Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Performance metrics for nanofiltration-based selective separation for resource extraction and recovery

An Author Correction to this article was published on 16 October 2023

This article has been updated

Abstract

Membrane filtration has been widely adopted in various water treatment applications, but its use in selective solute separation for resource extraction and recovery is an emerging research area. When a membrane process is applied for solute–solute separation to extract solutes as the product, the performance metrics and process optimization strategies should differ from a membrane process for water production because the separation goals are fundamentally different. Here we used lithium (Li) magnesium (Mg) separation as a representative solute–solute separation to illustrate the deficiency of existing performance evaluation framework developed for water–solute separation using nanofiltration (NF). We performed coupon- and module-scale analyses of mass transfer to elucidate how membrane properties and operating conditions affect the performance of Li/Mg separation in NF. Notably, we identified an important operational trade-off between Li/Mg selectivity and Li recovery, which is critical for process optimization. We also established a new framework for evaluating membrane performance based on the success criteria of Li purity and recovery and further extended this framework to separation with the target ions in the brine. This analysis lays the theoretical foundation for performance evaluation and process optimization for NF-based selective solute separation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: NF-based solute–solute separation and success criteria.
Fig. 2: Summary of membrane performance for NF-based Li/Mg separation.
Fig. 3: Application of the SDEM model to describe NF-based Li/Mg separation.
Fig. 4: Representative results from module-scale modelling of NF-based Li/Mg separation.
Fig. 5: Trade-off between Li selectivity and recovery in NF-based Li/Mg separation.
Fig. 6: Performance metrics of NF membrane for Li/Mg separation (with either permeate or retentate as the product).

Similar content being viewed by others

Data availability

Source data are provided with the paper. Source data for figures are in Excel format (.xlsx) and also available publicly via https://doi.org/10.6084/m9.figshare.21944408.

Code availability

The code for generating Fig. 4 in the manuscript is available publicly via the following link: https://github.com/ruoyuwang16/NATWATER-22-0394-Data-and-Codes.

Change history

References

  1. Zhao, Y. et al. Differentiating solutes with precise nanofiltration for next generation environmental separations: a review. Environ. Sci. Technol. 55, 1359–1376 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Epsztein, R., DuChanois, R. M., Ritt, C. L., Noy, A. & Elimelech, M. Towards single-species selectivity of membranes with subnanometre pores. Nat. Nanotechnol. 15, 426–436 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Werber, J. R., Deshmukh, A. & Elimelech, M. The critical need for increased selectivity, not increased water permeability, for desalination membranes. Environ. Sci. Technol. Lett. 3, 112–120 (2016).

    Article  CAS  Google Scholar 

  4. Elimelech, M. & Phillip, W. A. The future of seawater desalination: energy, technology, and the environment. Science 333, 712–717 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Park, H. B., Kamcev, J., Robeson, L. M., Elimelech, M. & Freeman, B. D. Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science 356, 1138–1148 (2017).

    Article  Google Scholar 

  6. Werber, J. R., Porter, C. J. & Elimelech, M. A path to ultraselectivity: support layer properties to maximize performance of biomimetic desalination membranes. Environ. Sci. Technol. 52, 10737–10747 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Yang, Z., Guo, H. & Tang, C. Y. The upper bound of thin-film composite (TFC) polyamide membranes for desalination. J. Memb. Sci. 590, 117297 (2019).

    Article  Google Scholar 

  8. Yang, Z., Long, L., Wu, C. & Tang, C. Y. High permeance or high selectivity? Optimization of system-scale nanofiltration performance constrained by the upper bound. ACS ES&T Eng. 2, 377–390 (2022).

    Article  CAS  Google Scholar 

  9. Fang, W., Shi, L. & Wang, R. Interfacially polymerized composite nanofiltration hollow fiber membranes for low-pressure water softening. J. Memb. Sci. 430, 129–139 (2013).

    Article  CAS  Google Scholar 

  10. Labban, O., Liu, C., Chong, T. H., Lienhard, V. & John, H. Fundamentals of low-pressure nanofiltration: membrane characterization, modeling, and understanding the multi-ionic interactions in water softening. J. Memb. Sci. 521, 18–32 (2017).

    Article  CAS  Google Scholar 

  11. Wang, T., Han, H., Wu, Z., Dai, R. & Wang, Z. Humic acid modified selective nanofiltration membrane for efficient separation of PFASs and mineral salts. ACS ES&T Water 2, 1152–1160 (2022).

    Article  CAS  Google Scholar 

  12. Zhao, Y., Tong, X. & Chen, Y. Fit-for-purpose design of nanofiltration membranes for simultaneous nutrient recovery and micropollutant removal. Environ. Sci. Technol. 55, 3352–3361 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Lin, J. et al. Toward resource recovery from textile wastewater: dye extraction, water and base/acid regeneration using a hybrid NF-BMED process. ACS Sustain. Chem. Eng. 3, 1993–2001 (2015).

    Article  CAS  Google Scholar 

  14. Li, X. et al. Membrane-based technologies for lithium recovery from water lithium resources: a review. J. Membr. Sci. 591, 117317 (2019).

    Article  CAS  Google Scholar 

  15. Woong, J. et al. Hydrometallurgy recovery of lithium from Uyuni salar brine. Hydrometallurgy 117–118, 64–70 (2012).

    Google Scholar 

  16. Swain, B. Recovery and recycling of lithium: a review. Sep. Purif. Technol. 172, 388–403 (2017).

    Article  CAS  Google Scholar 

  17. Xu, S. et al. Extraction of lithium from Chinese salt-lake brines by membranes: design and practice. J. Membr. Sci. 635, 119441 (2021).

    Article  CAS  Google Scholar 

  18. Xu, P., Hong, J., Xu, Z., Xia, H. & Ni, Q. Novel aminated graphene quantum dots (GQDs-NH2)-engineered nanofiltration membrane with high Mg2+/Li+ separation efficiency. Sep. Purif. Technol. 258, 118042 (2021).

    Article  CAS  Google Scholar 

  19. Yang, Z., Fang, W., Wang, Z., Zhang, R. & Zhu, Y. Dual-skin layer nanofiltration membranes for highly selective Li+/Mg2+ separation. J. Membr. Sci. 620, 118973 (2021).

    Article  Google Scholar 

  20. Bi, Q., Zhang, C., Liu, J., Liu, X. & Xu, S. Positively charged zwitterion-carbon nitride functionalized nanofiltration membranes with excellent separation performance of Mg2+/Li+ and good antifouling properties. Sep. Purif. Technol. 257, 117959 (2021).

    Article  CAS  Google Scholar 

  21. Xu, P. et al. ‘Bridge’ graphene oxide modified positive charged nanofiltration thin membrane with high efficiency for Mg2+/Li+ separation. Desalination 488, 114522 (2020).

    Article  CAS  Google Scholar 

  22. Shen, Q., Xu, S., Xu, Z.-L., Zhang, H.-Z. & Dong, Z.-Q. Novel thin-film nanocomposite membrane with water-soluble polyhydroxylated fullerene for the separation of Mg2+/Li+ aqueous solution. J. Appl. Polym. Sci. 136, 48029 (2019).

    Article  Google Scholar 

  23. Guo, C. et al. Amino-rich carbon quantum dots ultrathin nanofiltration membranes by double ‘one-step’ methods: breaking through trade-off among separation, permeation and stability. Chem. Eng. J. 404, 127144 (2021).

    Article  CAS  Google Scholar 

  24. He, R. et al. Unprecedented Mg2+/Li+ separation using layer-by-layer based nanofiltration hollow fiber membranes. Desalination 525, 115492 (2022).

    Article  CAS  Google Scholar 

  25. Wang, R., Zhang, J., Tang, C. Y. & Lin, S. Understanding selectivity in solute–solute separation: definitions, measurements, and comparability. Environ. Sci. Technol. 56, 2605–2616 (2022).

    Article  CAS  PubMed  Google Scholar 

  26. Yaroshchuk, A. E. Negative rejection of ions in pressure-driven membrane processes. Adv. Colloid Interface Sci. 139, 150–173 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Yaroshchuk, A., Bruening, M. L. & Zholkovskiy, E. Modelling nanofiltration of electrolyte solutions. Adv. Colloid Interface Sci. 268, 39–63 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Yaroshchuk, A., Bruening, M. L., Eduardo, E. & Bernal, L. Solution-diffusion-electro-migration model and its uses for analysis of nanofiltration, pressure-retarded osmosis and forward osmosis in multi-ionic solutions. J. Membr. Sci. 447, 463–476 (2013).

    Article  CAS  Google Scholar 

  29. Yaroshchuk, A. & Bruening, M. L. An analytical solution of the solution-diffusion-electromigration equations reproduces trends in ion rejections during nanofiltration of mixed electrolytes. J. Membr. Sci. 523, 361–372 (2017).

    Article  CAS  Google Scholar 

  30. Osorio, S. C., Biesheuvel, P. M., Dykstra, J. E. & Virga, E. Nanofiltration of complex mixtures: the effect of the adsorption of divalent ions on membrane retention layer. Desalination 527, 115552 (2022).

    Article  Google Scholar 

  31. Wang, R. & Lin, S. Pore model for nanofiltration: history, theoretical framework, key predictions, limitations, and prospects. J. Membr. Sci. 620, 118809 (2021).

    Article  CAS  Google Scholar 

  32. Geise, G. M., Park, H. B., Sagle, A. C., Freeman, B. D. & McGrath, J. E. Water permeability and water/salt selectivity tradeoff in polymers for desalination. J. Membr. Sci. 369, 130–138 (2011).

    Article  CAS  Google Scholar 

  33. Ritt, C. L. et al. The open membrane database: synthesis–structure–performance relationships of reverse osmosis membranes. J. Membr. Sci. 641, 119927 (2022).

    Article  CAS  Google Scholar 

  34. Zhao, Z. et al. Exploring ions selectivity of nanofiltration membranes for rare earth wastewater treatment. Sep. Purif. Technol. 289, 120748 (2022).

    Article  CAS  Google Scholar 

  35. Pitzer, K. S. & Kim, J. J. Thermodynamics of electrolytes. IV. Activity and osmotic coefficients for mixed electrolytes. J. Am. Chem. Soc. 96, 5701–5707 (1974).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from the US National Science Foundation (#2017998), Water Research Foundation (Paul L. Busch Award to S.L.), US-Israel Binational Agricultural Research and Development Fund (BARD IS-5209-19) and the National Natural Science Foundation of China (#U20A20139).

Author information

Authors and Affiliations

Authors

Contributions

R.W. and S.L. conceived the idea and designed the research. R.W. conducted the quantitative analysis. All authors participated in the discussion and writing of the paper.

Corresponding author

Correspondence to Shihong Lin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Akshay Deshmukh, Jiangnan Shen and Jian Jin for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text 1–2, Tables 1–4, Figs. 1–6 and codes.

Reporting Summary

Supplementary Code 1

Codes of a MATLAB application used for data fitting.

Supplementary Data 1

Source data for supplementary figures.

Source data

Source Data

Source data for Figs. 2–6.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., He, R., He, T. et al. Performance metrics for nanofiltration-based selective separation for resource extraction and recovery. Nat Water 1, 291–300 (2023). https://doi.org/10.1038/s44221-023-00037-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44221-023-00037-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing