Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A multistep validation process of biomarkers for preclinical drug development

Abstract

Biomarkers that can be measured in preclinical models in a high-throughput, reproducible manner offer the potential to increase the speed and efficacy of drug development. Development of therapeutic agents for many conditions is hampered by the limited number of validated preclinical biomarkers available to gauge pharmacoefficacy and disease progression, but the validation process for preclinical biomarkers has received limited attention. This report defines a five-step preclinical biomarker validation process and applies the process to a case study of diabetic retinopathy. By showing that a gene expression panel is highly reproducible, coincides with disease manifestation, accurately classifies individual animals and identifies animals treated with a known therapeutic agent, a biomarker panel can be considered validated. This particular biomarker panel consisting of 14 genes (C1inh, C1s, Carhsp1, Chi3l1, Gat3, Gbp2, Hspb1, Icam1, Jak3, Kcne2, Lama5, Lgals3, Nppa, Timp1) can be used in diabetic retinopathy pharmacotherapeutic research, and the biomarker development process outlined here is applicable to drug development efforts for other diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

DR:

diabetic retinopathy

STZ:

streptozotocin. (A full listing of gene names is given in Supplementary Table S1)

References

  1. Lewin DA, Weiner MP . Molecular biomarkers in drug development. Drug Discov Today 2004; 9: 976–983.

    Article  CAS  Google Scholar 

  2. Stoughton RB, Friend SH . How molecular profiling could revolutionize drug discovery. Nat Rev Drug Discov 2005; 4: 345–350.

    Article  CAS  Google Scholar 

  3. Kola I, Landis J . Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 2004; 3: 711–715.

    Article  CAS  Google Scholar 

  4. Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 2001; 69: 89–95.

    Article  Google Scholar 

  5. Williams SA, Slavin DE, Wagner JA, Webster CJ . A cost-effectiveness approach to the qualification and acceptance of biomarkers. Nat Rev Drug Discov 2006; 5: 897–902.

    Article  CAS  Google Scholar 

  6. Rolan P, Atkinson Jr AJ, Lesko LJ . Use of biomarkers from drug discovery through clinical practice: report of the Ninth European Federation of Pharmaceutical Sciences Conference on Optimizing Drug Development. Clin Pharmacol Ther 2003; 73: 284–291.

    Article  Google Scholar 

  7. Lesko LJ, Atkinson Jr AJ . Use of biomarkers and surrogate endpoints in drug development and regulatory decision making: criteria, validation, strategies. Annu Rev Pharmacol Toxicol 2001; 41: 347–366.

    Article  CAS  Google Scholar 

  8. Gunther EC, Stone DJ, Gerwien RW, Bento P, Heyes MP . Prediction of clinical drug efficacy by classification of drug-induced genomic expression profiles in vitro. Proc Natl Acad Sci USA 2003; 100: 9608–9613.

    Article  CAS  Google Scholar 

  9. Gunther EC, Stone DJ, Rothberg JM, Gerwien RW . A quantitative genomic expression analysis platform for multiplexed in vitro prediction of drug action. Pharmacogenomics J 2005; 5: 126–134.

    Article  CAS  Google Scholar 

  10. Mayburd AL, Golovchikova I, Mulshine JL . Successful anti-cancer drug targets able to pass FDA review demonstrate the identifiable signature distinct from the signatures of random genes and initially proposed targets. Bioinformatics 2008; 24: 389–395.

    Article  CAS  Google Scholar 

  11. Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N Engl J Med 1993; 329: 977–986.

    Article  Google Scholar 

  12. Mohamed Q, Gillies MC, Wong TY . Management of diabetic retinopathy: a systematic review. JAMA 2007; 298: 902–916.

    Article  CAS  Google Scholar 

  13. Csaky KG, Richman EA, Ferris III FL . Report from the NEI/FDA Ophthalmic Clinical Trial Design and Endpoints Symposium. Invest Ophthalmol Vis Sci 2008; 49: 479–489.

    Article  Google Scholar 

  14. Gao BB, Clermont A, Rook S, Fonda SJ, Srinivasan VJ, Wojtkowski M et al. Extracellular carbonic anhydrase mediates hemorrhagic retinal and cerebral vascular permeability through prekallikrein activation. Nat Med 2007; 13: 181–188.

    Article  CAS  Google Scholar 

  15. Kim SJ, Kim S, Park J, Lee HK, Park KS, Yu HG et al. Differential expression of vitreous proteins in proliferative diabetic retinopathy. Curr Eye Res 2006; 31: 231–240.

    Article  CAS  Google Scholar 

  16. Jackson GR, Owsley C . Visual dysfunction, neurodegenerative diseases, and aging. Neurol Clin 2003; 21: 709–728.

    Article  Google Scholar 

  17. Gerhardinger C, Costa MB, Coulombe MC, Toth I, Hoehn T, Grosu P . Expression of acute-phase response proteins in retinal Muller cells in diabetes. Invest Ophthalmol Vis Sci 2005; 46: 349–357.

    Article  Google Scholar 

  18. Joussen AM, Huang S, Poulaki V, Camphausen K, Beecken WD, Kirchhof B et al. In vivo retinal gene expression in early diabetes. Invest Ophthalmol Vis Sci 2001; 42: 3047–3057.

    CAS  PubMed  Google Scholar 

  19. Brucklacher RM, Patel KM, VanGuilder HD, Bixler GV, Barber AJ, Antonetti DA et al. Whole genome assessment of the retinal response to diabetes reveals a progressive neurovascular inflammatory response. BMC Medical Genomics 2008; 1: 26.

    Article  Google Scholar 

  20. Duh EJ, Yang HS, Haller JA, De JE, Humayun MS, Gehlbach P et al. Vitreous levels of pigment epithelium-derived factor and vascular endothelial growth factor: implications for ocular angiogenesis. Am J Ophthalmol 2004; 137: 668–674.

    CAS  PubMed  Google Scholar 

  21. Hernandez C, Segura RM, Fonollosa A, Carrasco E, Francisco G, Simo R . Interleukin-8, monocyte chemoattractant protein-1 and IL-10 in the vitreous fluid of patients with proliferative diabetic retinopathy. Diabet Med 2005; 22: 719–722.

    Article  CAS  Google Scholar 

  22. Antonetti DA, Barber AJ, Khin S, Lieth E, Tarbell JM, Gardner TW . Vascular permeability in experimental diabetes is associated with reduced endothelial occludin content: vascular endothelial growth factor decreases occludin in retinal endothelial cells. Penn State Retina Research Group. Diabetes 1998; 47: 1953–1959.

    Article  CAS  Google Scholar 

  23. Krady JK, Basu A, Allen CM, Xu Y, LaNoue KF, Gardner TW et al. Minocycline reduces proinflammatory cytokine expression, microglial activation, and caspase-3 activation in a rodent model of diabetic retinopathy. Diabetes 2005; 54: 1559–1565.

    Article  CAS  Google Scholar 

  24. US Food and Drug Administration. Guidance for Industry: Pharmacogenomic Data Submissions 2005.

  25. Freeman WM, Patel KM, Brucklacher RM, Lull ME, Erwin M, Morgan D et al. Persistent alterations in mesolimbic gene expression with abstinence from cocaine self-administration. Neuropsychopharmacology 2008; 33: 1807–1817.

    Article  CAS  Google Scholar 

  26. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25: 402–408.

    Article  CAS  Google Scholar 

  27. Fort PE, Freeman WM, Losiewicz MK, Singh RS, Gardner TW . The retinal proteome in experimental diabetic retinopathy: up-regulation of crystallins and reversal by systemic and periocular insulin. Mol Cell Proteomics 2009; 8: 767–779.

    Article  CAS  Google Scholar 

  28. Reiter CE, Wu X, Sandirasegarane L, Nakamura M, Gilbert KA, Singh RS et al. Diabetes reduces basal retinal insulin receptor signaling: reversal with systemic and local insulin. Diabetes 2006; 55: 1148–1156.

    Article  CAS  Google Scholar 

  29. VanGuilder HD, Brucklacher RM, Patel K, Ellis RW, Freeman WM, Barber AJ . Diabetes downregulates presynaptic proteins and reduces basal synapsin I phosphorylation in rat retina. Eur J Neurosci 2008; 28: 1–11.

    Article  Google Scholar 

  30. Barber AJ, Lieth E, Khin SA, Antonetti DA, Buchanan AG, Gardner TW . Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin. J Clin Invest 1998; 102: 783–791.

    Article  CAS  Google Scholar 

  31. Gastinger MJ, Singh RS, Barber AJ . Loss of cholinergic and dopaminergic amacrine cells in streptozotocin-diabetic rat and Ins2Akita-diabetic mouse retinas. Invest Ophthalmol Vis Sci 2006; 47: 3143–3150.

    Article  Google Scholar 

  32. Antonetti DA, Barber AJ, Bronson SK, Freeman WM, Gardner TW, Jefferson LS et al. Diabetic retinopathy: seeing beyond glucose-induced microvascular disease. Diabetes 2006; 55: 2401–2411.

    Article  CAS  Google Scholar 

  33. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999; 286: 531–537.

    Article  CAS  Google Scholar 

  34. Lauritzen T, Frost-Larsen K, Larsen HW, Deckert T . Two-year experience with continuous subcutaneous insulin infusion in relation to retinopathy and neuropathy. Diabetes 1985; 34 (Suppl 3): 74–79.

    Article  Google Scholar 

  35. Waltman S, Krupin T, Hanish S, Oestrich C, Becker B . Alteration of the blood-retinal barrier in experimental diabetes mellitus. Arch Ophthalmol 1978; 96: 878–879.

    Article  CAS  Google Scholar 

  36. Kernell A, Arnqvist H . Effect of insulin treatment on the blood-retinal barrier in rats with streptozocin-induced diabetes. Arch Ophthalmol 1983; 101: 968–970.

    Article  CAS  Google Scholar 

  37. Asnaghi V, Gerhardinger C, Hoehn T, Adeboje A, Lorenzi M . A role for the polyol pathway in the early neuroretinal apoptosis and glial changes induced by diabetes in the rat. Diabetes 2003; 52: 506–511.

    Article  CAS  Google Scholar 

  38. Kowluru RA, Chakrabarti S, Chen S . Re-institution of good metabolic control in diabetic rats and activation of caspase-3 and nuclear transcriptional factor (NF-kappaB) in the retina. Acta Diabetol 2004; 41: 194–199.

    Article  CAS  Google Scholar 

  39. Li Y, St John MA, Zhou X, Kim Y, Sinha U, Jordan RC et al. Salivary transcriptome diagnostics for oral cancer detection. Clin Cancer Res 2004; 10: 8442–8450.

    Article  CAS  Google Scholar 

  40. Havrilesky LJ, Whitehead CM, Rubatt JM, Cheek RL, Groelke J, He Q et al. Evaluation of biomarker panels for early stage ovarian cancer detection and monitoring for disease recurrence. Gynecol Oncol 2008; 110: 374–382.

    Article  CAS  Google Scholar 

  41. Muthukumar T, Dadhania D, Ding R, Snopkowski C, Naqvi R, Lee JB et al. Messenger RNA for FOXP3 in the urine of renal-allograft recipients. N Engl J Med 2005; 353: 2342–2351.

    Article  CAS  Google Scholar 

  42. Spira A, Beane JE, Shah V, Steiling K, Liu G, Schembri F et al. Airway epithelial gene expression in the diagnostic evaluation of smokers with suspect lung cancer. Nat Med 2007; 13: 361–366.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Lamont Harris for assistance with figure preparation; Wendy Dunton, Allison Collins and Sara Mendoza De Granja in the Penn State JDRF Diabetic Retinopathy Center Animal Models Core; Alan Kunselman for data analysis, Elliot Vessel, Joseph Freeman and Alanna Roff for editorial suggestions; and Janelle Roman for administrative support. This study was supported with research funding from the Juvenile Diabetes Research Foundation to WMF, SRK, AJB, DAA, KFL, SKB and TWG, as well as Pennsylvania Tobacco Settlement Funds to KFL, SRK, WMF and TWG. TWG is the Jack and Nancy Turner Professor of Ophthalmology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W M Freeman.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on The Pharmacogenomics Journal website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freeman, W., Bixler, G., Brucklacher, R. et al. A multistep validation process of biomarkers for preclinical drug development. Pharmacogenomics J 10, 385–395 (2010). https://doi.org/10.1038/tpj.2009.60

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2009.60

Keywords

This article is cited by

Search

Quick links