp Res. 1990;14:82–86.

    Article  CAS  PubMed  Google Scholar 

  35. Livy DJ, Parnell SE, West JR . Blood ethanol concentration profiles: a comparison between rats and mice. Alcohol. 2003;29:165–171.

    Article  CAS  PubMed  Google Scholar 

  36. Johnsen J, Stowell A, Morland J . Clinical responses in relation to blood acetaldehyde levels. Pharmacol Toxicol. 1992;70:41–45.

    Article  CAS  PubMed  Google Scholar 

  37. Jones AW, Neiman J, Hillbom M . Concentration–time profiles of ethanol and acetaldehyde in human volunteers treated with the alcohol-sensitizing drug, calcium carbimide. Br J Clin Pharmacol. 1988;25:213–221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Willis MS, Klassen LW, Tuma DJ, et al. Adduction of soluble proteins with malondialdehyde–acetaldehyde (MAA) induces antibody production and enhances T-cell proliferation. Alcohol Clin Exp Res. 2002;26:94–106.

    Article  CAS  PubMed  Google Scholar 

  39. Willis MS, Thiele GM, Tuma DJ, et al. T cell proliferative responses to malondialdehyde–acetaldehyde haptenated protein are scavenger receptor mediated. Int Immunopharmacol. 2003;3:1381–1399.

    Article  CAS  PubMed  Google Scholar 

  40. Stewart SF, Vidali M, Day CP, et al. Oxidative stress as a trigger for cellular immune responses in patients with alcoholic liver disease. Hepatology. 2004;39:197–203.

    Article  PubMed  Google Scholar 

  41. Curiel DT . Strategies to adapt adenoviral vectors for targeted delivery. Ann NY Acad Sci. 1999;886:158–171.

    Article  CAS  PubMed  Google Scholar 

  42. Majumdar AS, Hughes DE, Lichtsteiner SP, et al. The telomerase reverse transcriptase promoter drives efficacious tumor suicide gene therapy while preventing hepatotoxicity encountered with constitutive promoters. Gene Therapy. 2001;8:568–578.

    Article  CAS  PubMed  Google Scholar 

  43. Brown JK, Byers T, Doyle C, et al. Nutrition and physical activity during and after cancer treatment: an American Cancer Society guide for informed choices. CA Cancer J Clin. 2003;53:268–291.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to Del Watling, Sandra Peak and colleagues at CRUK Clare Hall for technical support and to the late Leslie Warfield for her support and enthusiasm for this project. This work was supported by a generous donation from the organizers of the Caerphilly Megaday in memory of Andrew Nicholls and Paul Graeme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Savage.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savage, P., Cowburn, P., Clemens, D. et al. Suicide gene therapy: conversion of ethanol to acetaldehyde mediated by human beta 2 alcohol dehydrogenase. Cancer Gene Ther 11, 774–781 (2004). https://doi.org/10.1038/sj.cgt.7700764

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700764

Keywords

Search

Quick links