Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Complete tumor prevention by engineered tumor cell vaccines employing nonviral vectors

Abstract

We report that 100% mice survival after tumor challenge is achieved with cytokine-engineered cells employing nonviral lipoplexes and without using viral vectors. We describe this effect with cytokine-secreting tumor cell vaccines, based on cell clones or fresh transfected cells. Tumor cells were transfected with murine granulocyte–macrophage colony-stimulating factor (GM-CSF) or IL-4 plasmids employing the cationic lipid DOTAP, were irradiated (150 Gy) and kept frozen until use. The transfection efficacy was analyzed by qRT-PCR and flow cytometry. Vaccination induced potent antitumor rejection, resulting in 100% mice survival. Furthermore, the antitumor immunity was long lasting, since a two-fold survival delay was observed in mice after tumor rechallenge (6 months later). While cell clones secreting GM-CSF were the most effective in wild-type tumor cell rejection, little or no effect was observed with clones secreting IL-4. We found similar antitumor efficacy employing fresh transfected cells by nonviral procedures, demonstrating that cells genetically modified by nonviral vectors (both clones and fresh transfected cells) are a safe and efficient tool for antitumor vaccines. These vaccines allow us to achieve the highest antitumor efficacy based on nonviral gene therapy techniques. In addition, the vaccination success with fresh transfected cells simplifies the procedure and provides new insights into the clinical application of nonviral gene therapy procedures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Dranoff G, Jaffee E, Lazenby A, et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte–macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci USA. 1993;90:3539–3543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hogge GS, Burkholder JK, Culp J, et al. Development of human granulocyte–macrophage colony-stimulating factor-transfected tumor cells vaccines for the treatment of spontaneous canine cancer. Hum Gen Ther. 1998;9:1851–1861.

    Article  CAS  Google Scholar 

  3. Simons JW, Bahar M . Ex vivo gene therapy using cytokine-transduced tumor vaccines: molecular and clinical pharmacology. Semin Oncol. 1998;25:661–676.

    CAS  PubMed  Google Scholar 

  4. Schadendorf D, Paschen A, Sun Y . Autologous allogeneic tumor cells or genetically engineered cells as cancer vaccine against melanoma. Immunol Lett. 2000;74:67–74.

    Article  CAS  PubMed  Google Scholar 

  5. Todryk SM, Birchall LJ, Erlich R, et al. Efficacy of cytokine gene transfection may differ for autologous and allogeneic tumour cell vaccines. Immunology. 2001;102:190–198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Thomas MC, Greten TF, Pardoll DM, et al. Enhanced tumor protection by granulocyte–macrophage colony-stimulating factor expression at the site of an allogeneic vaccine. Hum Gene Ther. 1998;9:835–843.

    Article  CAS  PubMed  Google Scholar 

  7. Arienti F, Belli F, Napolitano F, et al. Vaccination of melanoma patients with interleukin 4 gene-transduced allogeneic melanoma cells. Hum Gene Ther. 1998;9:835–843.

    Article  Google Scholar 

  8. Pan CH, Chen HW, Tao MH . Modulation of immune responses to DNA vaccines by codelivery of cytokines genes. J Formos Med Assoc. 1999;98:722–729.

    CAS  PubMed  Google Scholar 

  9. Bevan MJ . Cross-priming for a secondary cytotoxic response to minor H antigens with H-2 congenic cells which do not cross-react in the cytotoxic assay. J Exp Med. 1976;143:1283–1288.

    Article  CAS  PubMed  Google Scholar 

  10. Bennett SR, Carbone FR, Karamalis F, et al. Induction of a CD8+ cytotoxic T lymphocyte response by cross-priming requires cognate CD4+ T cell help. J Exp Med. 1997;186:65–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Huang AY, Bruce AT, Pardoll DM, et al. In vivo cross-priming of MHC class I-restricted antigens requires the TAP transporter. Immunity. 1996;4:349–355.

    Article  CAS  PubMed  Google Scholar 

  12. den Haan JM, Lehar SM, Bevan MJ . CD8(+) but not CD8(−) dendritic cells cross-prime cytotoxic T cells in vivo. J Exp Med. 2000;192:1685–1696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pooley JL, Heath WR, Shortman K . Cutting edge: intravenous soluble antigen is presented to CD4 T cells by CD8-dendritic cells, but cross-presented to CD8 T cells by CD8+ dendritic cells. J Immunol. 2001;166:5327–5330.

    Article  CAS  PubMed  Google Scholar 

  14. Rodolfo M, Melani C, Zilocchi C, et al. IgG2a induced by interleukin (IL) 12-producing tumor cell vaccines but not IgG1 induced by IL-4 vaccine is associated with the eradication of experimental metastases. Cancer Res. 1998;58:5812–5817.

    CAS  PubMed  Google Scholar 

  15. Sampson JH, Archer GE, Ashley DM, et al. Subcutaneous vaccination with irradiated, cytokine-producing tumor cells stimulates CD8+ cell-mediated immunity against tumors located in the “immunologically privileged” central nervous system. Proc Natl Acad Sci USA. 1996;93:10399–10404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hensley C, Spitzler S, McAlpine BE, et al. In vivo human melanoma cytokine production: inverse correlation of GM-CSF production with tumor depth Exp Dermatol. 1998;7:335–341.

    Article  CAS  PubMed  Google Scholar 

  17. Kayaga J, Souberbielle BE, Sheikh N, et al. Anti-tumour activity against B16-F10 melanoma with a GM-CSF secreting allogeneic tumour cell vaccine. Gene Therapy 1999;6:1475–1481.

    Article  CAS  PubMed  Google Scholar 

  18. Jaffee EM, Abrams R, Cameron J, et al. A phase I clinical trial of lethally irradiated allogeneic pancreatic tumor cells transfected with the GM-CSF gene for the treatment of pancreatic adenocarcinoma. Hum Gene Ther. 1998;9:1951–1971.

    Article  CAS  PubMed  Google Scholar 

  19. Rodolfo M, Zilocchi C, Accornero P, et al. IL-4-transduced tumor cell vaccine induces immunoregulatory type 2 CD8 T lymphocytes that cure lung metastases upon adoptive transfer. J Immunol. 1999;163:1923–1928.

    CAS  PubMed  Google Scholar 

  20. Nakazaki Y, Tani K, Lin ZT, et al. Vaccine effect of granulocyte–macrophage colony-stimulating factor or CD80 gene-transduced murine hematopoietic tumor cells and their cooperative enhancement of antitumor immunity. Gene Therapy 1998;5:1355–1362.

    Article  CAS  PubMed  Google Scholar 

  21. Teshima T, Mach N, Hill GR, et al. Tumor cell vaccine elicits potent antitumor immunity after allogeneic T-cell-depleted bone marrow transplantation. Cancer Res. 2001;61:162–171.

    CAS  PubMed  Google Scholar 

  22. Cao X, Chen G, He L, et al. Involvement of MHC class I molecule and ICAM-1 in the enhancement of adhesion and cytotoxic susceptibility to immune effector cells of tumor cells transfected with the interleukin (IL)-2, IL-4 or IL-6 gene. J Cancer Res Clin Oncol. 1997;123:602–608.

    Article  CAS  PubMed  Google Scholar 

  23. Song K, Chang Y, Prud'homme GJ . Regulation of T-helper-1 versus T-helper-2 activity and enhancement of tumor immunity by combined DNA-based vaccination and nonviral cytokine gene transfer. Gene Therapy 2000;7:481–492.

    Article  CAS  PubMed  Google Scholar 

  24. Wakimoto H, Abe J, Tsunoda R, et al. Intensified antitumor immunity by a cancer vaccine that produces granulocyte–macrophage colony-stimulating factor plus interleukin 4. Cancer Res. 1996;56:1828–1833.

    CAS  PubMed  Google Scholar 

  25. Parmiani G, Rodolfo M, Melani C . Immunological gene therapy with ex vivo gene-modified tumor cells: a critique and a reappraisal. Hum Gene Ther. 2000;11:1269–1275.

    Article  CAS  PubMed  Google Scholar 

  26. Dong Z, Yoneda J, Kumar R, et al. Angiostatin-mediated suppression of cancer metastases by primary neoplasms engineered to produce granulocyte/macrophage colony-stimulating factor. J Exp Med. 1998;188:755–763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Boyer MW, Waller EK, Bray RA, et al. Cytokine upregulation of the antigen presenting function of acute myeloid leukemia cells. Leukemia. 2000;14:412–418.

    Article  CAS  PubMed  Google Scholar 

  28. Botella-Estrada R, Malet G, Revert F, et al. Antitumor effect of B16 melanoma cells genetically modified with the angiogenesis inhibitor rnasin. Cancer Gene Ther. 2001;8:278–284.

    Article  CAS  PubMed  Google Scholar 

  29. Moret I, Peris JE, Guillem V, et al. Stability of PEI-DNA and DOTAP-DNA complexes: effect of alkaline pH, heparin and serum. J Control Release. 2001;76:169–181.

    Article  CAS  PubMed  Google Scholar 

  30. Dasi F, Benet M, Crespo J, et al. Asialofetuin liposome-mediated human alpha1-antitrypsin gene transfer in vivo results in stationary long-term gene expression. J Mol Med. 2001;79:205–212.

    Article  CAS  PubMed  Google Scholar 

  31. Overbergh L, Valckx D, Waer M, Mathieu C . Quantification of murine cytokine mRNAs using real time quantitative reverse transcriptase PCR. Cytokine. 1999;11:305–312.

    Article  CAS  PubMed  Google Scholar 

  32. Aliño SF, Lejarreta M, Alfaro J, et al. Antimetastatic effect of immunization with liposome-encapsulated tumor cell-membrane proteins obtained from experimental tumors. Immunopharmacol Immunotoxicol. 1995;17:419–436

    Article  PubMed  Google Scholar 

  33. Lorenz M, Jung S, Radbruch A . Switch transcripts in immunoglobulin class switching. Science. 1995;267:1825–1828.

    Article  CAS  PubMed  Google Scholar 

  34. Stavnezer J . Immunoglobulin class switching. Curr Opin Immunol. 1996;8:199–205.

    Article  CAS  PubMed  Google Scholar 

  35. Simons JW, Mikhak B, Chang JF, et al. Induction of immunity to prostate cancer antigens: results of a clinical trial of vaccination with irradiated autologous prostate tumor cells engineered to secrete granulocyte–macrophage colony-stimulating factor using ex vivo gene transfer. Cancer Res. 1999;59:5160–5168.

    CAS  PubMed  Google Scholar 

  36. Wittig B, Marten A, Dorbic T, et al. Therapeutic vaccination against metastatic carcinoma by expression-modulated and immunomodified autologous tumor cells: a first clinical phase I/II trial. Hum Gene Ther. 2001;12:267–278.

    Article  CAS  PubMed  Google Scholar 

  37. Soiffer R, Lynch T, Mihm M, et al. Vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte–macrophage colony-stimulating factor generates potent antitumor immunity in patients with metastatic melanoma. Proc Natl Acad Sci. USA. 1998;95:13141–13146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Asada H, Kishida T, Hirai H, et al. Significant antitumor effects obtained by autologous tumor cell vaccine engineered to secrete interleukin (IL)-12 and IL-18 by means of the EBV/Lipoplex. Mol Ther. 2002;5:609–616.

    Article  CAS  PubMed  Google Scholar 

  39. Mach N, Dranoff G . Cytokine-secreting tumor cell vaccines. Curr Opin Immunol. 2000;12:571–575.

    Article  CAS  PubMed  Google Scholar 

  40. Huang LR, Chen FL, Chen Y, et al. Potent induction of long-term CD8+ T cell memory by short-term IL-4 exposure during T cell receptor stimulation. Proc Natl Acad Sci USA. 2000;97:3406–3411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dunussi-Joannopoulos K, Dranoff G, Weinstein HJ, et al. Gene immunotherapy in murine acute myeloid leukemia: granulocyte–macrophage colony-stimulating factor tumor cell vaccines elicit more potent antitumor immunity compared with B7 family and other cytokine vaccines. Blood. 1998;91:222–230.

    CAS  PubMed  Google Scholar 

  42. Okada H, Villa L, Attanucci J, et al. Cytokine gene therapy of gliomas: effective induction of therapeutic immunity to intracranial tumors by peripheral immunization with interleukin-4 transduced glioma cells. Gene Therapy 2001;8:1157–1166.

    Article  CAS  PubMed  Google Scholar 

  43. Heller L, Pottinger C, Jaroszeski M, et al. In vivo electroporation of plasmids encoding GM-CSF or interleukin-2 into existing B16 melanomas combined with electrochemotherapy induces long-term antitumour immunity. Melanoma Res. 2000;10:577–583.

    Article  CAS  PubMed  Google Scholar 

  44. Abe J, Wakimoto H, Yoshida Y, et al. Antitumor effect induced by GM-CSF gene-modified tumor vaccination: comparison of adenovirus- and retrovirus-mediated genetic transduction. J Cancer Res Clin Oncol. 1995;121:587–592.

    Article  CAS  PubMed  Google Scholar 

  45. Borrello I, Pardoll D . GM-CSF-based cellular vaccines: a review of the clinical experience. Cytokine Growth Factor Rev. 2002;13:185–193.

    Article  CAS  PubMed  Google Scholar 

  46. Toes RE, Blom RJ, van der Voort E, et al. Protective antitumor immunity induced by immunization with completely allogeneic tumor cells. Cancer Res. 1996;56:3782–3787.

    CAS  PubMed  Google Scholar 

  47. Souberbielle BE, Westby M, Ganz S, et al. Comparison of four strategies for tumour vaccination in the B16-F10 melanoma model. Gene Therapy 1998;5:1447–1454.

    Article  CAS  PubMed  Google Scholar 

  48. van Slooten ML, Storm G, Zoephel A, et al. Liposomes containing interferon-gamma as adjuvant in tumor cell vaccines. Pharm Res. 2000;17:42–48.

    Article  CAS  PubMed  Google Scholar 

  49. Blaya C, Crespo J, Crespo A, et al. Anti-interleukin 4 antibody and indomethacin synergistic effect on B16 melanoma tumor progression. J Pharmacol Exp Ther. 1996;279:472–477.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all those who have collaborated in the present study, particularly Dr Rosa Algàs and Dr Diego Dualde from the Service of Radiotherapy (University Clinic Hospital, Valencia, Spain) for their help and kindness, and our colleagues Vicent Guillem and Isaias Sanmartín for their collaboration in preparing the vaccines and in the in vivo administration. The plasmids employed were kindly donated by Dr Andrés Koenig (MOLOGEN, Germany). The present work has been supported by the Generalitat Valenciana, IMPIVA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvador F Aliño.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moret-Tatay, I., Díaz, J., Marco, F. et al. Complete tumor prevention by engineered tumor cell vaccines employing nonviral vectors. Cancer Gene Ther 10, 887–897 (2003). https://doi.org/10.1038/sj.cgt.7700646

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700646

Keywords

This article is cited by

Search

Quick links