Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Suicide inactivation of the uracil DNA glycosylase UdgX by covalent complex formation

Abstract

A uracil DNA glycosylase (UDG) from Mycobacterium smegmatis (MsmUdgX) shares sequence similarity with family 4 UDGs and forms exceedingly stable complexes with single-stranded uracil-containing DNAs (ssDNA-Us) that are resistant to denaturants. However, MsmUdgX has been reported to be inactive in excising uracil from ssDNA-Us and the underlying structural basis is unclear. Here, we report high-resolution crystal structures of MsmUdgX in the free, uracil- and DNA-bound forms, respectively. The structural information, supported by mutational and biochemical analyses, indicates that the conserved residue His109 located on a characteristic loop forms an irreversible covalent linkage with the deoxyribose at the apyrimidinic site of ssDNA-U, thus rendering the enzyme unable to regenerate. By proposing the catalytic pathway and molecular mechanism for MsmUdgX, our studies provide an insight into family 4 UDGs and UDGs in general.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The overall structure of MsmUdgX in the apo form.
Fig. 2: The overall structures of MsmUdgX in the uracil-bound form.
Fig. 3: Interactions of MsmUdgX with the DNA substrate in the complex.
Fig. 4: The cocrystal structures of the H109A and H109Q.
Fig. 5: The intramolecular interactions between motifs 1 and 3.

Similar content being viewed by others

Data availability

The atomic coordinates were deposited in the PDB with the accession numbers 6IO9, 6IOA, 6IOB, 6IOC and 6IOD. The data that support the findings of this study are available from the corresponding author upon request.

References

  1. Barnes, D. E. & Lindahl, T. Repair and genetic consequences of endogenous DNA base damage in mammalian cells. Annu. Rev. Genet. 38, 445–476 (2004).

    Article  CAS  Google Scholar 

  2. Visnes, T. et al. Uracil in DNA and its processing by different DNA glycosylases. Philos. Trans. R. Soc. Lond. B 364, 563–568 (2009).

    Article  CAS  Google Scholar 

  3. Lindahl, T., Ljungquist, S., Siegert, W., Nyberg, B. & Sperens, B. DNA N-glycosidases: properties of uracil-DNA glycosidase from Escherichia coli. J. Biol. Chem. 252, 3286–3294 (1977).

    CAS  PubMed  Google Scholar 

  4. Li, J., Yang, Y., Guevara, J., Wang, L. & Cao, W. Identification of a prototypical single-stranded uracil DNA glycosylase from Listeria innocua. DNA Repair 57, 107–115 (2017).

    Article  CAS  Google Scholar 

  5. Xia, B. et al. Correlated mutation in the evolution of catalysis in uracil DNA glycosylase superfamily. Sci. Rep. 7, 45978 (2017).

    Article  CAS  Google Scholar 

  6. Xia, B. et al. Specificity and catalytic mechanism in family 5 uracil DNA glycosylase. J. Biol. Chem. 289, 18413–18426 (2014).

    Article  CAS  Google Scholar 

  7. Parikh, S. S., Putnam, C. D. & Tainer, J. A. Lessons learned from structural results on uracil-DNA glycosylase. Mutat. Res. 460, 183–199 (2000).

    Article  CAS  Google Scholar 

  8. Pearl, L. H. Structure and function in the uracil-DNA glycosylase superfamily. Mutat. Res. 460, 165–181 (2000).

    Article  CAS  Google Scholar 

  9. Mol, C. D. et al. Crystal structure of human uracil-DNA glycosylase in complex with a protein inhibitor: protein mimicry of DNA. Cell 82, 701–708 (1995).

    Article  CAS  Google Scholar 

  10. Slupphaug, G. et al. A nucleotide-flipping mechanism from the structure of human uracil-DNA glycosylase bound to DNA. Nature 384, 87–92 (1996).

    Article  CAS  Google Scholar 

  11. Maiti, A., Morgan, M. T., Pozharski, E. & Drohat, A. C. Crystal structure of human thymine DNA glycosylase bound to DNA elucidates sequence-specific mismatch recognition. Proc. Natl Acad. Sci. USA 105, 8890–8895 (2008).

    Article  CAS  Google Scholar 

  12. Zhang, L. et al. Thymine DNA glycosylase specifically recognizes 5-carboxylcytosine-modified DNA. Nat. Chem. Biol. 8, 328–330 (2012).

    Article  CAS  Google Scholar 

  13. Wibley, J. E., Waters, T. R., Haushalter, K., Verdine, G. L. & Pearl, L. H. Structure and specificity of the vertebrate anti-mutator uracil-DNA glycosylase SMUG1. Mol. Cell 11, 1647–1659 (2003).

    Article  CAS  Google Scholar 

  14. Hoseki, J. et al. Crystal structure of a family 4 uracil-DNA glycosylase from Thermus thermophilus HB8. J. Mol. Biol. 333, 515–526 (2003).

    Article  CAS  Google Scholar 

  15. Kawai, A. et al. Crystal structure of family 4 uracil-DNA glycosylase from Sulfolobus tokodaii and a function of tyrosine 170 in DNA binding. FEBS Lett. 589, 2675–2682 (2015).

    Article  CAS  Google Scholar 

  16. Kosaka, H., Hoseki, J., Nakagawa, N., Kuramitsu, S. & Masui, R. Crystal structure of family 5 uracil-DNA glycosylase bound to DNA. J. Mol. Biol. 373, 839–850 (2007).

    Article  CAS  Google Scholar 

  17. Venkatesh, J., Kumar, P., Krishna, P. S., Manjunath, R. & Varshney, U. Importance of uracil DNA glycosylase in Pseudomonas aeruginosa and Mycobacterium smegmatis, G+C-rich bacteria, in mutation prevention, tolerance to acidified nitrite, and endurance in mouse macrophages. J. Biol. Chem. 278, 24350–24358 (2003).

    Article  CAS  Google Scholar 

  18. Sang, P. B., Srinath, T., Patil, A. G., Woo, E. J. & Varshney, U. A unique uracil-DNA binding protein of the uracil DNA glycosylase superfamily. Nucleic Acids Res. 43, 8452–8463 (2015).

    Article  CAS  Google Scholar 

  19. Saikrishnan, K. et al. Domain closure and action of uracil DNA glycosylase (UDG): structures of new crystal forms containing the Escherichia coli enzyme and a comparative study of the known structures involving UDG. Acta Crystallogr. D 58, 1269–1276 (2002).

    Article  CAS  Google Scholar 

  20. Hashimoto, H., Zhang, X. & Cheng, X. D. Excision of thymine and 5-hydroxymethyluracil by the MBD4 DNA glycosylase domain: structural basis and implications for active DNA demethylation. Nucleic Acids Res. 40, 8276–8284 (2012).

    Article  CAS  Google Scholar 

  21. Woods, R. D. et al. Structure and stereochemistry of the base excision repair glycosylase MutY reveal a mechanism similar to retaining glycosidases. Nucleic Acids Res. 44, 801–810 (2016).

    Article  CAS  Google Scholar 

  22. Stivers, J. T. & Jiang, Y. L. A mechanistic perspective on the chemistry of DNA repair glycosylases. Chem. Rev. 103, 2729–2759 (2003).

    Article  CAS  Google Scholar 

  23. Champoux, J. J. DNA topoisomerases: structure, function, and mechanism. Annu. Rev. Biochem. 70, 369–413 (2001).

    Article  CAS  Google Scholar 

  24. Gao, Z., Maloney, D. J., Dedkova, L. M. & Hecht, S. M. Inhibitors of DNA polymerase beta: activity and mechanism. Bioorg. Med. Chem. 16, 4331–4340 (2008).

    Article  CAS  Google Scholar 

  25. Gros, C. et al. DNA methylation inhibitors in cancer: recent and future approaches. Biochimie 94, 2280–2296 (2012).

    Article  CAS  Google Scholar 

  26. Haracska, L., Prakash, L. & Prakash, S. A mechanism for the exclusion of low-fidelity human Y-family DNA polymerases from base excision repair. Genes Dev. 17, 2777–2785 (2003).

    Article  CAS  Google Scholar 

  27. Hazra, T. K. et al. Oxidative DNA damage repair in mammalian cells: a new perspective. DNA Repair 6, 470–480 (2007).

    Article  CAS  Google Scholar 

  28. Heidrun, I., Hong Jing, C. & Champoux, J. J. Human Tdp1 cleaves a broad spectrum of substrates, including phosphoamide linkages. J. Biol. Chem. 280, 36518 (2005).

    Article  Google Scholar 

  29. Ide, H. & Kotera, M. Human DNA glycosylases involved in the repair of oxidatively damaged DNA. Biol. Pharm. Bull. 27, 480–485 (2004).

    Article  CAS  Google Scholar 

  30. Khodyreva, S. N. et al. Apurinic/apyrimidinic (AP) site recognition by the 5'-dRP/AP lyase in poly(ADP-ribose) polymerase-1 (PARP-1). Proc. Natl Acad. Sci. USA 107, 22090–22095 (2010).

    Article  CAS  Google Scholar 

  31. Steven, A. R. et al. Ku is a 5'-dRP/AP lyase that excises nucleotide damage near broken ends. Nature 464, 1214 (2010).

    Article  Google Scholar 

  32. Tubbs, J. L., Pegg, A. E. & Tainer, J. A. DNA binding, nucleotide flipping, and the helix-turn-helix motif in base repair by O6-alkylguanine-DNA alkyltransferase and its implications for cancer chemotherapy. DNA Repair 6, 1100–1115 (2007).

    Article  CAS  Google Scholar 

  33. Zhang, Z., Cheng, B. & Tse-Dinh, Y. C. Crystal structure of a covalent intermediate in DNA cleavage and rejoining by Escherichia coli DNA topoisomerase I. Proc Natl Acad. Sci. USA 108, 6939–6944 (2011).

    Article  CAS  Google Scholar 

  34. Pluta, R. et al. Structural basis of a histidine-DNA nicking/joining mechanism for gene transfer and promiscuous spread of antibiotic resistance. Proc. Natl Acad. Sci. USA 114, E6526–E6535 (2017).

    Article  CAS  Google Scholar 

  35. McCann, J. A. & Berti, P. J. Transition state analysis of acid-catalyzed dAMP hydrolysis. J. Am. Chem. Soc. 129, 7055–7064 (2007).

    Article  CAS  Google Scholar 

  36. Vocadlo, D. J., Davies, G. J., Laine, R. & Withers, S. G. Catalysis by hen egg-white lysozyme proceeds via a covalent intermediate. Nature 412, 835–838 (2001).

    Article  CAS  Google Scholar 

  37. Messick, T. E. et al. Noncysteinyl coordination to the [4Fe-4S]2+ cluster of the DNA repair adenine glycosylase MutY introduced via site-directed mutagenesis. Structural characterization of an unusual histidinyl-coordinated cluster. Biochemistry 41, 3931–3942 (2002).

    Article  CAS  Google Scholar 

  38. Engstrom, L. M., Partington, O. A. & David, S. S. An iron–sulfur cluster loop motif in the archaeoglobus fulgidus uracil-dna glycosylase mediates efficient uracil recognition and removal. Biochemistry 51, 5187–5197 (2012).

    Article  CAS  Google Scholar 

  39. Cole, S. T. et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544 (1998).

    Article  CAS  Google Scholar 

  40. Heewook, L., Ellen, P., Haixu, T. & Foster, P. L. Rate and molecular spectrum of spontaneous mutations in the bacterium Escherichia coli as determined by whole-genome sequencing. Proc. Natl Acad. Sci. USA 109, 16416–16417 (2012).

    Google Scholar 

  41. Kunkel, T. A. & Erie, D. A. DNA mismatch repair. Annu. Rev. Biochem. 74, 681–710 (2005).

    Article  CAS  Google Scholar 

  42. Sassetti, C. M. & Rubin, E. J. Genetic requirements for mycobacterial survival during infection. Proc. Natl Acad. Sci. USA 100, 12989–12994 (2003).

    Article  CAS  Google Scholar 

  43. Kucukyildirim, S. et al. The rate and spectrum of spontaneous mutations in Mycobacterium smegmatis, a bacterium naturally devoid of the postreplicative mismatch repair pathway. G3 6, 2157–2163 (2016).

    Article  CAS  Google Scholar 

  44. Malshetty, V. S., Jain, R., Srinath, T., Kurthkoti, K. & Varshney, U. Synergistic effects of UdgB and Ung in mutation prevention and protection against commonly encountered DNA damaging agents in Mycobacterium smegmatis. Microbiology 156, 940–949 (2010).

    Article  CAS  Google Scholar 

  45. Wanner, R. M. et al. The uracil DNA glycosylase UdgB of Mycobacterium smegmatis protects the organism from the mutagenic effects of cytosine and adenine deamination. J. Bacteriol. 191, 6312–6319 (2009).

    Article  CAS  Google Scholar 

  46. Van der Veen, S. & Tang, C. M. The BER necessities: the repair of DNA damage in human-adapted bacterial pathogens. Nat. Rev. Microbiol. 13, 83–94 (2015).

    Article  Google Scholar 

  47. Minor, W., Cymborowski, M., Otwinowski, Z. & Chruszcz, M. HKL-3000: the integration of data reduction and structure solution-from diffraction images to an initial model in minutes. Acta Crystallogr. D 62, 859–866 (2010).

    Article  Google Scholar 

  48. Mccoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  49. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of COOT. Acta Crystallogr. D 66, 486–501 (2010).

    Article  CAS  Google Scholar 

  50. Afonine, P. V. et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D 68, 352–367 (2012).

    Article  CAS  Google Scholar 

  51. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010).

    Article  CAS  Google Scholar 

  52. Painter, J. & Merritt, E. A. Optimal description of a protein structure in terms of multiple groups undergoing TLS motion. Acta Crystallogr. D 62, 439–450 (2006).

    Article  Google Scholar 

  53. Winn, M. D., Isupov, M. N. & Murshudov, G. N. Use of TLS parameters to model anisotropic displacements in macromolecular refinement. Acta Crystallogr. D 57, 122–133 (2001).

    Article  CAS  Google Scholar 

  54. Baker, N. A., Sept, D., Joseph, S., Holst, M. J. & McCammon, J. A. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl Acad. Sci. USA 98, 10037–10041 (2001).

    Article  CAS  Google Scholar 

  55. Stivala, A., Wybrow, M., Wirth, A., Whisstock, J. C. & Stuckey, P. J. Automatic generation of protein structure cartoons with Pro-Origami. Bioinformatics 27, 3315–3316 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Cox (UCSF) for providing the M. smegmatis strain, the BL19U1 beamline at Shanghai Synchrotron Radiation Facility for assistance during diffraction data collection, and Y. Ju, H. Zhou and Q. Jia for assistance with data collection and analyses in TSAs.

Author information

Authors and Affiliations

Authors

Contributions

W.X. conceived and designed the research. J.T., R.C. and Y.Y. performed the research. W.X. analyzed the data and wrote the paper. W.C. provided input into the data analysis and manuscript preparation. All authors reviewed the manuscript. Funding for this work was provided by the National Natural Science Foundation of China (grant nos. 31870782 and 31700657), the Foundation of State Key Laboratory for Biocontrol (grant no. SKLBC16KF02), the Natural Science Foundation of Guangdong province (grant no. 2018A030313313) and the NIH (grant no. GM121997).

Corresponding author

Correspondence to Wei Xie.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–3, Supplementary Figures 1–17

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, J., Chen, R., Yang, Y. et al. Suicide inactivation of the uracil DNA glycosylase UdgX by covalent complex formation. Nat Chem Biol 15, 615–622 (2019). https://doi.org/10.1038/s41589-019-0290-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-019-0290-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing