Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Experimental Oncology
  • Published:

Selective photodynamic inactivation of a multidrug transporter by a cationic photosensitising agent

Abstract

We have characterised sites of photodamage catalysed by the cationic photosensitiser tetrabromorhodamine 123, using P388 murine leukaemia cells and a subline (P388/ADR) which has a multidrug resistance phenotype and hyperexpresses mdr1 mRNA for P-glycoprotein. Fluorescence emission spectra were consistent with sensitiser localisation in hydrophobic regions of the P388 cell, and in more aqueous loci in P388/ADR. Subsequent irradiation resulted in photodamage to the P388 cells, resulting in loss of viability. In contrast, P388/ADR cells were unaffected except for an irreversible inhibition of P-glycoprotein, leading to enhanced accumulation of daunorubicin and rhodamine 123 and a corresponding increase in daunorubicin cytotoxicity. These results are consistent with the premise that substrates for P-glycoprotein are confined to membrane loci associated with the transporter, and indicate a very limited migration of cytotoxic photo-products in a cellular environment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kessel, D., Woodburn, K. Selective photodynamic inactivation of a multidrug transporter by a cationic photosensitising agent. Br J Cancer 71, 306–310 (1995). https://doi.org/10.1038/bjc.1995.61

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/bjc.1995.61

This article is cited by

Search

Quick links