Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Dendritic cells reconstituted with human telomerase gene induce potent cytotoxic T-cell response against different types of tumors

Abstract

Human telomerase reverse transcriptase (hTERT) is the catalytic component of a functional telomerase complex, which is important in maintaining cell immortality. In most normal human adult cells, the expression of telomerase is very low and/or transient. In contrast, almost 90% of human tumors express a relatively high level of telomerase implying the possibility of using hTERT as a universal candidate tumor antigen. In this study, we show that human monocyte-derived dendritic cells (DCs) lack telomerase activity. Similar to other normal somatic cells, DCs express the RNA (hTR) component but not the catalytic component, hTERT. We also show that telomerase activity could be reconstituted using either lipid-mediated transfection of the hTERT plasmid DNA or transduction with an E1-, E3-deleted adenoviral vector containing the hTERT gene. However, relative to plasmid transfection, adenoviral gene transfer produced higher levels of hTERT expression. Nine of 10 AdhTERT-transduced DCs were able to generate CTL responses, while only three of nine plasmid-transfected DCs did. CTLs primed against hTERT exhibited killing of telomerase positive but not telomerase negative tumor lines of diverse tissue origins. Antigenic specificity of these T cells to telomerase was further determined by introducing hTERT gene into a telomerase negative cell line, U2OS, by adenoviral transduction. Although some antigenic specificity was directed against adenoviral epitopes, the majority of CTLs were targeted against telomerase-derived antigen(s). Thus, the hTERT gene, particularly as delivered via the recombinant adenovirus, may be useful as vaccine to induce specific T-cell-mediated tumor immunity in cancer patients. In addition, our results suggest that telomerase activity and/or telomerase expression after hTERT gene transfer have a predictive value in the success of hTERT/DC-based cancer vaccination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Rosenberg SA . A new era for cancer immunotherapy based on the genes that encode cancer antigens. Immunity. 1999;10:281–287.

    Article  CAS  Google Scholar 

  2. Boon TP, van der Bruggen P . Human tumor antigens recognized by T lymphocytes. J Exp Med. 1996;183:725–729.

    Article  CAS  Google Scholar 

  3. Rosenberg SA . Cancer vaccines based on the identification of genes encoding cancer regression antigens. Immunol Today. 1997;18:175–182.

    Article  CAS  Google Scholar 

  4. Van Pel A, van der Bruggen P, Coulie PG, et al. Genes coding for tumor antigens recognized by cytolytic T lymphocytes. Immunol Rev. 1995;145:229–250.

    Article  CAS  Google Scholar 

  5. Blackburn EH . Structure and function of telomeres. Nature. 1991;350:569–573.

    Article  CAS  Google Scholar 

  6. Greider CW . Mammalian telomere dynamics: healing, fragmentation shortening and stabilization. Curr Opin Genet Dev. 1994;4:203–211.

    Article  CAS  Google Scholar 

  7. Harley CB, Futcher AB, Greider CW . Telomeres shorten during aging of human fibroblasts. Nature. 1990;345:458–460.

    Article  CAS  Google Scholar 

  8. Wright WE, Shay JW . The two-stage mechanism controlling cellular senescence and immortalization. Exp Gerontol. 1992;27:383–389.

    Article  CAS  Google Scholar 

  9. Hodes RJ . Telomere length, aging, and somatic cell turnover. J Exp Med. 1999;190:153–156.

    Article  CAS  Google Scholar 

  10. Weinrich SL, Pruzan R, Ma L, et al. Reconstitution of human telomerase with the template RNA component hTR and catalytic protein subunit hTRT. Nat Genet. 1997;17:498–502.

    Article  CAS  Google Scholar 

  11. Bodnar AG, Oullette M, Frolkis M, et al. Extension of life-span by introduction of telomerase into normal human cells. Science. 1998;279:349–352.

    Article  CAS  Google Scholar 

  12. Jiang X-R, Jimenez G, Chang E, et al. Telomerase expression in human somatic cells does not induce changes associated with a transformed phenotype. Nat Genet. 1999;21:111–114.

    Article  CAS  Google Scholar 

  13. Shay JW, Bacchetti SA . Survey of telomerase activity in human cancer. Eur J Cancer. 1997;33:787–791.

    Article  CAS  Google Scholar 

  14. Vonderheide RH, Hahn WC, Schultze JL, Nadler LM . The telomerase catalytic subunit is a widely expressed tumor-associated antigen recognized by cytotoxic T lymphocytes. Immunity. 1999;10:673–679.

    Article  CAS  Google Scholar 

  15. Minev BJ, Hipp J, Firat H, et al. Cytotoxic T cell immunity against telomerase reverse transcriptase in humans. Proc Natl Acad Sci USA. 2000;25:4796–4801.

    Article  Google Scholar 

  16. Nair SKA, Heiser A, Boczkowski D, et al. Induction of cytotoxic T cell response and tumor immunity against unrelated tumors using telomerase reverse transcriptase RNA transfected dendritic cells. Nat Med. 2000;6:1011–1017.

    Article  CAS  Google Scholar 

  17. Steinman RM . The dendritic cell system and its role in immunogenicity. Annu Rev Immunol. 1991;9:271–296.

    Article  CAS  Google Scholar 

  18. Banchereau J, Steinman RM . Dendritic cells and the control of immunity. Nature. 1998;392:245–252.

    Article  CAS  Google Scholar 

  19. Hart DNJ . Dendritic cells: unique leukocyte population which controls the primary immune response. Blood. 1997;90:3245–3287.

    CAS  PubMed  Google Scholar 

  20. Ludewig B, Barchiesi F, Pericin M, et al. In vivo antigen loading and activation of dendritic cells via a liposomal peptide vaccine mediates protective antiviral and anti-tumor immunity. Vaccine. 2000;19:23–32.

    Article  CAS  Google Scholar 

  21. Bossart P, Wirths S, Stuhler G, et al. Induction of cytotoxic T-lymphocyte responses in vivo after vaccination with peptide-pulsed dendritic cells. Blood. 2000;96:3102–3108.

    Google Scholar 

  22. Hsu FJ, Benike C, Fagnoni F, et al. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat Med. 1996;2:52–58.

    Article  CAS  Google Scholar 

  23. Nestle FOS, Alijagic S, Gilliet M, et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med. 1998;4:328–332.

    Article  CAS  Google Scholar 

  24. Thurner B, Haendle I, Roder C, et al. Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression in some metastases in advanced stage IV melanoma. J Exp Med. 1999;190:1669–1678.

    Article  CAS  Google Scholar 

  25. Song W, Kong H-L, Carpenter H, et al. Dendritic cells genetically modified with an adenovirus vector encoding the cDNA for a model antigen induce protective and therapeutic antitumor immunity. J Exp Med. 1997;186:1247–1256.

    Article  CAS  Google Scholar 

  26. Dietz AB, Vuk-Pavlovic S . High efficiency adenovirus-mediated gene transfer to human dendritic cells. Blood. 1998;191:392–398.

    Google Scholar 

  27. Wan YP, Emtage P, Zhu Q, et al. Enhanced immune response to the melanoma antigen gp100 using recombinant adenovirus-transduced dendritic cells. Cell Immunol. 1999;198:131–138.

    Article  CAS  Google Scholar 

  28. Butterfield LH, Jilani SM, Chakraborty NG, et al. Generation of melanoma-specific cytotoxic T lymphocytes by dendritic cells transduced with a MART-1 adenovirus. J Immunol. 1998;161:5607–5613.

    CAS  PubMed  Google Scholar 

  29. Furumoto KS, Arii S, Yamasaki S, et al. Spleen-derived dendritic cells engineered to enhance interleukin-12 production elicit therapeutic antitumor immune responses. Int J Cancer. 2000;87:665–672.

    Article  CAS  Google Scholar 

  30. Boczkowski D, Nair SK, Snyder D, Gilboa E . Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J Exp Med. 1996;184:465–472.

    Article  CAS  Google Scholar 

  31. Ashley DM, Faiola B, Nair S, et al. Bone marrow-generated dendritic cells pulsed with tumor extracts or tumor RNA induce antitumor immunity against central nervous system tumors. J Exp Med. 1997;186:1177–1182.

    Article  CAS  Google Scholar 

  32. Zhang W, He L, Xie Z, et al. Enhanced therapeutic efficacy of tumor RNA-pulsed dendritic cells after genetic modification with lymphotactin. Hum Gene Ther. 1999;10:1151–1161.

    Article  CAS  Google Scholar 

  33. Mitchell DA, Nair SK . RNA-transfected dendritic cells in cancer immunotherapy. J Clin Invest. 2000;106:1065–1069.

    Article  CAS  Google Scholar 

  34. Koido SM, Kashiwaba M, Chen D, et al. Induction of antitumor immunity by vaccination of dendritic cells transfected with MUC1 RNA. J Immunol. 2000;165:5713–5719.

    Article  CAS  Google Scholar 

  35. Philip R, Brunette E, Ashton J, et al. Transgene expression in dendritic cells to induce antigen-specific cytotoxic T cells in healthy donors. Cancer Gene Ther. 1998;5:236–246.

    CAS  PubMed  Google Scholar 

  36. Tuting T, Wilson CC, Martin DM, et al. Autologous human monocyte-derived dendritic cells genetically modified to express melanoma antigens elicit primary cytotoxic T cell response in vitro: enhancement by cotransfection of genes encoding the Th1-biasing cytokines IL-12 and IFN-α. J Immunol. 1998;160:1139–1147.

    CAS  PubMed  Google Scholar 

  37. Manickan E, Kanagat S, Rouse RJD, et al. Enhancement of immune response to naked DNA vaccine by immunization with transfected dendritic cells. J Leukocyte Biol. 1997;61:125–132.

    Article  CAS  Google Scholar 

  38. Berlyn KA, Ponniah S, Stass SA, et al. Developing dendritic cells polynucleotide vaccination for prostate cancer immunotherapy. J Biotechnol. 1999;73:155–179.

    Article  CAS  Google Scholar 

  39. Kirk CJ, Mule JJ . Gene-modified dendritic cells to use in tumor vaccines. Hum Gene Ther. 2000;11:797–806.

    Article  CAS  Google Scholar 

  40. Weber JS, Mule JJ . How much help does a vaccine-induced T-cell response need? J Clin Invest. 2001;107:553–554.

    Article  CAS  Google Scholar 

  41. Romani NS, Gruner S, Brang D, et al. Proliferating dendritic cell progenitors in human blood. J Exp Med. 1994;180:83–93.

    Article  CAS  Google Scholar 

  42. Kim NW, Fred W . Advances in quantification and characterization of telomerase activity by the telomeric repeat amplification protocol (TRAP). Nucleic Acid Res. 1997;25:2595–2597.

    Article  CAS  Google Scholar 

  43. Miyake SM, Makimura M, Kanagae Y, et al. Efficient generation of recombinant adenoviruses using adenovirus DNA-terminal protein complex and a cosmid bearing the full-length virus genome. Proc Natl Acad Sci USA. 1996;93:1320–1324.

    Article  CAS  Google Scholar 

  44. Fu S, Diesseroth AB . Use of cosmid adenoviral vector cloning system or the in vitro construction of recombinant adenoviral vectors. Hum Gene Ther. 1997;8:1321–1313.

  45. Rivoltini L, Barracchini KC, Viggiano V, et al. Quantitative correlation between HLA class I allele expression and recognition of melanoma cells by antigen-specific cytotoxic T lymphocytes. Cancer Res. 1995;55:3149–3157.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Tsang KY, Zaremba S, Nieroda CA, et al. Generation of human cytotoxic T cells specific for human carcinoembryonic antigen epitopes from patients immunized with recombinant vaccinia-CEA vaccine. J Natl Cancer Inst. 1995;87:982–990.

    Article  CAS  Google Scholar 

  47. Chiu CP, Dragowska W, Kim NW, et al. Differential expression of telomerase activity in hematopoietic progenitors from adult human bone marrow. Stem Cells. 1996;14:239–248.

    Article  CAS  Google Scholar 

  48. Bodnar AG, Kim NW, Effros RB, Chiu CP . Mechanism of telomerase induction during T cell activation. Exp Cell Res. 1996;228:58–64.

    Article  CAS  Google Scholar 

  49. Harle-Bachor C, Boukamp P . Telomerase activity in the regenerative basal layer of the epidermis in human skin and in immortal and carcinoma-derived skin keratinocytes. Proc Natl Acad Sci USA. 1996;93:6476–6481.

    Article  CAS  Google Scholar 

  50. Bachor C, Bachor OA, Boukamp P . Telomerase is active in normal gastrointestinal mucosa and not up-regulated in precancerous lesions. J Cancer Res Clin Oncol. 1999;125:453–460.

    Article  CAS  Google Scholar 

  51. Wright WE, Piatyszek MA, Rainey WE, Byrd W, Shay JW . Telomerase activity in human germline and embryonic tissues and cells. Dev Genet. 1996;18:173–179.

    Article  CAS  Google Scholar 

  52. Horikawa IP, Cable L, Afshari C, Barrett JC . Cloning and characterization of the promoter region of human telomerase reverse transcriptase gene. Cancer Res. 1999;59:826–830.

    CAS  PubMed  Google Scholar 

  53. Takakura M, Kyo S, Kanaya T, et al. Cloning of human telomerase catalytic subunit (hTERT) gene promoter and identification of proximal core promoter sequences essential for transcriptional activation in immortalized and cancer cells. Cancer Res. 999;59:551–557.

    CAS  Google Scholar 

  54. Cong YS, Wen J, Bacchetti S . The human telomerase catalytic subunit hTERT: organization of the gene and characterization of the promoter. Hum Mol Genet. 1999;8:137–142.

    Article  CAS  Google Scholar 

  55. Majumdar AS, Hughes DE, Lichsteiner SP, et al. The telomerase reverse transcriptase promoter drives efficacious tumor suicide gene therapy while preventing hepatotoxicity encountered with constitutive promoters. Gene Ther. 2001;8:568–578.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Lisa Cardoza for constructing the AdhTERT virus used in this study and Brian Murphy and Sharon Wang for providing excellent technical assistance. We also thank Drs Cal Harley and Iris Ferber for the critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anish S Majumdar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frolkis, M., Fischer, M., Wang, Z. et al. Dendritic cells reconstituted with human telomerase gene induce potent cytotoxic T-cell response against different types of tumors. Cancer Gene Ther 10, 239–249 (2003). https://doi.org/10.1038/sj.cgt.7700563

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700563

Keywords

This article is cited by

Search

Quick links