Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Quantum sensing for particle physics

Abstract

Quantum sensing uses properties of quantum mechanics to go beyond what is possible with traditional measurement techniques. In particle physics, key problems in which quantum sensing can have a vital role include neutrino properties, tests of fundamental symmetries (Lorentz invariance and the equivalence principle, searches for electric dipole moments and possible variations of the fundamental constants), the search for dark matter and testing ideas about the nature of dark energy. Quantum sensor technologies using atom interferometry, optomechanical devices, or atomic and nuclear clocks are inherently relevant for low-energy physics, but other platforms, such as quantum dots, superconducting devices or spin sensors, might also be useful in future high-energy particle physics detectors. This Perspective explores the opportunities for these technologies in future particle physics experiments and outlines the challenges that could be tackled through collaborative efforts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ranges of sensitivity or applicability of a selection of different quantum sensors to searches for beyond Standard Model (BSM) physics.

Similar content being viewed by others

References

  1. Altarelli, G. Collider physics within the Standard Model: a primer. Preprint at https://arxiv.org/abs/1303.2842 (2013).

  2. Bass, S. D., De Roeck, A. & Kado, M. The Higgs boson implications and prospects for future discoveries. Nat. Rev. Phys. 3, 608–624 (2021).

    Article  Google Scholar 

  3. Doser, M. et al. Quantum systems for enhanced high energy particle physics detectors. Front. Phys. 10, 887738 (2022).

    Article  Google Scholar 

  4. Chakrabarti, S., Gonzalez, A., Eikenberry, S. et al. Real-time cosmology with high precision spectroscopy and astrometry. Preprint at https://arxiv.org/abs/2203.05924 (2022).

  5. Clerk, A. A., Devoret, M. H., Girvin, S. M., Marquardt, F. & Schoelkopf, R. J. Introduction to quantum noise, measurement, and amplification. Rev. Mod. Phys. 82, 1155–1208 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  6. Liu, Y.-C., Huang, K., Xiao, Y.-F., Yang, L. & Qiu, C.-W. What limits limits? Natl Sci. Rev. 8, nwaa210 (2021).

    Article  Google Scholar 

  7. Giovannetti, V., Lloyd, S. & Maccone, L. Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330–1336 (2004).

    Article  ADS  Google Scholar 

  8. Gray, H. M. & Terashi, K. Quantum computing applications in future colliders. Front. Phys. 10, 864823 (2022).

    Article  Google Scholar 

  9. Georgescu, I. M., Ashhab, S. & Nori, F. Quantum simulation. Rev. Mod. Phys. 86, 153 (2014).

    Article  ADS  Google Scholar 

  10. Bañuls, M. C. et al. Simulating lattice gauge theories within quantum technologies. Eur. Phys. J. D 74, 165 (2020).

    Article  ADS  Google Scholar 

  11. Bauer, C. W., Davoudi, Z., Klco, N. & Savage, M. J. Quantum simulation of fundamental particles and forces. Nat. Rev. Phys. 5, 420–432 (2023).

    Article  Google Scholar 

  12. Shimazoe, K. et al. Quantum sensing for biomedical applications. In 2021 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) 1–4 https://doi.org/10.1109/NSS/MIC44867.2021.9875702 (IEEE, 2021).

  13. Hiesmayr, B. C. & Moskal, P. Genuine multipartite entanglement in the 3-photon decay of positronium. Sci. Rep. 7, 15349 (2017).

    Article  ADS  Google Scholar 

  14. Sharma, S., Kumar, D. & Moskal, P. Decoherence puzzle in measurements of photons originating from electron-positron annihilation. Acta Phys. Polon. A 142, 428–435 (2022).

    Article  ADS  Google Scholar 

  15. Aslam, N. et al. Quantum sensors for biomedical applications. Nat. Rev. Phys. 5, 157–169 (2023).

    Article  Google Scholar 

  16. Overstreet, C., Asenbaum, P. & Kasevich, M. A. Physically significant phase shifts in matter-wave interferometry. Am. J. Phys. 89, 324 (2021).

    Article  ADS  Google Scholar 

  17. Safronova, M. S. in Springer Handbook of Atomic, Molecular, and Optical Physics (ed. Drake, G. W. F.) 471–484 (Springer, 2023).

  18. Blaum, K., Eliseev, S. & Sturm, S. Perspectives on testing fundamental physics with highly charged ions in penning traps. Quantum Sci. Technol. 6, 014002 (2016).

    Article  ADS  Google Scholar 

  19. Peik, E. et al. Nuclear clocks for testing fundamental physics. Quantum Sci. Technol. 6, 034002 (2021).

    Article  ADS  Google Scholar 

  20. Jackson Kimball, D. F. et al. Probing fundamental physics with spin-based quantum sensors. Phys. Rev. A 108, 010101 (2023).

    Article  ADS  Google Scholar 

  21. Berlin, A. et al. Searches for new particles, dark matter, and gravitational waves with SRF cavities. Preprint at https://arxiv.org/abs/2203.12714 (2022).

  22. Laucht, A. et al. Roadmap on quantum nanotechnologies. Nanotechnology 32, 162003 (2021).

    Article  ADS  Google Scholar 

  23. ECFA Detector R&D Roadmap Process Group The 2021 ECFA Detector Research and Development Roadmap CERN report CERN-ESU-017 (CERN Document Server, 2020); https://cds.cern.ch/record/2784893.

  24. Safronova, M. S. et al. Search for new physics with atoms and molecules. Rev. Mod. Phys. 90, 025008 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  25. Paul, N., Bian, G., Azuma, T., Okada, S. & Indelicato, P. Testing quantum electrodynamics with exotic atoms. Phys. Rev. Lett. 126, 173001 (2021).

    Article  ADS  Google Scholar 

  26. Cecil, T., Irwin, K., Maruyama, R., Pyle, M. & Zorzetti, S. Report of the topical group on quantum sensors for Snowmass 2021. Preprint at https://arxiv.org/abs/2208.13310 (2022).

  27. Antypas, D. et al. New horizons: scalar and vector ultralight dark matter. Preprint at https://arxiv.org/abs/2203.14915 (2022).

  28. Berlin, A. et al. Axion dark matter detection by superconducting resonant frequency conversion. J. High Energy Phys. 07, 088 (2020).

    Article  ADS  Google Scholar 

  29. Chou, A. et al. The future of US particle physics: report of the 2021 Snowmass Community Study. Preprint at https://arxiv.org/abs/2211.09978 (2022).

  30. Battaglieri, M. et al. US cosmic visions: new ideas in dark matter 2017: community report. Preprint at https://arxiv.org/abs/1707.04591 (2017).

  31. Antoniadis, J. et al. The International Pulsar Timing Array second data release: search for an isotropic gravitational wave background. Mon. Not. R. Astron. Soc. 510, 4873–4887 (2022).

    Article  ADS  Google Scholar 

  32. Martens, W., Khan, M. & Bayle, J.-B. LISAmax: improving the low-frequency gravitational-wave sensitivity by two orders of magnitude. Class. Quantum Gravity 40, 195022 (2023).

    Article  ADS  Google Scholar 

  33. Aggarwal, N. et al. Challenges and opportunities of gravitational-wave searches at MHz to GHz frequencies. Living Rev. Relativ. https://doi.org/10.1007/s41114-021-00032-5 (2021).

  34. Balantekin, A. B. & Kayser, B. On the properties of neutrinos. Ann. Rev. Nucl. Part. Sci. 68, 313–338 (2018).

    Article  ADS  Google Scholar 

  35. Workman, R. L. et al. Review of particle physics. Prog. Theor. Exp. Phys. 2022, 083C01 (2022).

    Article  Google Scholar 

  36. Dolinski, M. J., Poon, A. W. P. & Rodejohann, W. Neutrinoless double-beta decay: status and prospects. Ann. Rev. Nucl. Part. Sci. 69, 219–251 (2019).

    Article  ADS  Google Scholar 

  37. Armstrong, W. R. et al. CUPID pre-CDR. Preprint at https://arxiv.org/abs/1907.09376 (2019).

  38. Armatol, A. et al. Toward CUPID-1T. Preprint at https://arxiv.org/abs/2203.08386 (2022).

  39. Gastaldo, L. et al. The electron capture in 163Ho experiment ECHo: an overview. J. Low Temp. Phys. 176, 876–884 (2014).

    Article  ADS  Google Scholar 

  40. Ullom, J. et al. Measuring the electron neutrino mass using the electron capture decay of 163Ho, in 2022 Snowmass Summer Study. Preprint at https://arxiv.org/abs/2203.07572 (2022).

  41. Aker, M. et al. Direct neutrino-mass measurement with sub-electronvolt sensitivity. Nat. Phys. 18, 160–166 (2022).

    Article  Google Scholar 

  42. Canning, J. A. L., Deppisch, F. F. & Pei, W. Sensitivity of future tritium decay experiments to New Physics. J. High Energy Phys. 03, 144 (2023).

    Article  ADS  Google Scholar 

  43. Martoff, C. J. et al. HUNTER: precision massive-neutrino search based on a laser cooled atomic source. Quantum Sci. Technol. 6, 024008 (2021).

    Article  ADS  Google Scholar 

  44. Friedrich, S. et al. Limits on the existence of sub-MeV sterile neutrinos from the decay of 7Be in superconducting quantum sensors. Phys. Rev. Lett. 126, 021803 (2021).

    Article  ADS  Google Scholar 

  45. Betti, M. G. et al. Neutrino physics with the PTOLEMY project: active neutrino properties and the light sterile case. J. Cosmol. Astropart. Phys. 07, 047 (2019).

    Article  ADS  Google Scholar 

  46. Cairncross, W. B. & Ye, J. Atoms and molecules in the search for time-reversal symmetry violation. Nat. Rev. Phys. 1, 510–521 (2019).

    Article  Google Scholar 

  47. Roussy, T. S. et al. An improved bound on the electron’s electric dipole moment. Science 381, 46 (2023).

    Article  ADS  Google Scholar 

  48. Andreev, V. et al. Improved limit on the electric dipole moment of the electron. Nature 562, 355–360 (2018).

    Article  ADS  Google Scholar 

  49. Pendlebury, J. M. et al. Revised experimental upper limit on the electric dipole moment of the neutron. Phys. Rev. D 92, 092003 (2015).

    Article  ADS  Google Scholar 

  50. Alarcon, R. et al. Electric dipole moments and the search for new physics. Preprint at https://arxiv.org/abs/2203.08103 (2022).

  51. Grasdijk, O. et al. CeNTREX: a new search for time-reversal symmetry violation in the 205Tl nucleus. Quantum Sci. Tech. 6, 044007 (2021).

    Article  ADS  Google Scholar 

  52. Garcia Ruiz, R. F. et al. Spectroscopy of short-lived radioactive molecules. Nature 581, 396–400 (2020).

    Article  ADS  Google Scholar 

  53. Arrowsmith-Kron, G. et al. Opportunities for fundamental physics research with radioactive molecules. Preprint at https://doi.org/10.48550/arXiv.2302.02165 (2023).

  54. Augenbraun, B. et al. Direct laser cooling of polyatomic molecules. Advances in Atomic, Molecular, and Optical Physics 72, 89–182 (2023).

    Article  Google Scholar 

  55. Aoyama, T., Kinoshita, T. & Nio, M. Revised and improved value of the QED tenth-order electron anomalous magnetic moment. Phys. Rev. D 97, 036001 (2018).

    Article  ADS  Google Scholar 

  56. Fan, X., Myers, T. G., Sukra, B. A. D. & Gabrielse, G. Measurement of the electron magnetic moment. Phys. Rev. Lett. 130, 071801 (2023).

    Article  ADS  Google Scholar 

  57. Parker, R. H., Yu, C., Zhong, W., Estey, B. & Müller, H. Measurement of the fine-structure constant as a test of the Standard Model. Science 360, 191 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  58. Morel, L., Yao, Z., Cladé, P. & Guellati-Khélifa, S. Determination of the fine-structure constant with an accuracy of 81 parts per trillion. Nature 588, 61–65 (2020).

    Article  ADS  Google Scholar 

  59. Kozlov, M. G., Safronova, M. S., Crespo López-Urrutia, J. R. & Schmidt, P. O. Highly charged ions: optical clocks and applications in fundamental physics. Rev. Mod. Phys. 90, 045005 (2018).

    Article  ADS  Google Scholar 

  60. Charlton, M., Eriksson, S. & Shore, G. M. Antihydrogen and Fundamental Physics (Springer, 2020).

  61. Will, C. M. The confrontation between general relativity and experiment. Living Rev. Rel. 17, 4 (2014).

    Article  Google Scholar 

  62. Touboul, P. et al. MICROSCOPE mission: final results of the test of the equivalence principle. Phys. Rev. Lett. 129, 121102 (2022).

    Article  ADS  Google Scholar 

  63. Wagner, T. A., Schlamminger, S., Gundlach, J. H. & Adelberger, E. G. Torsion-balance tests of the weak equivalence principle. Class. Quantum Gravity 29, 184002 (2012).

    Article  ADS  Google Scholar 

  64. Asenbaum, P., Overstreet, C., Kim, M., Curti, J. & Kasevich, M. A. Atom-interferometric test of the equivalence principle at the 10−12 level. Phys. Rev. Lett. 125, 191101 (2020).

    Article  ADS  Google Scholar 

  65. Bassi, A. et al. STE-QUEST: Space Time Explorer and Quantum Equivalence Principle Space Test. Preprint at https://arxiv.org/abs/2211.15412 (2022).

  66. Anderson, E. et al. Observation of the effect of gravity on the motion of antimatter. Nature 621, 716–722 (2023).

    Article  ADS  Google Scholar 

  67. Amsler, C. et al. Pulsed production of antihydrogen. Commun. Phys. 4, 19 (2021).

    Article  Google Scholar 

  68. van der Werf, D. P. The GBAR experiment. Int. J. Mod. Phys. Conf. Ser. 30, 1460263 (2014).

    Article  Google Scholar 

  69. Mariazzi, S. et al. Toward inertial sensing with a 23S positronium beam. Eur. Phys. J. D 74, 79 (2020).

    Article  ADS  Google Scholar 

  70. Gerber, S., Doser, M. & Comparat, D. Pulsed production of cold protonium in Penning traps. Phys. Rev. A 100, 063418 (2019).

    Article  ADS  Google Scholar 

  71. Borchert, M. et al. A 16-parts-per-trillion measurement of the antiproton-to-proton charge-mass ratio. Nature 601, 53–57 (2022).

    Article  ADS  Google Scholar 

  72. Kornakov, G. et al. Synthesis of cold and trappable fully stripped highly charged ions via antiproton-induced nuclear fragmentation in traps. Phys. Rev. C 107, 034314 (2023).

    Article  ADS  Google Scholar 

  73. Safronova, M. S. The search for variation of fundamental constants with clocks. Ann. Phys. 531, 1800364 (2019).

    Article  Google Scholar 

  74. Uzan, J.-P. Varying constants, gravitation and cosmology. Living Rev. Rel. 14, 2 (2011).

    Article  Google Scholar 

  75. Lange, R. et al. Improved limits for violations of local position invariance from atomic clock comparisons. Phys. Rev. Lett. 126, 011102 (2021).

    Article  ADS  Google Scholar 

  76. Hart, L. & Chluba, J. New constraints on time-dependent variations of fundamental constants using Planck data. Mon. Not. R. Astron. Soc. 474, 1850–1861 (2018).

    Article  ADS  Google Scholar 

  77. Ubachs, W. Search for varying constants of nature from astronomical observation of molecules. Space Sci. Rev. 214, 3 (2018).

    Article  ADS  Google Scholar 

  78. Sanner, C. et al. Optical clock comparison for Lorentz symmetry testing. Nature 567, 204–208 (2019).

    Article  ADS  Google Scholar 

  79. Dreissen, L. S. et al. Improved bounds on Lorentz violation from composite pulse Ramsey spectroscopy in a trapped ion. Nat. Commun. 13, 7313 (2022).

    Article  ADS  Google Scholar 

  80. Barontini, G. et al. Measuring the stability of fundamental constants with a network of clocks. EPJ Quant. Technol. 9, 12 (2022).

    Article  Google Scholar 

  81. Delva, P., Hees, A. & Wolf, P. Clocks in space for tests of fundamental physics. Space Sci. Rev. 212, 1385–1421 (2017).

    Article  ADS  Google Scholar 

  82. Schkolnik, V. et al. Optical atomic clock aboard an Earth-orbiting space station (OACESS): enhancing searches for physics beyond the standard model in space. Quantum Sci. Technol. 8, 014003 (2023).

    Article  ADS  Google Scholar 

  83. Beeks, K. et al. The thorium-229 low-energy isomer and the nuclear clock. Nat. Rev. Phys. 3, 238–248 (2021).

    Article  Google Scholar 

  84. Kraemer, S. et al. Observation of the radiative decay of the 229Th nuclear clock isomer. Nature 617, 706–710 (2023).

    Article  ADS  Google Scholar 

  85. Bertone, G. & Tait, T. M. P. A new era in the search for dark matter. Nature 562, 51–56 (2018).

    Article  ADS  Google Scholar 

  86. Baudis, L. The search for dark matter. Eur. Rev. 26, 70–81 (2018).

    Article  Google Scholar 

  87. Lehnert, K. Quantum enhanced metrology in the search for fundamental physical phenomena. SciPost Phys. Lect. Notes 40, 1 (2022).

    Google Scholar 

  88. Buchmueller, O. et al. Snowmass 2021: quantum sensors for HEP science — interferometers, mechanics, traps, and clocks. Preprint at https://arxiv.org/abs/2203.07250 (2022).

  89. Ebadi, R. et al. Directional detection of dark matter using solid-state quantum sensing. AVS Quantum Sci. 4, 044701 (2022).

    Article  ADS  Google Scholar 

  90. Attanasio, A. et al. Snowmass 2021 white paper: the Windchime Project. Preprint at https://arxiv.org/abs/2203.07242 (2022).

  91. Essig, R. et al. Snowmass2021 Cosmic Frontier: the landscape of low-threshold dark matter direct detection in the next decade. Preprint at https://arxiv.org/abs/2203.08297 (2022).

  92. Adams, C. B. et al. Axion dark matter, Snowmass 2021. Preprint at https://arxiv.org/abs/2203.14923 (2022).

  93. Jaeckel, J., Rybka, G. & Winslow, L. Report of the Topical Group on Wave Dark Matter for Snowmass 2021. Preprint at https://arxiv.org/abs/2209.08125 (2022).

  94. Chou, A. S. et al. Snowmass Cosmic Frontier report, Snowmass 2021. Preprint at https://arxiv.org/abs/2211.09978 (2022).

  95. Backes, K. M. et al. A quantum-enhanced search for dark matter axions. Nature 590, 238–242 (2021).

    Article  ADS  Google Scholar 

  96. Roussy, T. S. et al. Experimental constraint on axionlike particles over seven orders of magnitude in mass. Phys. Rev. Lett. 126, 171301 (2021).

    Article  ADS  Google Scholar 

  97. Graham, P. W. et al. Spin precession experiments for light axionic dark matter. Phys. Rev. D 97, 055006 (2018).

    Article  ADS  Google Scholar 

  98. Arvanitaki, A., Huang, J. & Van Tilburg, K. Searching for dilaton dark matter with atomic clocks. Phys. Rev. D 91, 015015 (2015).

    Article  ADS  Google Scholar 

  99. Filzinger, M. et al. Improved limits on the coupling of ultralight bosonic dark matter to photons from optical atomic clock comparisons. Phys. Rev. Lett. 130, 253001 (2023).

    Article  ADS  Google Scholar 

  100. Banerjee, A. et al. Oscillating nuclear charge radii as sensors for ultralight dark matter. Preprint at https://arxiv.org/abs/2301.10784 (2023).

  101. Beloy, K. et al. Frequency ratio measurements with 18-digit accuracy using a network of optical clocks. Nature 591, 564 (2021).

    Article  ADS  Google Scholar 

  102. Badurina, L. et al. Prospective sensitivities of atom interferometers to gravitational waves and ultralight dark matter. Phil. Trans. A 380, 20210060 (2021).

    ADS  Google Scholar 

  103. Alonso, I. et al. Cold atoms in space: community workshop summary and proposed road-map. EPJ Quant. Technol. 9, 30 (2022).

    Article  Google Scholar 

  104. Kialka, F., Fein, Y. Y., Pedalino, S., Gerlich, S. & Arndt, M. A roadmap for universal high-mass matter-wave interferometry. AVS Quantum Sci. 4, 020502 (2022).

    Article  ADS  Google Scholar 

  105. Aghanim, N. et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020); erratum 652, C4 (2021).

    Article  Google Scholar 

  106. Altarelli, G. Neutrino 2004: concluding talk. Nucl. Phys. B Proc. Suppl. 143, 470–478 (2005).

    Article  ADS  Google Scholar 

  107. Bass, S. D. & Krzysiak, J. Vacuum energy with mass generation and Higgs bosons. Phys. Lett. B 803, 135351 (2020).

    Article  MathSciNet  Google Scholar 

  108. Burrage, C. & Sakstein, J. Tests of chameleon gravity. Living Rev. Rel. 21, 1 (2018).

    Article  Google Scholar 

  109. Lee, J. G., Adelberger, E. G., Cook, T. S., Fleischer, S. M. & Heckel, B. R. New test of the gravitational 1/r2 law at separations down to 52 μm. Phys. Rev. Lett. 124, 101101 (2020).

    Article  ADS  Google Scholar 

  110. Jaffe, M. et al. Testing sub-gravitational forces on atoms from a miniature, in-vacuum source mass. Nat. Phys. 13, 938 (2017).

    Article  Google Scholar 

  111. Sabulsky, D. O. et al. Experiment to detect dark energy forces using atom interferometry. Phys. Rev. Lett. 123, 061102 (2019).

    Article  ADS  Google Scholar 

  112. Xu, V. et al. Probing gravity by holding atoms for 20 seconds. Science 366, 745–749 (2019).

    Article  ADS  Google Scholar 

  113. Qvarfort, S., Rätzel, D. & Stopyra, S. Constraining modified gravity with quantum optomechanics. New J. Phys. 24, 033009 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  114. Sponar, S., Sedmik, R. I. P., Pitschmann, M., Abele, H. & Hasegawa, Y. Tests of fundamental quantum mechanics and dark interactions with low-energy neutrons. Nat. Rev. Phys. 3, 309–327 (2021).

    Article  Google Scholar 

  115. Bongs, K. et al. Taking atom interferometric quantum sensors from the laboratory to real-world applications. Nat. Rev. Phys. 1, 731–739 (2019).

    Article  Google Scholar 

  116. Badurina, L. et al. AION: an atom interferometer observatory and network. J. Cosmol. Astropart. Phys. 5, 011 (2020).

    Article  ADS  Google Scholar 

  117. Abel, M. et al. Matter-wave atomic gradiometer interferometric sensor (MAGIS-100). Quantum Sci. Technol. 6, 044003 (2021).

    Article  ADS  Google Scholar 

  118. Canuel, B. et al. Exploring gravity with the MIGA large scale atom interferometer. Sci. Rep. 8, 14064 (2018).

    Article  ADS  Google Scholar 

  119. Badurina, L., Gibson, V., McCabe, C. & Mitchell, J. Ultralight dark matter searches at the sub-Hz frontier with atom multigradiometry. Phys. Rev. D 107, 055002 (2023).

    Article  ADS  Google Scholar 

  120. Appel, J. et al. Calibration of transition-edge sensor (TES) bolometer arrays with application to CLASS. Astrophys. J. Suppl. Ser. 262, 52 (2022).

    Article  ADS  Google Scholar 

  121. Gottardi, L. & Nagayashi, K. A review of X-ray microcalorimeters based on superconducting transition edge sensors for astrophysics and particle physics. Appl. Sci. 11, 3793 (2021).

    Article  Google Scholar 

  122. Shibata, H. Review of superconducting nanostrip photon detectors using various superconductors. IEICE Trans. Electron. E104-C, 429 (2021).

    Article  ADS  Google Scholar 

  123. Day, P. et al. A broadband superconducting detector suitable for use in large arrays. Nature 425, 817–821 (2003).

    Article  ADS  Google Scholar 

  124. Carney, D. et al. Mechanical quantum sensing in the search for dark matter. Quantum Sci. Technol. 6, 024002 (2021).

    Article  ADS  Google Scholar 

  125. Manley, J., Chowdhury, M. D., Grin, D., Singh, S. & Wilson, D. J. Searching for vector dark matter with an optomechanical accelerometer. Phys. Rev. Lett. 126, 061301 (2021).

    Article  ADS  Google Scholar 

  126. Riedinger, R. et al. Remote quantum entanglement between two micromechanical oscillators. Nature 556, 473–477 (2018).

    Article  ADS  Google Scholar 

  127. Moore, D. & Geraci, A. Searching for new physics using optically levitated sensors. Quantum Sci. Technol. 6, 014008 (2021).

    Article  Google Scholar 

  128. Zhao, L., Shen, X., Ji, L. & Huang, P. Inertial measurement with solid-state spins of nitrogen-vacancy center in diamond. Adv. Phys. X 7, 2004921 (2022).

    Google Scholar 

  129. Barry, J. F. et al. Sensitivity optimization for NV-diamond magnetometry. Rev. Mod. Phys. 92, 015004 (2020).

    Article  ADS  Google Scholar 

  130. Cohen, Y., Maddox, B., Deans, C., Marmugi, L. & Renzoni, F. A radio-frequency Bose-Einstein condensate magnetometer. Appl. Phys. Lett. 120, 164002 (2022).

    Article  ADS  Google Scholar 

  131. Suter, D. Optical detection of magnetic resonance. Magn. Reson. 1, 115–139 (2020).

    Article  Google Scholar 

  132. Palacio Alvarez, S., Gomez, P., Coop, S. & Mitchell, M. Single-domain Bose condensate magnetometer achieves energy resolution per bandwidth below? Proc. Natl Acad. Sci. USA 119, e2115339119 (2021).

    Article  Google Scholar 

  133. Vinante, A., Timberlake, C. & Ulbricht, H. Levitated micromagnets in superconducting traps: a new platform for tabletop fundamental physics experiments. Entropy 24, 1642 (2022).

    Article  ADS  Google Scholar 

  134. Stadnik, Y. & Flambaum, V. Can dark matter induce cosmological evolution of the fundamental constants of nature? Phys. Rev. Lett. 115, 201301 (2015).

    Article  ADS  Google Scholar 

  135. Frugiuele, C., Fuchs, E., Perez, G. & Schlaffer, M. Constraining new physics models with isotope shift spectroscopy. Phys. Rev. D 96, 015011 (2017).

    Article  ADS  Google Scholar 

  136. Kolkowitz, S. et al. Gravitational wave detection with optical lattice atomic clocks. Phys. Rev. D 94, 124043 (2016).

    Article  ADS  Google Scholar 

  137. Barontini, G. et al. Measuring the stability of fundamental constants with a network of clocks. EPJ Quantum Technol. 9, 195022 (2022).

    Article  Google Scholar 

  138. Lawrie, B. J., Lett, P. D., Marino, A. M. & Pooser, R. C. Quantum sensing with squeezed light. ACS Photon. 6, 1307-1318 (2019).

    Article  Google Scholar 

  139. Zhang, Z. & Zhuang, Q. Distributed quantum sensing. Quantum Sci. Technol. 6, 043001 (2021).

    Article  ADS  Google Scholar 

  140. Nichol, B. et al. An elementary quantum network of entangled optical atomic clocks. Nature 609, 689–694 (2022).

    Article  ADS  Google Scholar 

  141. Dailey, C. et al. Quantum sensor networks as exotic field telescopes for multi-messenger astronomy. Nat. Astron. 5, 150–158 (2021).

    Article  ADS  Google Scholar 

  142. Afach, S. et al. Search for topological defect dark matter with a global network of optical magnetometers. Nat. Phys. 17, 1396–1401 (2021).

    Article  Google Scholar 

  143. Derevianko, A. & Pustelny, S. in The Search for Ultralight Bosonic Dark Matter (eds Kimball, D. F. J. & van Bibber, K.) 281–303 (2023).

  144. Decká, K. et al. Timing performance of lead halide perovskite nanoscintillators embedded in a polystyrene matrix. J. Mater. Chem. C 10, 12836 (2022).

    Article  Google Scholar 

  145. Orlandini, G. et al. Integration of CVD graphene in gaseous electron multipliers for high energy physics experiments. JINST 18, C06022 (2023).

    Article  Google Scholar 

  146. Cecil, T., Irwin, K., Maruyama, R., Pyle, M. & Zorzetti, S. Report of the Topical Group on Quantum Sensors for Snowmass 2021. Preprint at https://doi.org/10.48550/arXiv.2208.13310 (2022).

  147. Di Meglio, A. et al. CERN Quantum Technology Initiative Strategy and Roadmap CERN Report CERN-OPEN-2021-012 (CERN Document Server, 2021) https://cds.cern.ch/record/2789149.

  148. Ahmed, Z. et al. Quantum sensing for high energy physics. Preprint at https://arxiv.org/abs/1803.11306 (2018).

  149. Charaev, I. et al. Single-photon detection using large-scale high-temperature MgB2 sensors at 20 K. Preprint at https://arxiv.org/abs/2308.15228 (2023).

  150. Harnik, R., Plestid, R., Pospelov, M. & Ramani, H. Millicharged cosmic rays and low recoil detectors. Phys. Rev. D 103, 075029 (2021).

    Article  ADS  Google Scholar 

  151. Budker, D. et al. Millicharged dark matter detection with ion traps. PRX Quantum 3, 010330 (2022).

    Article  ADS  Google Scholar 

  152. Szypryt, P. et al. A transition-edge sensor-based X-ray spectrometer for the study of highly charged ions at the National Institute of Standards and Technology electron beam ion trap. Rev. Sci. Instrum. 90, 123107 (2019).

    Article  ADS  Google Scholar 

  153. Alvis, S. I. et al. First limit on the direct detection of lightly ionizing particles for electric charge as low as e/1000 with the Majorana Demonstrator. Phys. Rev. Lett. 120, 211804 (2018).

    Article  ADS  Google Scholar 

  154. Davidson, S., Hannestad, S. & Raffelt, G. Updated bounds on millicharged particles. J. High Energy Phys. 05, 003 (2000).

    Article  ADS  Google Scholar 

  155. Chang, J., Essig, R. & McDermott, S. Supernova 1987A Constraints on Sub-GeV Dark Sectors, Millicharged Particles, the QCD Axion, and an Axion-like Particle. J. High Energy Phys. 09, 051 (2018).

    Article  ADS  Google Scholar 

  156. Ambrosino, F. et al. First observation of quantum interference in the process φ→KSKLπ+ππ+π: a test of quantum mechanics and CPT symmetry. Phys. Lett. B 642, 315–321 (2006).

    Article  ADS  Google Scholar 

  157. Aad, G. et al. (ATLAS Collaboration). Observation of quantum entanglement in top-quark pairs using the ATLAS detector. Preprint at https://arxiv.org/abs/2311.07288 (2023).

  158. Anders, F. et al. Momentum entanglement for atom interferometry. Phys. Rev. Lett. 127, 140402 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  159. Nichol, B. C. et al. An elementary quantum network of entangled optical atomic clocks. Nature 609, 689–694 (2022).

    Article  ADS  Google Scholar 

  160. Dzuba, V. et al. Strongly enhanced effects of Lorentz symmetry violation in entangled Yb+ ions. Nat. Phys. 12, 465–468 (2016).

    Article  Google Scholar 

  161. Greve, G. P., Luo, C., Wu, B. & Thompson, J. K. Entanglement-enhanced matter-wave interferometry in a high-finesse cavity. Nature 610, 472–477 (2022).

    Article  ADS  Google Scholar 

  162. Marshall, M., Turner, M., Ku, M., Phillips, D. & Walsworth, R. Directional detection of dark matter with diamond. Quantum Sci. Technol. 6, 024011 (2021).

    Article  ADS  Google Scholar 

  163. Budnik, R., Chesnovsky, O., Slone, O. & Volansky, T. Direct detection of light dark matter and solar neutrinos via color center production in crystals. Phys. Lett. B 782, 242–250 (2018).

    Article  ADS  Google Scholar 

  164. Baker, C. et al. Optomechanical dark matter direct detection. Preprint at https://arxiv.org/abs/2306.09726 (2023).

  165. De la Torre Luque, P., Balaji, S. & Koechler, J. Importance of cosmic ray propagation on sub-GeV dark matter constraints. Preprint at https://arxiv.org/abs/2311.04979 (2023).

Download references

Acknowledgements

This article developed from discussions at the Humboldt Kolleg conference, Clues to a mysterious Universe — exploring the interface of particle, gravity and quantum physics, Kitzbühel, June 26–July 01, 2022. The work was supported in part by the SciMat and qLife Priority Research Area budget under the programme Excellence Initiative — Research University at Jagiellonian University.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Steven D. Bass or Michael Doser.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bass, S.D., Doser, M. Quantum sensing for particle physics. Nat Rev Phys (2024). https://doi.org/10.1038/s42254-024-00714-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s42254-024-00714-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing