Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Uneven agricultural contraction within fast-urbanizing urban agglomeration decreases the nitrogen use efficiency of crop production

Abstract

Diverse development paths among cities within an urban agglomeration can lead to uneven changes in their agricultural production scale, which reshape the inter-city food supply patterns and the spatiotemporal characteristics of nitrogen (N) pollution from the food system. Here, using Guangdong–Hong Kong–Macao Greater Bay Area of China as a case, we found a substantial decrease in N use efficiency of crop production from 45.2% to 29.3% during 1989–2007, along with a growing level of concentration of food N production in less-urbanized cities. From 1989 to 2018, 12.3% to 42.2% of total N pollution in food production became embedded in inter-city trade, leading to aggregation of N pollution in peripheral cities with relatively low levels of economic development. We suggest that protection and intensification of cropland from urban encroachment, as well as enhancing the economic and technical synergies among cities, can serve the sustainable transition of the food system with coordinated N pollution mitigation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Concentration of food N production in less-urbanized cities.
Fig. 2: Sankey diagram for N flows in the food system of GBA in 1989 and 2018.
Fig. 3: Characteristics of N emissions in the food system of GBA.
Fig. 4: Variance in food-related N emissions across the 11 cities in GBA in 1989 and 2018.
Fig. 5: N pollution embedded in inter-city food trade within GBA during 1989–2018.
Fig. 6: Inter-city flows of embedded N pollution.

Similar content being viewed by others

Data availability

Data supporting the findings of this study are available in the article and supplementary information file. Material flow data in the food system and socio-economic data are publicly available from Statistical Yearbook of Urban Construction in China (https://www.mohurd.gov.cn/gongkai/fdzdgknr/sjfb/tjxx/jstjnj/index.html), Guangdong Statistical Yearbook (https://stats.gd.gov.cn/gdtjnj/), Guangdong Rural Statistical Yearbook (https://stats.gd.gov.cn/gdnctjnj/), Statistical Yearbook of each city in PRD (https://stats.gd.gov.cn/), Hong Kong Annual Digest of Statistics (https://www.censtatd.gov.hk/en/EIndexbySubject.html?pcode=B1010003&scode=460), Monitoring of Solid Waste in Hong Kong (https://www.wastereduction.gov.hk/en-hk/resources-centre/waste-statistics), Yearbook of Statistics of Macao (https://www.dsec.gov.mo/en-US/Home/Publication/YearbookOfStatistics), and FAOSTAT (https://www.fao.org/faostat/en/#data). Parameters used for calculation of N flows as well as their sources are provided in the supplementary information file. Source data are provided with this paper.

Code availability

The code and algorithm developed in the study are available in Methods and Supplementary Information. Code for calculating the inter-city food N flows is available via Zenodo at https://zenodo.org/records/10868557 (ref. 60).

References

  1. Fang, C. L. & Yu, D. L. Urban agglomeration: an evolving concept of an emerging phenomenon. Landsc. Urban Plan. 162, 126–136 (2017).

    Article  Google Scholar 

  2. Elmqvist, T. et al. Sustainability and resilience for transformation in the urban century. Nat. Sustain. 2, 267–273 (2019).

    Article  Google Scholar 

  3. Fang, C. et al. Big data analysis on the spatial networks of urban agglomeration. Cities 102, 102735 (2020).

    Article  Google Scholar 

  4. Ouyang, X. et al. Land space optimization of urban–agriculture–ecological functions in the Changsha–Zhuzhou–Xiangtan Urban Agglomeration, China. Land Use Policy 117, 106112 (2022).

    Article  Google Scholar 

  5. Liu, Y. et al. The spatial integration and coordinated industrial development of urban agglomerations in the Yangtze River Economic Belt, China. Cities 104, 102801 (2020).

    Article  Google Scholar 

  6. Zhang, X. et al. A large but transient carbon sink from urbanization and rural depopulation in China. Nat. Sustain. 5, 321–328 (2022).

    Article  Google Scholar 

  7. Chen, C., Wen, Z. G. & Wang, Y. H. Nitrogen flow patterns in the food system among cities within urban agglomeration: a case study of the Pearl River Delta region. Sci. Total Environ. 703, 135506 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Béné, C. et al. Understanding food systems drivers: a critical review of the literature. Glob. Food Sec. 23, 149–159 (2019).

    Article  Google Scholar 

  9. Lassaletta, L. et al. Nitrogen use in the global food system: past trends and future trajectories of agronomic performance, pollution, trade, and dietary demand. Environ. Res. Lett. 11, 095007 (2016).

    Article  ADS  Google Scholar 

  10. Schulte-Uebbing, L. F., Beusen, A. H. W., Bouwman, A. F. & de Vries, W. From planetary to regional boundaries for agricultural nitrogen pollution. Nature 610, 507–512 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Chang, J. et al. Reconciling regional nitrogen boundaries with global food security. Nat. Food 2, 700–711 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Cui, S. H. et al. A hybrid method for quantifying China’s nitrogen footprint during urbanisation from 1990 to 2009. Environ. Int. 97, 137–145 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Oita, A. et al. Trends in the food nitrogen and phosphorus footprints for Asia’s giants: China, India, and Japan. Resour. Conserv. Recycl. 157, 104752 (2020).

    Article  Google Scholar 

  14. Xing, L. et al. Reducing food-system nitrogen input and emission through circular agriculture in montane and coastal regions. Resour. Conserv. Recycl. 188, 106726 (2023).

    Article  CAS  Google Scholar 

  15. Babu, S. et al. Exploring agricultural waste biomass for energy, food and feed production and pollution mitigation: A review. Bioresour. Technol. 360, 127566 (2022).

    Article  CAS  PubMed  Google Scholar 

  16. Schneider, P., Lahoz, W. A. & van der A, R. Recent satellite-based trends of tropospheric nitrogen dioxide over large urban agglomerations worldwide. Atmos. Chem. Phys. 15, 1205–1220 (2015).

    Article  ADS  Google Scholar 

  17. Gu, B. J. et al. Integrated reactive nitrogen budgets and future trends in China. Proc. Natl Acad. Sci. USA 112, 8792–8797 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Motesharezadeh, B. et al. Trend of fertilizer application during the last three decades (case study: America, Australia, Iran and Malaysia). J. Plant Nutr. 40, 532–542 (2017).

    Article  CAS  Google Scholar 

  19. Yu, C. Q. et al. Managing nitrogen to restore water quality in China. Nature 567, 516–520 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Jin, S. et al. Decoupling livestock and crop production at the household level in China. Nat. Sustain. 4, 48–55 (2021).

    Article  Google Scholar 

  21. Garrett, R. D. et al. Drivers of decoupling and recoupling of crop and livestock systems at farm and territorial scales. Ecol. Soc. 25, 24 (2020).

    Article  Google Scholar 

  22. Yang, X. et al. Environmental efficiency and equality embodied in China’s inter-regional trade. Sci. Total Environ. 672, 150–161 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Chuai, X. et al. A new meta-coupling framework to diagnose the inequity hidden in China’s cultivated land use. Environ. Sci. Policy 124, 635–644 (2021).

    Article  Google Scholar 

  24. Zhang, W., Liu, G. & Yang, Z. Urban agglomeration ecological risk transfer model based on Bayesian and ecological network. Resour. Conserv. Recycl. 161, 105006 (2020).

    Article  Google Scholar 

  25. Ma, Y., Zhao, H. & Liu, Q. Characteristics of PM2.5 and PM10 pollution in the urban agglomeration of Central Liaoning. Urban Clim. 43, 101170 (2022).

    Article  Google Scholar 

  26. Liu, C. & Nie, G. Spatial effects and impact factors of food nitrogen footprint in China based on spatial durbin panel model. Environ. Res. 204, 112046 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Coppens, J. et al. Follow the N and P road: high-resolution nutrient flow analysis of the Flanders region as precursor for sustainable resource management. Resour. Conserv. Recycl. 115, 9–21 (2016).

    Article  Google Scholar 

  28. Jiang, S. et al. Enhanced nitrogen and phosphorus flows in a mixed land use basin: drivers and consequences. J. Clean. Prod. 181, 416–425 (2018).

    Article  CAS  Google Scholar 

  29. Zhang, Y. et al. Modelling urban nitrogen metabolic processes based on ecological network analysis: a case of study in Beijing, China. Ecol. Modell. 337, 29–38 (2016).

    Article  CAS  Google Scholar 

  30. Dong, Y. et al. Aggravation of reactive nitrogen flow driven by human production and consumption in Guangzhou City China. Nat. Commun. 11, 1209 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Huang, W. et al. Transforming nitrogen management of the urban food system in a food-sink city. J. Environ. Manage. 249, 109180 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Dong, Y. & Xu, L. Aggregate risk of reactive nitrogen under anthropogenic disturbance in the Pearl River Delta urban agglomeration. J. Clean. Prod. 211, 490–502 (2019).

    Article  CAS  Google Scholar 

  33. Chen, C. & Wen, Z. G. Cross-media transfer of nitrogen pollution in the fast-urbanized Greater Bay Area of China: trends and essential control paths. J. Environ. Manage. 326, 116796 (2023).

    Article  CAS  PubMed  Google Scholar 

  34. Oita, A. et al. Substantial nitrogen pollution embedded in international trade. Nat. Geosci. 9, 111–115 (2016).

    Article  ADS  CAS  Google Scholar 

  35. Fang, K. et al. Mapping the environmental footprints of nations partnering the Belt and Road Initiative. Resour. Conserv. Recycl. 164, 105068 (2021).

    Article  Google Scholar 

  36. Chen, S. & Chen, B. Tracking inter-regional carbon flows: a hybrid network model. Environ. Sci. Technol. 50, 4731–4741 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Li, W. et al. Assessment of greenhouse gasses and air pollutant emissions embodied in cross-province electricity trade in China. Resour. Conserv. Recycl. 171, 105623 (2021).

    Article  CAS  Google Scholar 

  38. Zheng, H. et al. Entropy-based Chinese city-level MRIO table framework. Econ. Syst. Res. 34, 519–544 (2022).

    Article  Google Scholar 

  39. Yang, C. et al. Spatiotemporal evolution of urban agglomerations in four major bay areas of US, China and Japan from 1987 to 2017: evidence from remote sensing images. Sci. Total Environ. 671, 232–247 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Bai, Z. et al. Food and feed trade has greatly impacted global land and nitrogen use efficiencies over 1961–2017. Nat. Food 2, 780–791 (2021).

    Article  PubMed  Google Scholar 

  41. Wang, J. et al. Land-use changes and policy dimension driving forces in China: present, trend and future. Land Use Policy 29, 737–749 (2012).

    Article  CAS  Google Scholar 

  42. Luo, Z. et al. From production to consumption: a coupled human–environmental nitrogen flow analysis in china. Environ. Sci. Technol. 52, 2025–2035 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Ma, L. et al. Modeling nutrient flows in the food chain of China. J. Environ. Qual. 39, 1279–1289 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Wang, M. et al. Reactive nitrogen losses from China’s food system for the shared socioeconomic pathways (SSPs). Sci. Total Environ. 605–606, 884–893 (2017).

    Article  ADS  PubMed  Google Scholar 

  45. Meng, F. et al. Nitrogen losses from food production in the North China Plain: a case study for Quzhou. Sci. Total Environ. 816, 151557 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Niu, K. et al. MRIO model-based study on water nitrogen pollution transfer embodied in international trade. Chin. J. Popul. Resour. Environ. 17, 176–183 (2019).

    Article  Google Scholar 

  47. Long, H. et al. Changing man–land interrelations in China’s farming area under urbanization and its implications for food security. J. Environ. Manage. 209, 440–451 (2018).

    Article  PubMed  Google Scholar 

  48. Yeh, G. A. & Li, X. Economic development and agricultural land loss in the Pearl River Delta, China. Habitat Int. 23, 373–390 (1999).

    Article  Google Scholar 

  49. Kan, K. & Chen, X. Tilling another’s land: migrant farming under rural industrialization and urbanization in China. J. Agrar. Change 22, 299–316 (2022).

    Article  Google Scholar 

  50. Yu, X. et al. Farm size, farmers’ perceptions and chemical fertilizer overuse in grain production: evidence from maize farmers in northern China. J. Environ. Manage. 325, 116347 (2023).

    Article  CAS  PubMed  Google Scholar 

  51. Jiao, M., Hu, M. & Xia, B. Spatiotemporal dynamic simulation of land-use and landscape-pattern in the Pearl River Delta, China. Sustain. Cities Soc. 49, 101581 (2019).

    Article  Google Scholar 

  52. Kellenberg, D. K. An empirical investigation of the pollution haven effect with strategic environment and trade policy. J. Int. Econ. 78, 242–255 (2009).

    Article  Google Scholar 

  53. Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528, 51–59 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  54. Hao, W. et al. The impact of farmland fragmentation in China on agricultural productivity. J. Clean. Prod. 425, 138962 (2023).

    Article  Google Scholar 

  55. Leach, M., Scoones, I. & Stirling, A. Dynamic Sustainabilities: Technology, Environment, and Social Justice (Earthscan, 2010).

  56. Eakin, H. et al. Identifying attributes of food system sustainability: emerging themes and consensus. Agric. Hum. Values 34, 757–773 (2017).

    Article  Google Scholar 

  57. Timmer, C. P. The macro dimensions of food security: economic growth, equitable distribution, and food price stability. Food Policy 25, 283–295 (2000).

    Article  Google Scholar 

  58. Huang, W. et al. Driving forces of nitrogen input into city-level food systems: comparing a food-source with a food-sink prefecture-level city in China. Resour. Conserv. Recycl. 160, 104850 (2020).

    Article  Google Scholar 

  59. LeSage, J. & Pace, R. K. Introduction to Spatial Econometrics (CRC, 2009).

  60. Chen, C., Wen, Z., Sheng, N. & Song, Q. Uneven agricultural contraction within fast-urbanizing urban agglomeration decreases the nitrogen use efficiency of crop production. Zenodo https://doi.org/10.5281/zenodo.10868557 (2024).

  61. Xu, X. Multi-year Administrative Boundary Data of Chinese Prefecture-Level Cities. Resource and Environment Science Data Registration and Publishing System, the CAS Institute of Geographical Sciences and Natural Resources Research (2023); https://doi.org/10.12078/2023010102

Download references

Acknowledgements

This work was supported by the Joint Scientific Research Fund of the National Natural Science Foundation of China (NSFC) and the Science and Technology Development Fund of Macao (FDCT) (72261160655) (Z.W.), National Science Fund for Distinguished Young Scientists of China (71825006) (Z.W.) and Research project of China Rural Research Institute, Tsinghua University (CIRS2024-6) (Z.W.).

Author information

Authors and Affiliations

Authors

Contributions

Z.W. and C.C. co-designed the study. C.C. and Q.S. contributed to data collection, C.C. and Z.W. conducted technical analysis and results interpretation. C.C. wrote the paper; Z.W., Q.S. and N.S. supervised the research and revised the paper.

Corresponding author

Correspondence to Zongguo Wen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Food thanks Yunfeng Huang, Erik Mathijs and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–18, Tables 1–28, Methods 1–5 and Discussion 1–3.

Reporting Summary

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Wen, Z., Sheng, N. et al. Uneven agricultural contraction within fast-urbanizing urban agglomeration decreases the nitrogen use efficiency of crop production. Nat Food 5, 390–401 (2024). https://doi.org/10.1038/s43016-024-00980-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43016-024-00980-5

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene