Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Self-sufficient metal–air batteries for autonomous systems

Subjects

We explore the challenges and opportunities for electrochemical energy storage technologies that harvest active materials from their surroundings. Progress hinges on advances in chemical engineering science related to membrane design; control of mass transport, reaction kinetics and precipitation at electrified interfaces; and regulation of electrocrystallization of metals through substrate design.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SMAB systems for autonomous robotic systems.
Fig. 2: Strategies to develop rechargeable SMAB systems with high areal capacity.

References

  1. Zhao, Q., Stalin, S., Zhao, C.-Z. & Archer, L. A. Nat. Rev. Mater. 5, 229–252 (2020).

    Article  ADS  CAS  Google Scholar 

  2. Aubin, C. A. et al. Nature 571, 51–57 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Jin, S. et al. Faraday Discuss. 248, 305–317 (2024).

    Article  CAS  PubMed  Google Scholar 

  4. Choudhury, S. et al. Sci. Adv. 3, e1602809 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  5. Kondori, A. et al. Science 379, 499–505 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Asadi, M. et al. Nature 555, 502–506 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Jin, S. et al. J. Am. Chem. Soc. 144, 19344–19352 (2022).

    Article  CAS  PubMed  Google Scholar 

  8. Zheng, J. et al. Chem. Soc. Rev. 49, 2701–2750 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Li, G. et al. J. Fluid Mechan. 930, A26 (2022).

    Article  CAS  Google Scholar 

  10. Matsuda, S. et al. Faraday Discuss. 248, 341–354 (2024).

    Article  CAS  PubMed  Google Scholar 

  11. Meckler, S. M. et al. Angew. Chem Int. Ed. 130, 5006–5010 (2018).

    Article  ADS  Google Scholar 

  12. Zhao, Q. et al. Nat. Commun. 12, 6034 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nagy, K. S., Kazemiabnavi, S., Thornton, K. & Siegel, D. J. ACS Appl. Mater. Interfaces 11, 7954–7964 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Zheng, J. et al. Science 366, 645–648 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Mullins, W. W. et al. J. Appl. Phys. 35, 444–451 (1964).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynden A. Archer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, S., Hong, S. & Archer, L.A. Self-sufficient metal–air batteries for autonomous systems. Nat Chem Eng 1, 194–197 (2024). https://doi.org/10.1038/s44286-024-00039-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44286-024-00039-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing