Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Signal sequence deletion and fusion to tetanus toxoid epitope augment antitumor immune responses to a human carcinoembryonic antigen (CEA) plasmid DNA vaccine in a murine test system

Abstract

Carcinoembryonic antigen (CEA, CEACAM5) is expressed on several human carcinomas including colon cancer. CEA contains signal peptides that target the protein through the endoplasmic reticulum and to the cell membrane. We constructed a plasmid DNA vaccine encoding a truncated CEA (ΔCEA), devoid of its signal peptides, and demonstrated that it was retained inside the cell, while full-length CEA (wtCEA) was expressed on the membrane. We hypothesized that intracellular retention of ΔCEA would enhance MHC class I presentation of CEA peptides, thus favoring cellular immune responses. In addition, a promiscuous T-helper epitope (Q830-L844 of tetanus toxoid) was fused to the N-terminal of the truncated CEA gene (tetΔCEA). C57BL/6 mice immunized with DNA encoding wtCEA or tetΔCEA developed both humoral and cellular immune responses to CEA. SCID mice transplanted with spleen cells from tetΔCEA but not wtCEA-immunized C57BL/6 mice showed strong suppression of tumor growth after inoculation of human CEA-expressing colon carcinoma cells. Immune spleen cell populations depleted for either B, T or both B and T cells were active, indicating that effector cells might also reside in other populations. The present approach to manipulating antigen presentation may open new possibilities for immunotherapy against colon and other CEA-secreting carcinomas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 4
Figure 2
Figure 3
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Gold P, Freedman SO . Specific carcinoembryonic antigens of the human digestive system. J Exp Med. 1965;122:467–481.

    Article  CAS  Google Scholar 

  2. Hammarström S . The carcinoembryonic antigen (CEA) family: structure, suggested functions and expression in normal and malignant tissues. Semin Cancer Biol. 1999;9:67–81.

    Article  Google Scholar 

  3. Beauchemin N, Draber P, Dveksler G, et al. Redefined nomenclature for members of the carcinoembryonic family. Exp Cell Res. 1999;252:243–249.

    Article  CAS  Google Scholar 

  4. Wahren B, Gadler F, Gahrton G, et al. NCA: a differentiation antigen of myelopoietic cells in humans and hominoid monkeys. Ann NY Acad Sci. 1983;417:344–358.

    Article  CAS  Google Scholar 

  5. Hefta LJ, Chen FS, Ronk M, et al. Expression of carcinoembryonic antigen and its predicted immunoglobulin-like domains in HeLa cells for epitope analysis. Cancer Res. 1993;52:5647–5655.

    Google Scholar 

  6. Maxwell-Armstrong CA, Durrant LG, Scholefield JH . Colorectal cancer vaccines. Br J Surg. 1998;85:149–154.

    Article  CAS  Google Scholar 

  7. Foon KA, Chakraborty M, John WJ, Sherratt A, Kohler H, Bhattacharya-Chatterjee M . Immune response to the carcinoembryonic antigen in patients treated with an anti-idiotype antibody vaccine. J Clin Invest. 1995;96:334–342.

    Article  CAS  Google Scholar 

  8. Mavligit GM, Stuckey S . Colorectal carcinoma. Evidence for circulating CEA-anti-CEA complexes. Cancer. 1983;52:146–149.

    Article  CAS  Google Scholar 

  9. Staab HJ, Anderer FA, Stumpf E, Fischer R . Are circulating CEA immune complexes a prognostic marker in patients with carcinoma of the gastrointestinal tract? Br J Cancer. 1980;42:26–33.

    Article  CAS  Google Scholar 

  10. Chester KA, Begent RH . Circulating immune complexes (CIC), carcinoembryonic antigen (CEA) and CIC containing CEA as markers for colorectal cancer. Clin Exp Immunol. 1984;58:685–693.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Collatz E, Von Kleist S, Burtin P . Further investigations of circulating antibodies in colon cancer patients: on the autoantigenicity of the carcinoembryonic antigen. Int J Cancer. 1971;8:298–303.

    Article  CAS  Google Scholar 

  12. Durrant LG, Denton GW, Jacobs E, et al. An idiotypic replica of carcinoembryonic antigen inducing cellular and humoral responses directed against human colorectal tumours. Int J Cancer. 1992;50:811–816.

    Article  CAS  Google Scholar 

  13. Kantor J, Irvine K, Abrams S, Kaufman H, DiPietro J, Schlom J . Antitumor activity and immune responses induced by a recombinant carcinoembryonic antigen-vaccinia virus vaccine. J Natl Cancer Inst. 1992;84:1084–1091.

    Article  CAS  Google Scholar 

  14. Tsang KY, Zaremba S, Nieroda CA, Zhu MZ, Hamilton JM, Schlom J . Generation of human cytotoxic T cells specific for human carcinoembryonic antigen epitopes from patients immunized with recombinant vaccinia-CEA vaccine [see comments]. J Natl Cancer Inst. 1995;87:982–990.

    Article  CAS  Google Scholar 

  15. Samanci A, Yi Q, Fagerberg J, et al. Pharmacological administration of granulocyte/macrophage-colony-stimulating factor is of significant importance for the induction of a strong humoral and cellular response in patients immunized with recombinant carcinoembryonic antigen. Cancer Immunol Immunother. 1998;47:131–142.

    Article  CAS  Google Scholar 

  16. Cohen AD, Boyer JD, Weiner DB . Modulating the immune response to genetic immunization. Faseb J. 1998;12:1611–1626.

    Article  CAS  Google Scholar 

  17. Fynan EF, Webster RG, Fuller DH, Haynes JR, Santoro JC, Robinson HL . DNA vaccines: protective immunizations by parenteral, mucosal, and gene- gun inoculations. Proc Natl Acad Sci USA. 1993;90:11478–11482.

    Article  CAS  Google Scholar 

  18. Ulmer JB, Donnelly JJ, Parker SE, et al. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science. 1993;259:1745–1749.

    Article  CAS  Google Scholar 

  19. Wang B, Ugen KE, Srikantan V, et al. Gene inoculation generates immune responses against human immunodeficiency virus type 1. Proc Natl Acad Sci USA. 1993;90:4156–4160.

    Article  CAS  Google Scholar 

  20. Calarota S, Bratt G, Nordlund S, et al. Cellular cytotoxic response induced by DNA vaccination in HIV-1- infected patients. Lancet. 1998;351:1320–1325.

    Article  CAS  Google Scholar 

  21. Davis HL, Michel ML, Mancini M, Schleef M, Whalen RG . Direct gene transfer in skeletal muscle: plasmid DNA-based immunization against the hepatitis B virus surface antigen. Vaccine. 1994;12:1503–1509.

    Article  CAS  Google Scholar 

  22. Conry RM, White SA, Fultz PN, et al. Polynucleotide immunization of nonhuman primates against carcinoembryonic antigen. Clin Cancer Res. 1998;4:2903–2912.

    CAS  PubMed  Google Scholar 

  23. Smith BF, Baker HJ, Curiel DT, Jiang W, Conry RM . Humoral and cellular immune responses of dogs immunized with a nucleic acid vaccine encoding human carcinoembryonic antigen. Gene Therapy. 1998;5:865–868.

    Article  CAS  Google Scholar 

  24. Chin L-T, Malmborg A-C, Kristensson K, Hinkula J, Wahren B, Borrebaeck C . Mimicking the humoral immune response in vitro results in antigen-specific isotype switching supported by specific autologous T helper cells: generation of human HIV-1-neutralizing IgG monoclonal antibodies from naive donors. Eur. J Immunol. 1995;25:657–663.

    Article  CAS  Google Scholar 

  25. King C, Spellerberg M, Zhu D, et al. DNA vaccines with a single-chain Fv fused to a fragment C of tetanus toxin induce protective immunity against lymphoma and myeloma. Nat Med. 1998;4:1281–1286.

    Article  CAS  Google Scholar 

  26. Beauchemin N, Benchimol S, Cournoyer D, Fuks A, Stanners CP . Isolation and characterization of full-length functional cDNA clones for human carcinoembryonic antigen. Mol Cell Biol. 1987;7:3221–3230.

    Article  CAS  Google Scholar 

  27. Kozak M . How do eucaryotic ribosomes select initiation regions in messenger RNA? Cell. 1978;15:1109–1123.

    Article  CAS  Google Scholar 

  28. Kjerrström A, Wahren B . Expression of HIV regulatory DNA vaccine constructs. Biogenic Amines. 1999;15:93–112.

    Google Scholar 

  29. Boyle JS, Koniaras C, Lew AM . Influence of cellular location of expressed antigen on the efficacy of DNA vaccination: cytotoxic T lymphocyte and antibody responses are suboptimal when antigen is cytoplasmic after intramuscular DNA immunization. Int Immunol. 1997;9:1897–1906.

    Article  CAS  Google Scholar 

  30. Todryk SM, Chong H, Vile RG, Pandha H, Lemoine NR . Can immunotherapy by gene transfer tip the balance against colorectal cancer? Gut. 1998;43:445–449.

    Article  CAS  Google Scholar 

  31. Pardoll D . Cancer vaccines. Nat Med. 1998;4:525–531.

    Article  CAS  Google Scholar 

  32. Kloetzel PM . The proteasome system: a neglected tool for improvement of novel therapeutic strategies? [editorial]. Gene Therapy. 1998;5:1297–1298.

    Article  CAS  Google Scholar 

  33. Haddad D, Liljeqvist S, Stahl S, et al. Comparative study of DNA-based immunization vectors: effect of secretion signals on the antibody responses in mice. FEMS Immunol Med Microbiol. 1997;18:193–202.

    Article  CAS  Google Scholar 

  34. Rice J, Elliott T, Buchan S, Stevenson FK . DNA fusion vaccine designed to induce cytotoxic T cell responses against defined peptide motifs: implications for cancer vaccines. J Immunol. 2001;167:1558–1565.

    Article  CAS  Google Scholar 

  35. Schofield L, McConville MJ, Hansen D, et al. CD1d-restricted immunoglobulin G formation to GPI-anchored antigens mediated by NKT cells. Science. 1999;283:225–229.

    Article  CAS  Google Scholar 

  36. Slingluff Jr CL, Yamshchikov G, Neese P, et al. Phase I trial of a melanoma vaccine with gp100(280–288) peptide and tetanus helper peptide in adjuvant: immunologic and clinical outcomes. Clin Cancer Res. 2001;7:3012–3024.

    CAS  PubMed  Google Scholar 

  37. Keitel WA, Kester KE, Atmar RL, et al. Phase I trial of two recombinant vaccines containing the 19kd carboxy terminal fragment of Plasmodium falciparum merozoite surface protein 1 (msp-1(19)) and T helper epitopes of tetanus toxoid. Vaccine. 2000;18:531–539.

    Article  Google Scholar 

  38. Harlowe E, Lane D . Antibodies, A Laboratory Manual. Cold Spring Harbor Laboratory Press; Cold Spring Harbor, N.Y. 1988.

    Google Scholar 

  39. White SA, LoBuglio AF, Arani RB, et al. Induction of anti-tumor immunity by intrasplenic administration of a carcinoembryonic antigen DNA vaccine. J Gene Med. 2000;2:135–140.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Sten Hammarström for generous gifts of purified native CEA and N Beauchemin for the p91023(B) plasmid. This work was supported by grants from Cancerföreningen in Stockholm, the Swedish Medical Research Council and the Swedish Medical Society.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lund, L., Andersson, K., Zuber, B. et al. Signal sequence deletion and fusion to tetanus toxoid epitope augment antitumor immune responses to a human carcinoembryonic antigen (CEA) plasmid DNA vaccine in a murine test system. Cancer Gene Ther 10, 365–376 (2003). https://doi.org/10.1038/sj.cgt.7700574

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700574

Keywords

This article is cited by

Search

Quick links