Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Optimization of warfarin dose by population-specific pharmacogenomic algorithm

Abstract

To optimize the warfarin dose, a population-specific pharmacogenomic algorithm was developed using multiple linear regression model with vitamin K intake and cytochrome P450 IIC polypeptide9 (CYP2C9*2 and *3), vitamin K epoxide reductase complex 1 (VKORC1*3, *4, D36Y and −1639 G>A) polymorphism profile of subjects who attained therapeutic international normalized ratio as predictors. New algorithm was validated by correlating with Wadelius, International Warfarin Pharmacogenetics Consortium and Gage algorithms; and with the therapeutic dose (r=0.64, P<0.0001). New algorithm was more accurate (Overall: 0.89 vs 0.51, warfarin resistant: 0.96 vs 0.77 and warfarin sensitive: 0.80 vs 0.24), more sensitive (0.87 vs 0.52) and specific (0.93 vs 0.50) compared with clinical data. It has significantly reduced the rate of overestimation (0.06 vs 0.50) and underestimation (0.13 vs 0.48). To conclude, this population-specific algorithm has greater clinical utility in optimizing the warfarin dose, thereby decreasing the adverse effects of suboptimal dose.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. El Rouby S, Mestres CA, LaDuca FM, Zucker ML . Racial and ethnic differences in warfarin response. J Heart Valve Dis 2004; 13: 15–21.

    PubMed  Google Scholar 

  2. Kamali F . Genetic influences on the response to warfarin. Curr Opin Hematol 2006; 13: 357–361.

    Article  PubMed  Google Scholar 

  3. Kaminsky LS, Zhang ZY . Human P450 metabolism of warfarin. Pharmacol Ther 1997; 73: 67–74.

    Article  CAS  PubMed  Google Scholar 

  4. Higashi MK, Veenstra DL, Kondo LM, Wittkowsky AK, Srinouanprachanh SL, Farin FM et al. Association between CYP2C9 genetic variants and anticoagulation-related outcomes during warfarin therapy. JAMA 2002; 287: 1690–1698.

    Article  CAS  PubMed  Google Scholar 

  5. Rieder MJ, Reiner AP, Gage BF, Nickerson DA, Eby CS, McLeod HL et al. Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N Engl J Med 2005; 352: 2285–2293.

    Article  CAS  PubMed  Google Scholar 

  6. Harrington DJ, Gorska R, Wheeler R, Davidson S, Murden S, Morse C et al. Pharmacodynamic resistance to warfarin is associated with nucleotide substitutions in VKORC1. J Thromb Haemost 2008; 6: 1663–1670.

    Article  CAS  PubMed  Google Scholar 

  7. Gage BF, Eby C, Johnson JA, Deych E, Rieder MJ, Ridker PM et al. Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin. Clin Pharmacol Ther 2008; 84: 326–331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wadelius M, Chen LY, Lindh JD, Eriksson N, Ghori MJ, Bumpstead S et al. The largest prospective warfarin-treated cohort supports genetic forecasting. Blood 2009; 113: 784–792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Epstein RS, Moyer TP, Aubert RE, O Kane DJ, Xia F, Verbrugge RR et al. Warfarin genotyping reduces hospitalization rates results from the MM-WES (Medco-Mayo Warfarin Effectiveness study). J Am Coll Cardiol 2010; 55: 2804–2812.

    Article  CAS  PubMed  Google Scholar 

  10. Lee SC, Ng SS, Oldenburg J, Chong PY, Rost S, Guo JY et al. Interethnic variability of warfarin maintenance requirement is explained by VKORC1 genotype in an Asian population. Clin Pharmacol Ther 2006; 79: 197–205.

    Article  CAS  PubMed  Google Scholar 

  11. Jose R, Chandrasekaran A, Sam SS, Gerard N, Chanolean S, Abraham BK et al. CYP2C9 and CYP2C19 genetic polymorphisms: frequencies in the south Indian population. Fundam Clin Pharmacol 2005; 19: 101–105.

    Article  CAS  PubMed  Google Scholar 

  12. International Warfarin Pharmacogenetics Consortium Klein TE, Altman RB, Eriksson N, Gage BF, Kimmel SE et al. Estimation of the warfarin dose with clinical and pharmacogenetic data. N Engl J Med 2009; 360: 753–764.

    Article  Google Scholar 

  13. Moyer TP, O'Kane DJ, Baudhuin LM, Wiley CL, Fortini A, Fisher PK et al. Warfarin sensitivity genotyping: a review of the literature and summary of patient experience. Mayo Clin Proc 2009; 84: 1079–1094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yuen E, Gueorguieva I, Wise S, Soon D, Aarons L . Ethnic differences in the population pharmacokinetics and pharmacodynamics of warfarin. J Pharmacokinet Pharmacodyn 2010; 37: 3–24.

    Article  CAS  PubMed  Google Scholar 

  15. Loebstein R, Dvoskin I, Halkin H, Vecsler M, Lubetsky A, Rechavi G et al. A coding VKORC1 Asp36Tyr polymorphism predisposes to warfarin resistance. Blood 2007; 109: 2477–2480.

    Article  CAS  PubMed  Google Scholar 

  16. Limdi NA, Wadelius M, Cavallari L, Eriksson N, Crawford DC, Lee MT et al. Warfarin pharmacogenetics: a single VKORC1 polymorphism is predictive of dose across 3 racial groups. Blood 2010; 115: 3827–3834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kimura R, Miyashita K, Kokubo Y, Akaiwa Y, Otsubo R, Nagatsuka K et al. Genotypes of vitamin K epoxide reductase, gamma-glutamyl carboxylase, and cytochrome P450 2C9 as determinants of daily warfarin dose in Japanese patients. Thromb Res 2007; 120: 181–186.

    Article  CAS  PubMed  Google Scholar 

  18. Scott SA, Jaremko M, Lubitz SA, Kornreich R, Halperin JL, Desnick RJ . CYP2C9*8 is prevalent among African-Americans: implications for pharmacogenetic dosing. Pharmacogenomics 2009; 10: 1243–1255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cen HJ, Zeng WT, Leng XY, Huang M, Chen X, Li JL et al. CYP4F2 rs2108622: a minor significant genetic factor of warfarin dose in Han Chinese patients with mechanical heart valve replacement. Br J Clin Pharmacol 2010; 70: 234–240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. D'Ambrosio RL, D'Andrea G, Cappucci F, Chetta M, Di Perna P, Brancaccio V et al. Polymorphisms in factor II and factor VII genes modulate oral anticoagulation with warfarin. Haematologica 2004; 89: 1510–1516.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Ramanujan Fellowship, Department of Science and Technology (DST), Government of India, awarded to VK Kutala.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V K Kutala.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavani, A., Naushad, S., Rupasree, Y. et al. Optimization of warfarin dose by population-specific pharmacogenomic algorithm. Pharmacogenomics J 12, 306–311 (2012). https://doi.org/10.1038/tpj.2011.4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2011.4

Keywords

This article is cited by

Search

Quick links