Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Gene network analysis of oxidative stress-mediated drug sensitivity in resistant ovarian carcinoma cells

Abstract

Drug resistance in cancer cells involves complex molecular mechanisms and ovarian carcinoma cells become resistant to chlorambucil (Cbl) after continuous treatment. This drug- and ionizing radiation-resistant cells have lower level of endogenous ROS (reactive oxygen species) compared with sensitive cells. Elevation of the cellular ROS level by exogenous ROS generation increases the sensitivity of Cbl to resistant cells. In contrast, antioxidants prevent the sensitization of resistant cells to Cbl by H2O2, COS (chronic oxidative stress) or NOO. The molecular mechanism of drug sensitivity with COS has been investigated by microarray gene expressions followed by gene network analysis and it reveals that a cdc42/rac1 guanine exchange factor, ARHGEF6, with p53 and DNA-Pkc (PRKDC) is central to induce apoptosis in Cblcos (Cbl with COS) cells. mRNA and protein levels of major gene network pathway differ significantly in Cblcos cells than in Cbl-treated cells. Moreover, DNA-PKc physically interacts with ARHGEF6 and p53 mostly in the nucleus of Cbl-treated cells, whereas in Cblcos-treated cells, its interactions are mostly in the cytoplasm. These results suggest that low doses of Cbl and very low doses of COS together kill Cbl-resistant ovarian carcinoma cells and ARHGEF6 signaling may have an instrumental role in induction of apoptosis in Cblcos cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

ERCC-4 :

excision repair cross-complementing rodent repair deficiency gene, complementation group 4

BCNU:

bis-chloronitrosourea, a generic anticancer drug named Carmustine

QPCR:

quantitative PCR

GSH:

glutathione

s.e.m.:

standard error of the mean

References

  1. Horton JK, Roy G, Piper JT, Van Houten B, Awasthi YC, Mitra S et al. Characterization of a chlorambucil-resistant human ovarian carcinoma cell line overexpressing glutathione S-transferase mu. Biochem Pharmacol 1999; 58: 693–702.

    Article  CAS  PubMed  Google Scholar 

  2. Roy G, Horton JK, Roy R, Denning T, Mitra S, Boldogh I . Acquired alkylating drug resistance of a human ovarian carcinoma cell line is unaffected by altered levels of pro- and anti-apoptotic proteins. Oncogene 2000; 19: 141–150.

    Article  CAS  PubMed  Google Scholar 

  3. Mitra S, Izumi T, Boldogh I, Bhakat KK, Hill JW, Hazra TK . Choreography of oxidative damage repair in mammalian genomes. Free Radic Biol Med 2002; 33: 15–28.

    Article  CAS  PubMed  Google Scholar 

  4. Ruller S, Stahl C, Kohler G, Eickhoff B, Breder J, Schlaak M et al. Sensitization of tumor cells to ribotoxic stress-induced apoptotic cell death: a new therapeutic strategy. Clin Cancer Res 1999; 5: 2714–2725.

    CAS  PubMed  Google Scholar 

  5. Fang J, Seki T, Maeda H . Therapeutic strategies by modulating oxygen stress in cancer and inflammation. Adv Drug Deliv Rev 2009; 61: 290–302.

    Article  CAS  PubMed  Google Scholar 

  6. Morel Y, Barouki R . Repression of gene expression by oxidative stress. Biochem J 1999; 342: 481–496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Keyse SM . Protein phosphatases and the regulation of mitogen-activated protein kinase signalling. Curr Opin Cell Biol 2000; 12: 186–192.

    Article  CAS  PubMed  Google Scholar 

  8. Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B . A model for p53-induced apoptosis. Nature 1997; 389: 300–305.

    Article  CAS  PubMed  Google Scholar 

  9. Laurent A, Nicco C, Chereau C, Goulvestre C, Alexandre J, Alves A et al. Controlling tumor growth by modulating endogenous production of reactive oxygen species. Cancer Res 2005; 65: 948–956.

    CAS  PubMed  Google Scholar 

  10. Kong Q, Beel JA, Lillehei KO . A threshold concept for cancer therapy. Med Hypotheses 2000; 55: 29–35.

    Article  CAS  PubMed  Google Scholar 

  11. Mookerjee A, Basu JM, Majumder S, Chatterjee S, Panda GS, Dutta P et al. A novel copper complex induces ROS generation in doxorubicin resistant Ehrlich ascitis carcinoma cells and increases activity of antioxidant enzymes in vital organs in vivo. BMC Cancer 2006; 6: 267.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mookerjee A, Mookerjee Basu J, Dutta P, Majumder S, Bhattacharyya S, Biswas J et al. Overcoming drug-resistant cancer by a newly developed copper chelate through host-protective cytokine-mediated apoptosis. Clin Cancer Res 2006; 12: 4339–4349.

    Article  CAS  PubMed  Google Scholar 

  13. Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C . A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods 1995; 184: 39–51.

    Article  CAS  PubMed  Google Scholar 

  14. Das GC, Bacsi A, Shrivastav M, Hazra TK, Boldogh I . Enhanced gamma-glutamylcysteine synthetase activity decreases drug-induced oxidative stress levels and cytotoxicity. Mol Carcinog 2006; 45: 635–647.

    Article  CAS  PubMed  Google Scholar 

  15. Boldogh I, Roy G, Lee MS, Bacsi A, Hazra TK, Bhakat KK et al. Reduced DNA double strand breaks in chlorambucil resistant cells are related to high DNA-PKcs activity and low oxidative stress. Toxicology 2003; 193: 137–152.

    Article  CAS  PubMed  Google Scholar 

  16. Anderson ME . Glutathione: an overview of biosynthesis and modulation. Chem Biol Interact 1998; 111–112: 1–14.

    Article  PubMed  Google Scholar 

  17. Davies KJ . The broad spectrum of responses to oxidants in proliferating cells: a new paradigm for oxidative stress. IUBMB Life 1999; 48: 41–47.

    Article  CAS  PubMed  Google Scholar 

  18. Panayiotidis M, Tsolas O, Galaris D . Glucose oxidase-produced H2O2 induces Ca2+-dependent DNA damage in human peripheral blood lymphocytes. Free Radic Biol Med 1999; 26: 548–556.

    Article  CAS  PubMed  Google Scholar 

  19. Casentini-Borocz D, Bringman T . Enzyme immunoconjugates utilizing glucose oxidase and myeloperoxidase are cytotoxic to Candida tropicalis. Antimicrob Agents Chemother 1990; 34: 875–880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mates JM, Sanchez-Jimenez FM . Role of reactive oxygen species in apoptosis: implications for cancer therapy. Int J Biochem Cell Biol 2000; 32: 157–170.

    Article  CAS  PubMed  Google Scholar 

  21. Le Romancer M, Cosulich SC, Jackson SP, Clarke PR . Cleavage and inactivation of DNA-dependent protein kinase catalytic subunit during apoptosis in Xenopus egg extracts. J Cell Sci 1996; 109: 3121–3127.

    CAS  PubMed  Google Scholar 

  22. Macip S, Igarashi M, Berggren P, Yu J, Lee SW, Aaronson SA . Influence of induced reactive oxygen species in p53-mediated cell fate decisions. Mol Cell Biol 2003; 23: 8576–8585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Strausberg RL, Feingold EA, Grouse LH, Derge JG, Klausner RD, Collins FS et al. Generation and initial analysis of more than 15 000 full-length human and mouse cDNA sequences. Proc Natl Acad Sci USA 2002; 99: 16899–16903.

    Article  PubMed  Google Scholar 

  24. Inohara N, Koseki T, Hu Y, Chen S, Nunez G . CLARP, a death effector domain-containing protein interacts with caspase-8 and regulates apoptosis. Proc Natl Acad Sci USA 1997; 94: 10717–10722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schickling O, Stegh AH, Byrd J, Peter ME . Nuclear localization of DEDD leads to caspase-6 activation through its death effector domain and inhibition of RNA polymerase I dependent transcription. Cell Death Differ 2001; 8: 1157–1168.

    Article  CAS  PubMed  Google Scholar 

  26. Messina E, Lupi F, Barile L, Giacomello A . Cyclic nucleotides and neuroblastoma differentiation. Nucleosides Nucleotides Nucleic Acids 2004; 23: 1551–1554.

    Article  CAS  PubMed  Google Scholar 

  27. Zegers MM, Forget MA, Chernoff J, Mostov KE, ter Beest MB, Hansen SH . Pak1 and PIX regulate contact inhibition during epithelial wound healing. EMBO J 2003; 22: 4155–4165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Park HS, Lee SH, Park D, Lee JS, Ryu SH, Lee WJ et al. Sequential activation of phosphatidylinositol 3-kinase, beta Pix, Rac1, and Nox1 in growth factor-induced production of H2O2 . Mol Cell Biol 2004; 24: 4384–4394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Srivastava RK, Srivastava AR, Cho-Chung YS, Longo DL . Synergistic effects of retinoic acid and 8-Cl-cAMP on apoptosis require caspase-3 activation in human ovarian cancer cells. Oncogene 1999; 18: 1755–1763.

    Article  CAS  PubMed  Google Scholar 

  30. Bacsi A, Kannan S, Lee MS, Hazra TK, Boldogh I . Modulation of DNA-dependent protein kinase activity in chlorambucil-treated cells. Free Radic Biol Med 2005; 39: 1650–1659.

    Article  CAS  PubMed  Google Scholar 

  31. Yin Y, Liu YX, Jin YJ, Hall EJ, Barrett JC . PAC1 phosphatase is a transcription target of p53 in signalling apoptosis and growth suppression. Nature 2003; 422: 527–531.

    Article  CAS  PubMed  Google Scholar 

  32. Cardile V, Scifo C, Russo A, Falsaperla M, Morgia G, Motta M et al. Involvement of HSP70 in resveratrol-induced apoptosis of human prostate cancer. Anticancer Res 2003; 23: 4921–4926.

    CAS  PubMed  Google Scholar 

  33. Vafa O, Wade M, Kern S, Beeche M, Pandita TK, Hampton GM et al. c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol Cell 2002; 9: 1031–1044.

    Article  CAS  PubMed  Google Scholar 

  34. Mates JM, Segura JA, Alonso FJ, Marquez J . Intracellular redox status and oxidative stress: implications for cell proliferation, apoptosis, and carcinogenesis. Arch Toxicol 2008; 82: 273–299.

    Article  CAS  PubMed  Google Scholar 

  35. Hayden RE, Pratt G, Davies NJ, Khanim FL, Birtwistle J, Delgado J et al. Treatment of primary CLL cells with bezafibrate and medroxyprogesterone acetate induces apoptosis and represses the pro-proliferative signal of CD40-ligand, in part through increased 15dDelta12,14,PGJ2. Leukemia 2009; 23: 292–304.

    Article  CAS  PubMed  Google Scholar 

  36. Ferriero DM . Oxidant mechanisms in neonatal hypoxia–ischemia. Dev Neurosci 2001; 23: 198–202.

    Article  CAS  PubMed  Google Scholar 

  37. Ricci JE, Munoz-Pinedo C, Fitzgerald P, Bailly-Maitre B, Perkins GA, Yadava N et al. Disruption of mitochondrial function during apoptosis is mediated by caspase cleavage of the p75 subunit of complex I of the electron transport chain. Cell 2004; 117: 773–786.

    Article  CAS  PubMed  Google Scholar 

  38. Lawley PD, Phillips DH . DNA adducts from chemotherapeutic agents. Mutat Res 1996; 355: 13–40.

    Article  PubMed  Google Scholar 

  39. Marra M, Santini D, Meo G, Vincenzi B, Zappavigna S, Baldi A et al. CYR61 down-modulation potentiates the anti-cancer effects of zoledronic acid in androgen-independent prostate cancer cells. Int J Cancer 2009; 125: 2004–2013.

    Article  CAS  PubMed  Google Scholar 

  40. Karpinich NO, Tafani M, Rothman RJ, Russo MA, Farber JL . The course of etoposide-induced apoptosis from damage to DNA and p53 activation to mitochondrial release of cytochrome c. J Biol Chem 2002; 277: 16547–16552.

    Article  CAS  PubMed  Google Scholar 

  41. Jack MT, Woo RA, Motoyama N, Takai H, Lee PW . DNA-dependent protein kinase and checkpoint kinase 2 synergistically activate a latent population of p53 upon DNA damage. J Biol Chem 2004; 279: 15269–15273.

    Article  CAS  PubMed  Google Scholar 

  42. Koike M, Shiomi T, Koike A . Ku70 can translocate to the nucleus independent of Ku80 translocation and DNA-PK autophosphorylation. Biochem Biophys Res Commun 2000; 276: 1105–1111.

    Article  CAS  PubMed  Google Scholar 

  43. Nilsson A, Sirzen F, Lewensohn R, Wang N, Skog S . Cell cycle-dependent regulation of the DNA-dependent protein kinase. Cell Prolif 1999; 32: 239–248.

    Article  CAS  PubMed  Google Scholar 

  44. Mahyar-Roemer M, Katsen A, Mestres P, Roemer K . Resveratrol induces colon tumor cell apoptosis independently of p53 and precede by epithelial differentiation, mitochondrial proliferation and membrane potential collapse. Int J Cancer 2001; 94: 615–622.

    Article  CAS  PubMed  Google Scholar 

  45. Dai C, Chung IJ, Jiang S, Price JO, Krantz SB . Reduction of cell cycle progression in human erythroid progenitor cells treated with tumour necrosis factor alpha occurs with reduced CDK6 and is partially reversed by CDK6 transduction. Br J Haematol 2003; 121: 919–927.

    Article  CAS  PubMed  Google Scholar 

  46. Hacker H, Karin M . Is NF-kappaB2/p100 a direct activator of programmed cell death? Cancer Cell 2002; 2: 431–433.

    Article  CAS  PubMed  Google Scholar 

  47. Han DC, Lee MY, Shin KD, Jeon SB, Kim JM, Son KH et al. 2′-Benzoyloxycinnamaldehyde induces apoptosis in human carcinoma via reactive oxygen species. J Biol Chem 2004; 279: 6911–6920.

    Article  CAS  PubMed  Google Scholar 

  48. Gamper C, van Eyndhoven WG, Schweiger E, Mossbacher M, Koo B, Lederman S . TRAF-3 interacts with p62 nucleoporin, a component of the nuclear pore central plug that binds classical NLS-containing import complexes. Mol Immunol 2000; 37: 73–84.

    Article  CAS  PubMed  Google Scholar 

  49. Aghdassi A, Phillips P, Dudeja V, Dhaulakhandi D, Sharif R, Dawra R et al. Heat shock protein 70 increases tumorigenicity and inhibits apoptosis in pancreatic adenocarcinoma. Cancer Res 2007; 67: 616–625.

    Article  CAS  PubMed  Google Scholar 

  50. Carboni GL, Gao B, Nishizaki M, Xu K, Minna JD, Roth JA et al. CACNA2D2-mediated apoptosis in NSCLC cells is associated with alterations of the intracellular calcium signaling and disruption of mitochondria membrane integrity. Oncogene 2003; 22: 615–626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Vilenchik M, Raffo AJ, Benimetskaya L, Shames D, Stein CA . Antisense RNA down-regulation of bcl-xL expression in prostate cancer cells leads to diminished rates of cellular proliferation and resistance to cytotoxic chemotherapeutic agents. Cancer Res 2002; 62: 2175–2183.

    CAS  PubMed  Google Scholar 

  52. Deverman BE, Cook BL, Manson SR, Niederhoff RA, Langer EM, Rosova I et al. Bcl-xL deamidation is a critical switch in the regulation of the response to DNA damage. Cell 2002; 111: 51–62.

    Article  CAS  PubMed  Google Scholar 

  53. Takehara T, Takahashi H . Suppression of Bcl-xL deamidation in human hepatocellular carcinomas. Cancer Res 2003; 63: 3054–3057.

    CAS  PubMed  Google Scholar 

  54. Zhang D, Fan D . Multidrug resistance in gastric cancer: recent research advances and ongoing therapeutic challenges. Expert Rev Anticancer Ther 2007; 7: 1369–1378.

    Article  CAS  PubMed  Google Scholar 

  55. Nooter K, Stoter G . Molecular mechanisms of multidrug resistance in cancer chemotherapy. Pathol Res Pract 1996; 192: 768–780.

    Article  CAS  PubMed  Google Scholar 

  56. Jaksic B, Brugiatelli M, Krc I, Losonczi H, Holowiecki J, Planinc-Peraica A et al. High dose chlorambucil versus Binet's modified cyclophosphamide, doxorubicin, vincristine, and prednisone regimen in the treatment of patients with advanced B-cell chronic lymphocytic leukemia. Results of an international multicenter randomized trial. International Society for Chemo-Immunotherapy, Vienna. Cancer 1997; 79: 2107–2114.

    Article  CAS  PubMed  Google Scholar 

  57. Silvennoinen R, Malminiemi K, Malminiemi O, Seppala E, Vilpo J . Pharmacokinetics of chlorambucil in patients with chronic lymphocytic leukaemia: comparison of different days, cycles and doses. Pharmacol Toxicol 2000; 87: 223–228.

    Article  CAS  PubMed  Google Scholar 

  58. Philpott GW, Bower RJ, Parker KL, Shearer WT, Parker CW . Affinity cytotoxicity of tumor cells with antibody-glucose oxidase conjugates, peroxidase, and arsphenamine. Cancer Res 1974; 34: 2159–2164.

    CAS  PubMed  Google Scholar 

  59. Starke PE, Farber JL . Endogenous defenses against the cytotoxicity of hydrogen peroxide in cultured rat hepatocytes. J Biol Chem 1985; 260: 86–92.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank Dr I Boldogh for gifting A2780 and A2780/100 cells; Dr G Das for standardizing COS treatment; Dr M Sinha in the bioinformatics division for analyzing microarray data; Silicon Genetics and Spotfire Inc. for using GeneSpring and Spotfire software, respectively. I thank anonymous reviewers for critical comments for improving the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A K Maiti.

Additional information

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website (http://www.nature.com/tpj)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maiti, A. Gene network analysis of oxidative stress-mediated drug sensitivity in resistant ovarian carcinoma cells. Pharmacogenomics J 10, 94–104 (2010). https://doi.org/10.1038/tpj.2009.49

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2009.49

Keywords

This article is cited by

Search

Quick links