Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Opportunities and challenges for upscaled global bivalve seafood production

Abstract

Slow growth in the bivalve mariculture sector results from production inefficiencies, food safety concerns, limited availability of convenience products and low consumer demand. Here we assess whether bivalves could meet mass-market seafood demand across the bivalve value chain. We explore how bivalve production could become more efficient, strategies for increasing edible meat yield and how food safety could be improved through food processing technologies and new depuration innovations. Finally, we examine barriers to consumer uptake, such as food allergen prevalence and bivalve preparation challenges, highlighting that appealing and convenient bivalve food products could provide consumers with nutritious and sustainable seafood options—and contribute positively to global food systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: LCA of the GWP and EP in bivalve and fish production.
Fig. 2: Nutritional content per 100 g of edible meat for Alaska pollock, cod, tuna and bivalves.
Fig. 3: Six illustrative scenarios for bivalve production.
Fig. 4: Key opportunities for producing fresh in-shell, frozen de-shelled and cooked processed bivalve products.
Fig. 5: Global food allergy prevalence for bivalves compared with other food products.

Similar content being viewed by others

References

  1. The State of World Fisheries and Aquaculture 2020 (FAO, 2020); https://doi.org/10.4060/ca9229en

  2. Costello, C. et al. The future of food from the sea. Nature https://doi.org/10.1038/s41586-020-2616-y (2020).

  3. Malcorps, W. et al. The sustainability conundrum of fishmeal substitution by plant ingredients in shrimp feeds. Sustainability 11, 1212 (2019).

    Article  Google Scholar 

  4. Cashion, T., le Manach, F., Zeller, D. & Pauly, D. Most fish destined for fishmeal production are food-grade fish. Fish Fish. 18, 837–844 (2017).

    Article  Google Scholar 

  5. Willer, D. F. & Aldridge, D. C. Microencapsulated diets to improve bivalve shellfish aquaculture for global food security. Glob. Food Secur. 23, 64–73 (2019).

    Article  Google Scholar 

  6. Naylor, R. L. et al. A 20-year retrospective review of global aquaculture. Nature 591, 551–563 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Campanati, C., Willer, D. F., Schubert, J. & Aldridge, D. C. Sustainable intensification of aquaculture through nutrient recycling and circular economies: more fish, less waste, blue growth. Rev. Fish. Sci. Aquacult. https://doi.org/10.1080/23308249.2021.1897520 (2021).

  8. Belton, B. et al. Farming fish in the sea will not nourish the world. Nat. Commun. 11, 5804 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Willett, W. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).

    Article  PubMed  Google Scholar 

  10. Willer, D. F. & Aldridge, D. C. Sustainable bivalve farming can deliver food security in the tropics. Nat. Food 1, 384–388 (2020).

    Article  Google Scholar 

  11. Pelletier, N. L. et al. Impact categories for life cycle assessment research of seafood production systems: review and prospectus. Int. J. Life Cycle Assess. 12, 414–421 (2007).

    Article  Google Scholar 

  12. Turolla, E., Castaldelli, G., Fano, E. A. & Tamburini, E. Life cycle assessment (LCA) proves that Manila clam farming (Ruditapes philippinarum) is a fully sustainable aquaculture practice and a carbon sink. Sustainability 12, 5252 (2020).

    Article  CAS  Google Scholar 

  13. Yield and Nutritional Value of the Commercially More Important Fish Species FAO Fisheries Technical Paper 309 (FAO, 1989).

  14. Fulton, S. Fish and Fuel: Life Cycle Greenhouse Gas Emissions Associated with Icelandic Cod, Alaskan Pollock, and Alaskan Pink Salmon Fillets delivered to the United Kingdom. MSc thesis, Dalhousie Univ. (2010).

  15. Hospido, A. & Tyedmers, P. Life cycle environmental impacts of Spanish tuna fisheries. Fish. Res. 76, 174–186 (2005).

    Article  Google Scholar 

  16. Edwards, P., Zhang, W., Belton, B. & Little, D. C. Misunderstandings, myths and mantras in aquaculture: its contribution to world food supplies has been systematically over reported. Mar. Policy 106, 103547 (2019).

    Article  Google Scholar 

  17. Tamburini, E., Fano, E. A., Castaldelli, G. & Turolla, E. Life cycle assessment of oyster farming in the Po Delta, northern Italy. Resources 8, 170 (2019).

    Article  Google Scholar 

  18. Willer, D. F. & Aldridge, D. C. Microencapsulated diets to improve growth and survivorship in juvenile European flat oysters (Ostrea edulis). Aquaculture 505, 256–262 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Botta, R., Asche, F., Borsum, J. S. & Camp, E. V. A review of global oyster aquaculture production and consumption. Mar. Policy 117, 103952 (2020).

    Article  Google Scholar 

  20. Tamburini, E., Turolla, E., Fano, E. A. & Castaldelli, G. Sustainability of mussel (Mytilus galloprovincialis) farming in the Po River Delta, northern Italy, based on a life cycle assessment approach. Sustainability 12, 3814 (2020).

    Article  CAS  Google Scholar 

  21. Hamilton, H. A., Newton, R., Auchterlonie, N. A. & Müller, D. B. Systems approach to quantify the global omega-3 fatty acid cycle. Nat. Food 1, 59–62 (2020).

    Article  Google Scholar 

  22. FoodData Central (United States Department of Agriculture Agricultural Research Service, 2020); https://fdc.nal.usda.gov

  23. Mensink, G. B. M. et al. Mapping low intake of micronutrients across Europe. Brit. J. Nutr. 110, 755–773 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Avdelas, L. et al. The decline of mussel aquaculture in the European Union: causes, economic impacts and opportunities. Rev. Aquacult. https://doi.org/10.1111/raq.12465 (2020).

  25. Xu, C., Li, Q., Chong, J., Liu, S. & Kong, L. Mass selection for growth improvement in black shell line of Pacific oyster Crassostrea gigas. J. Ocean Univ. China 18, 1411–1416 (2019).

    Article  ADS  Google Scholar 

  26. Frösell, M. Mussel Farming Using Various Techniques Evaluated Using Life Cycle Assessment (LCA). MSc thesis, Swedish Univ. Agricultural Sciences (2019).

  27. Willer, D. F., Furse, S. & Aldridge, D. C. Microencapsulated algal feeds as a sustainable replacement diet for broodstock in commercial bivalve aquaculture. Sci. Rep. 10, 12577 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Farmery, A. K. et al. Blind spots in visions of a "blue economy" could undermine the oceanas contribution to eliminating hunger and malnutrition. One Earth 4, 28–38 (2021).

    Article  Google Scholar 

  29. Froehlich, H. E., Gentry, R. R. & Halpern, B. S. Global change in marine aquaculture production potential under climate change. Nat. Ecol. Evol. 2, 1745–1750 (2018).

    Article  PubMed  Google Scholar 

  30. Gentry, R. R. et al. Mapping the global potential for marine aquaculture. Nat. Ecol. Evol. 1, 1317–1324 (2017).

    Article  PubMed  Google Scholar 

  31. Edwards, P. Aquaculture environment interactions: past, present and likely future trends. Aquaculture 447, 2–14 (2015).

    Article  Google Scholar 

  32. van der Schatte Olivier, A. et al. A global review of the ecosystem services provided by bivalve aquaculture. Rev. Aquacult. 12, 3–25 (2018).

    Article  Google Scholar 

  33. Ray, N. E., O’Meara, T., Wiliamson, T., Izursa, J. L. & Kangas, P. C. Consideration of carbon dioxide release during shell production in LCA of bivalves. Int. J. Life Cycle Assess. 23, 1042–1048 (2018).

    Article  CAS  Google Scholar 

  34. Wijsman, J. W. M., Troost, K., Fang, J. & Roncarati, A. in Goods and Services of Marine Bivalves (eds Smaal, A. C. et al.) 7–26 (Springer International Publishing, 2019); https://doi.org/10.1007/978-3-319-96776-9_2

  35. el Biriane, M. & Barbachi, M. State-of-the-art review on recycled mussel shell waste in concrete and mortar. Innov. Infrastruct. Solut. 6, 29 (2021).

    Article  Google Scholar 

  36. Gjedrem, T., Robinson, N. & Rye, M. The importance of selective breeding in aquaculture to meet future demands for animal protein: a review. Aquaculture 350–353, 117–129 (2012).

    Article  Google Scholar 

  37. Love, D. C. et al. Performance and conduct of supply chains for United States farmed oysters. Aquaculture 515, 734569 (2020).

    Article  Google Scholar 

  38. Martinez-Albores, A. et al. Complementary methods to improve the depuration of bivalves: a review. Foods 9, 129 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  39. Willis, J. E., McClure, J. T., Davidson, J., McClure, C. & Greenwood, S. J. Global occurrence of Cryptosporidium and Giardia in shellfish: should Canada take a closer look? Food Res. Int. 52, 119–135 (2013).

    Article  Google Scholar 

  40. Garrido Gamarro, E., Ryder, J., Elvevoll, E. O. & Olsen, R. L. Microplastics in fish and shellfish–a threat to seafood safety? J. Aquat. Food Prod. Technol. 29, 417–425 (2020).

    Article  CAS  Google Scholar 

  41. Baptista, R. C., Rodrigues, H. & Sant’Ana, A. S. Consumption, knowledge, and food safety practices of Brazilian seafood consumers. Food Res. Int. 132, 109084 (2020).

    Article  PubMed  Google Scholar 

  42. Wright, A. C., Fan, Y. & Baker, G. L. Nutritional value and food safety of bivalve molluscan shellfish. J. Shellfish Res. 37, 695–708 (2018).

    Article  Google Scholar 

  43. Food Availability (Per Capita) Data System (USDA Economic Research Service, 2018); https://www.ers.usda.gov/data-products/food-availability-per-capita-data-system/

  44. Hassan, F., Geethalakshmi, V., Jeeva, J. C. & Babu, M. R. Combined effect of lime (Citrus aurantitolia) and drying on reducing bacteria of public health significance in edible Oyster (Crassostrea madrasensis). J. Food Sci. Technol. 50, 203–207 (2013).

    Article  PubMed  Google Scholar 

  45. Teng, X. et al. Implementing marine functional zoning in China. Mar. Policy https://doi.org/10.1016/j.marpol.2019.02.055 (2019).

  46. Mao, Y. et al. in Goods and Services of Marine Bivalves (eds Smaal, A. C. et al.) 51–72 (Springer International Publishing, 2019); https://doi.org/10.1007/978-3-319-96776-9_4

  47. Bonfim, R. C., de Oliveira, F. A., Godoy, R. L., de, O. & Rosenthal, A. A review on high hydrostatic pressure for bivalve mollusk processing: relevant aspects concerning safety and quality. Food Sci. Technol. 39, 515–523 (2019).

    Article  Google Scholar 

  48. Huang, H. W., Wu, S. J., Lu, J. K., Shyu, Y. T. & Wang, C. Y. Current status and future trends of high-pressure processing in food industry. Food Contr. 72, 1–8 (2017).

    Article  Google Scholar 

  49. Truong, B. Q., Buckow, R., Stathopoulos, C. E. & Nguyen, M. H. Advances in high-pressure processing of fish muscles. Food Eng. Rev. 7, 109–129 (2015).

    Article  CAS  Google Scholar 

  50. Chile National Statistics Database (Instituto Nacional de Estadísticas, 2021); https://www.ine.cl/estadisticas/economia/indices-de-precio-e-inflacion/indice-de-precios-al-consumidor

  51. Merdzhanova, A., Panayotova, V., Dobreva, D. A. & Stancheva, R. Effect of thermal stress on the biologically active lipids of Mytilus galloprovincialis. Bulg. Chem. Commun. 51, 256–261 (2019).

    Google Scholar 

  52. Woodhead, S. F. in A Complete Course in Canning and Related Processes 14th edn, Vol. 3 (ed. Featherstone, S.) 231–265 (Woodhead Publishing, 2016).

  53. Iribarren, D., Hospido, A., Moreira, M. T. & Feijoo, G. Carbon footprint of canned mussels from a business-to-consumer approach. A starting point for mussel processors and policy makers. Environ. Sci. Policy 13, 509–521 (2010).

    Article  CAS  Google Scholar 

  54. Smetana, S. et al. Structure design of insect-based meat analogs with high-moisture extrusion. J. Food Eng. 229, 83–85 (2018).

    Article  CAS  Google Scholar 

  55. Loveday, S. M. Food proteins: technological, nutritional, and sustainability attributes of traditional and emerging proteins. Annu. Rev. Food Sci. Technol. 10, 311–339 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. Smetana, S., Mathys, A., Knoch, A. & Heinz, V. Meat alternatives: life cycle assessment of most known meat substitutes. Int. J. Life Cycle Assess. 20, 1254–1267 (2015).

    Article  CAS  Google Scholar 

  57. Millman, B. M. Mechanisms of contraction in molluscan muscle. Am. Zool. 7, 583–591 (1967).

    Article  Google Scholar 

  58. Willer, D. F. & Aldridge, D. C. From pest to profit-the potential of shipworms for sustainable aquaculture. Front. Sustain. Food Syst. 4, 575416 (2020).

    Article  Google Scholar 

  59. Messina, M. & Venter, C. Recent surveys on food allergy prevalence. Nutr. Today 55, 22–29 (2020).

    Article  Google Scholar 

  60. Davis, C. M. et al. Clinical management of seafood allergy. J. Allergy Clin. Immunol. 8, 37–44 (2020).

    Google Scholar 

  61. Wong, L., Tham, E. H. & Lee, B. W. An update on shellfish allergy. Curr. Opin. Allergy Clin. Immunol. 19, 236–242 (2019).

    Article  PubMed  Google Scholar 

  62. Ruethers, T. et al. Seafood allergy: a comprehensive review of fish and shellfish allergens. Mol. Immunol. 100, 28–57 (2018).

    Article  CAS  PubMed  Google Scholar 

  63. Wai, C. Y. Y. et al. Overcoming shellfish allergy: how far have we come? Int. J. Mol. Sci. 21, 2234 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  64. Warren, C. M., Aktas, O. N., Gupta, R. S. & Davis, C. M. Prevalence and characteristics of adult shellfish allergy in the United States. J. Allergy Clin. Immunol. 144, 1435–1438.e5 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Franco, S. C., Kuznesof, S., Simoes, B., Clark, B. & Jackson, P. What Do People Think of Aquaculture? Exploring Perceptions and Beliefs of Aquaculture and its Products (Scottish Association for Marine Science, 2019).

  66. Ponce Oliva, R. D. et al. Ocean acidification, consumers’ preferences, and market adaptation strategies in the mussel aquaculture industry. Ecol. Econ. 158, 42–50 (2019).

    Article  Google Scholar 

  67. Anacleto, P., Barrento, S., Nunes, M. L., Rosa, R. & Marques, A. Portuguese consumers’ attitudes and perceptions of bivalve molluscs. Food Contr. 41, 168–177 (2014).

    Article  Google Scholar 

  68. Lawley, M. & Birch, D. Exploring point of sale strategies for improving seafood retailing: the case of the Australian oyster industry. J. Food Prod. Market. 22, 792–808 (2016).

    Article  Google Scholar 

  69. Mueller Loose, S., Peschel, A. & Grebitus, C. Quantifying effects of convenience and product packaging on consumer preferences and market share of seafood products: the case of oysters. Food Qual. Prefer. 28, 492–504 (2013).

    Article  Google Scholar 

  70. Fabinyi, M. & Liu, N. The social context of the Chinese food system: an ethnographic study of the Beijing seafood market. Sustainability 8, 244 (2016).

    Article  Google Scholar 

  71. Barone, R. S. C., Lorenz, E. K., Sonoda, D. Y. & Cyrino, J. E. P. Fish and fishery products trade in Brazil, 2005 to 2015: a review of available data and trends. Sci. Agric. 74, 417–424 (2017).

    Article  Google Scholar 

  72. Khan, A. S. & Sesay, S. S. S. Seafood insecurity, bush meat consumption, and public health emergency in West Africa: did we miss the early warning signs of an Ebola epidemic? Mar. Stud. 14, 3 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the team at Nomad Foods for supporting R.J.N. in arranging the consumer panel, and for their feedback on the manuscript before submission. D.F.W. is supported by the Department of Zoology and a Henslow Fellowship at Murray Edwards College, University of Cambridge. R.J.N. is funded by Nomad Foods. D.C.A. is supported by a Dawson Fellowship at St Catharine’s College, Cambridge.

Author information

Authors and Affiliations

Authors

Contributions

D.F.W., R.J.N. and D.C.A. all participated in study design and data analysis. D.F.W. wrote the final manuscript. All authors reviewed and approved the manuscript before submission.

Corresponding author

Correspondence to David F. Willer.

Ethics declarations

Competing interests

R.J.N. is an employee of Nomad Foods. All other authors have no competing interests.

Additional information

Peer review information Nature Food thanks Kate Barclay and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–2 and Discussion.

Supplementary Table 1

List of questions asked and full results from the online consumer panel.

Supplementary Data 1

Numerical source data for Fig. 1.

Supplementary Data 2

Numerical source data for Fig. 2.

Supplementary Data 3

Numerical source data for Fig. 3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Willer, D.F., Nicholls, R.J. & Aldridge, D.C. Opportunities and challenges for upscaled global bivalve seafood production. Nat Food 2, 935–943 (2021). https://doi.org/10.1038/s43016-021-00423-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43016-021-00423-5

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene