Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

CRISPR–Cas systems

CRISPR–Cas has a new juggling act: interplay between nuclease and protease

Craspase is newly identified type III CRISPR–Cas system with two major components: the nuclease Cas7-11, and the protease TPR-CHAT. Craspases perform a delicate balancing act between nuclease and protease activity to achieve immune tolerance and defense in bacteria, and show promise as highly regulatable genome-editing tools.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms of type III CRISPR–Cas systems in prokaryotic immune responses.

References

  1. Doudna, J. A. & Charpentier, E. Science 346, 1258096 (2014).

    Article  PubMed  Google Scholar 

  2. Hille, F. et al. Cell 172, 1239–1259 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Marraffini, L. A. Nature 526, 55–61 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Makarova, K. S. et al. Nat. Rev. Microbiol. 18, 67–83 x (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Molina, R., Sofos, N. & Montoya, G. Curr. Opin. Struct. Biol. 65, 119–129 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. van Beljouw, S. P. et al. Science 373, 1349–1353 (2021).

    Article  PubMed  Google Scholar 

  7. Ekundayo, B. et al. Nat. Struct. Mol. Biol. https://doi.org/10.1038/s41594-022-00894-5 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hu, C. et al. Science 377, 1278–1285 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. Kato, K. et al. Cell 185, 2324–2337 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. Strecker, J. et al. Science 378, 874–881 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Yu, G. et al. Nat. Microbiol. 7, 2078–2088 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Liu, X. et al. Mol. Cell 82, 4503–4518.e8 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Cui, N. et al. Nat. Commun. 13, 7549 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang, S., Guo, M., Zhu, Y., Lin, Z. & Huang, Z. Cell Res 32, 1128–1131 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

T.-M.F. was supported by the National Institutes of Health (NIH) National Institute of General Medical Sciences (grant 1R35GM147465) and A.D.R was supported by an NIH T32 (GM118291-05 and GM144293-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian-Min Fu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rish, A.D., Fu, TM. CRISPR–Cas has a new juggling act: interplay between nuclease and protease. Nat Struct Mol Biol 30, 126–128 (2023). https://doi.org/10.1038/s41594-022-00917-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-022-00917-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing