Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis of exoribonuclease-mediated mRNA transcription termination

Abstract

Efficient termination is required for robust gene transcription. Eukaryotic organisms use a conserved exoribonuclease-mediated mechanism to terminate the mRNA transcription by RNA polymerase II (Pol II)1,2,3,4,5. Here we report two cryogenic electron microscopy structures of Saccharomyces cerevisiae Pol II pre-termination transcription complexes bound to the 5′-to-3′ exoribonuclease Rat1 and its partner Rai1. Our structures show that Rat1 displaces the elongation factor Spt5 to dock at the Pol II stalk domain. Rat1 shields the RNA exit channel of Pol II, guides the nascent RNA towards its active centre and stacks three nucleotides at the 5′ terminus of the nascent RNA. The structures further show that Rat1 rotates towards Pol II as it shortens RNA. Our results provide the structural mechanism for the Rat1-mediated termination of mRNA transcription by Pol II in yeast and the exoribonuclease-mediated termination of mRNA transcription in other eukaryotes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The cryo-EM structure of Pol II Rat1–PTTC1.
Fig. 2: Protein interactions in Pol II Rat1–PTTC1.
Fig. 3: The RNA channel in Pol II Rat1–PTTC1.
Fig. 4: Rat1 rotates towards the RNA exit channel of Pol II as it shortens the nascent RNA.
Fig. 5: The proposed model of Rat1–Rai1-mediated Pol II termination.

Similar content being viewed by others

Data availability

Atomic coordinates have been deposited in the PDB under the accession codes 8JCH (Pol II Rat1–PTTC1) and 8K5P (Pol II Rat1–PTTC2). Corresponding cryo-EM density maps have been deposited in the Electron Microscopy Data Bank under the accession codes EMD-36162 (Pol II Rat1–PTTC1) and EMD-36908 (Pol II Rat1–PTTC2). Source data are provided with this paper.

References

  1. Kim, M. et al. The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II. Nature 432, 517–522 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. West, S., Gromak, N. & Proudfoot, N. J. Human 5′ -> 3′ exonuclease Xrn2 promotes transcription termination at co-transcriptional cleavage sites. Nature 432, 522–525 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Luo, W. & Bentley, D. A ribonucleolytic rat torpedoes RNA polymerase II. Cell 119, 911–914 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Fong, N. et al. Effects of transcription elongation rate and Xrn2 exonuclease activity on RNA polymerase II termination suggest widespread kinetic competition. Mol. Cell 60, 256–267 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Krzyszton, M. et al. Defective XRN3-mediated transcription termination in Arabidopsis affects the expression of protein-coding genes. Plant J. 93, 1017–1031 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Proudfoot, N. J. Transcriptional termination in mammals: stopping the RNA polymerase II juggernaut. Science 352, aad9926 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Girbig, M., Misiaszek, A. D. & Muller, C. W. Structural insights into nuclear transcription by eukaryotic DNA-dependent RNA polymerases. Nat. Rev. Mol. Cell Biol. 23, 603–622 (2022).

    Article  CAS  PubMed  Google Scholar 

  8. Porrua, O. & Libri, D. Transcription termination and the control of the transcriptome: why, where and how to stop. Nat. Rev. Mol. Cell Biol. 16, 190–202 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Eaton, J. D. & West, S. Termination of transcription by RNA polymerase II: BOOM! Trends Genet. 36, 664–675 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Richard, P. & Manley, J. L. Transcription termination by nuclear RNA polymerases. Genes Dev. 23, 1247–1269 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kumar, A., Clerici, M., Muckenfuss, L. M., Passmore, L. A. & Jinek, M. Mechanistic insights into mRNA 3′-end processing. Curr. Opin. Struc. Biol. 59, 143–150 (2019).

    Article  CAS  Google Scholar 

  12. Lunde, B. M. et al. Cooperative interaction of transcription termination factors with the RNA polymerase II C-terminal domain. Nat. Struct. Mol. Biol. 17, 1195–1201 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Carminati, M. et al. A direct interaction between CPF and RNA Pol II links RNA 3′ end processing to transcription. Mol. Cell 83, 4461–4478 (2023).

  14. Brannan, K. et al. mRNA decapping factors and the exonuclease Xrn2 function in widespread premature termination of RNA polymerase II transcription. Mol. Cell 46, 311–324 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nojima, T. et al. Mammalian NET-Seq reveals genome-wide nascent transcription coupled to RNA processing. Cell 161, 526–540 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jimeno-Gonzalez, S., Haaning, L. L., Malagon, F. & Jensen, T. H. The yeast 5′-3′ exonuclease Rat1p functions during transcription elongation by RNA polymerase II. Mol. Cell 37, 580–587 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Cortazar, M. A. et al. Xrn2 substrate mapping identifies torpedo loading sites and extensive premature termination of RNA pol II transcription. Genes Dev. 36, 1062–1078 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim, M., Ahn, S. H., Krogan, N. J., Greenblatt, J. F. & Buratowski, S. Transitions in RNA polymerase II elongation complexes at the 3′ ends of genes. EMBO J. 23, 354–364 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang, Z., Fu, J. & Gilmour, D. S. CTD-dependent dismantling of the RNA polymerase II elongation complex by the pre-mRNA 3′-end processing factor, Pcf11. Genes Dev. 19, 1572–1580 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang, H., Rigo, F. & Martinson, H. G. Poly(A) signal-dependent transcription termination occurs through a conformational change mechanism that does not require cleavage at the poly(A) site. Mol. Cell 59, 437–448 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Logan, J., Falck-Pedersen, E., Darnell, J. E. Jr & Shenk, T. A poly(A) addition site and a downstream termination region are required for efficient cessation of transcription by RNA polymerase II in the mouse beta maj-globin gene. Proc. Natl Acad. Sci. USA 84, 8306–8310 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Eaton, J. D., Francis, L., Davidson, L. & West, S. A unified allosteric/torpedo mechanism for transcriptional termination on human protein-coding genes. Genes Dev. 34, 132–145 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Luo, W., Johnson, A. W. & Bentley, D. L. The role of Rat1 in coupling mRNA 3′-end processing to transcription termination: implications for a unified allosteric–torpedo model. Genes Dev. 20, 954–965 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cortazar, M. A. et al. Control of RNA Pol II speed by PNUTS-PP1 and Spt5 dephosphorylation facilitates termination by a “sitting duck torpedo” mechanism. Mol. Cell 76, 896–908 e894 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xue, Y. et al. Saccharomyces cerevisiae RAI1 (YGL246c) is homologous to human DOM3Z and encodes a protein that binds the nuclear exoribonuclease Rat1p. Mol. Cell. Biol. 20, 4006–4015 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xiang, S. et al. Structure and function of the 5′→3′ exoribonuclease Rat1 and its activating partner Rai1. Nature 458, 784–788 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mayer, A. et al. Uniform transitions of the general RNA polymerase II transcription complex. Nat. Struct. Mol. Biol. 17, 1272–1278 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Narain, A. et al. Targeted protein degradation reveals a direct role of SPT6 in RNAPII elongation and termination. Mol. Cell 81, 3110–3127 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Baejen, C. et al. Genome-wide analysis of RNA polymerase II termination at protein-coding genes. Mol. Cell 66, 38–49 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Jinek, M., Coyle, S. M. & Doudna, J. A. Coupled 5′ nucleotide recognition and processivity in Xrn1-mediated mRNA decay. Mol. Cell 41, 600–608 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Stevens, A. & Poole, T. L. 5′-exonuclease-2 of Saccharomyces cerevisiae. Purification and features of ribonuclease activity with comparison to 5′-exonuclease-1. J. Biol. Chem. 270, 16063–16069 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Ehara, H. et al. Structure of the complete elongation complex of RNA polymerase II with basal factors. Science 357, 921–924 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Parua, P. K. et al. A Cdk9–PP1 switch regulates the elongation–termination transition of RNA polymerase II. Nature 558, 460–464 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kecman, T. et al. Elongation/termination factor exchange mediated by PP1 phosphatase orchestrates transcription termination. Cell Rep. 25, 259–269 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Grosso, A. R., de Almeida, S. F., Braga, J. & Carmo-Fonseca, M. Dynamic transitions in RNA polymerase II density profiles during transcription termination. Genome Res. 22, 1447–1456 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Orozco, I. J., Kim, S. J. & Martinson, H. G. The poly(A) signal, without the assistance of any downstream element, directs RNA polymerase II to pause in vivo and then to release stochastically from the template. J. Biol. Chem. 277, 42899–42911 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Gromak, N., West, S. & Proudfoot, N. J. Pause sites promote transcriptional termination of mammalian RNA polymerase II. Mol. Cell. Biol. 26, 3986–3996 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. James, K., Gamba, P., Cockell, S. J. & Zenkin, N. Misincorporation by RNA polymerase is a major source of transcription pausing in vivo. Nucleic Acids Res. 45, 1105–1113 (2017).

    CAS  PubMed  Google Scholar 

  39. Molodtsov, V., Wang, C., Firlar, E., Kaelber, J. T. & Ebright, R. H. Structural basis of Rho-dependent transcription termination. Nature 14, 367–374 (2023).

    Article  Google Scholar 

  40. Murayama, Y. et al. Structural basis of the transcription termination factor Rho engagement with transcribing RNA polymerase from Thermus thermophilus. Sci. Adv. 9, eade7093 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chengyuan, W. et al. Structural basis of archaeal FttA-dependent transcription termination. Preprint at bioRxiv https://doi.org/10.1101/2023.08.09.552649 (2023).

  42. Fianu, I. et al. Structural basis of integrator-mediated transcription regulation. Science 374, 883–887 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Zheng, H. et al. Structural basis of INTAC-regulated transcription. Protein Cell 14, 698–702 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Higo, T. et al. Development of a hexahistidine-3x FLAG-tandem affinity purification method for endogenous protein complexes in Pichia pastoris. J. Struct. Funct. Genomics 15, 191–199 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. Elife 7, e42166 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Xu, J. et al. Structural basis for the initiation of eukaryotic transcription-coupled DNA repair. Nature 551, 653–657 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Farnung, L., Ochmann, M., Engeholm, M. & Cramer, P. Structural basis of nucleosome transcription mediated by Chd1 and FACT. Nat. Struct. Mol. Biol. 28, 382–387 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pettersen, E. F. et al. UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  54. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ehara, H., Kujirai, T., Shirouzu, M., Kurumizaka, H. & Sekine, S. I. Structural basis of nucleosome disassembly and reassembly by RNAPII elongation complex with FACT. Science 377, eabp9466 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Key Research and Development Program of China 2018YFA0900701 (Y. Zhang) and the Basic Research Zone Program of Shanghai JCYJ-SHFY-2022-012 (Y. Zhang). We thank L. Kong, F. Wang, G. Li, J. Duan at electron microscopy system at the National Facility for Protein Science in Shanghai (NFPS), M. Zhang at the electron microscopy center in Interdisciplinary Research Center on Biology and Chemistry (IRCBC), and staffs X. Men, F. Liu, and S. Wang at electron microscopy center at Shuimu Biosciences in Hangzhou for providing technical support and assistance in cryo-EM data collection. We thank M. Zhang and Z. Zhang at the core facility of the Center for Excellence in Molecular Plant Sciences (CEMPS) for technical support and assistance in screening cryo-EM samples. The S.cerevisiae BJ2168 strain was a gift from G. Cai. The pESC-his vector was a gift from Z. Zhou.

Author information

Authors and Affiliations

Authors

Contributions

Y. Zeng collected the cryo-EM data, solved the cryo-EM structures and carried out biochemical experiments. H.-W.Z. purified yeast Pol II. X.-X.W. assisted in structure determination. Y. Zhang designed experiments, analysed data and wrote the manuscript.

Corresponding author

Correspondence to Yu Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Seth Darst and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 The assembly of the Pol II Rat1-PTTC1 and Pol II Rat1-PTTC2.

a-b, Elution peaks and SDS-PAGE results of Pol II Rat1-PTTC1 from a size-exclusion chromatography. c-d, Elution peaks and SDS-PAGE result of Pol II Rat1-PTTC2 from a size-exclusion chromatography. Asterisks indicate degradation products of Rpb1. e, The Pol II release result shows the Rat1-Rai1 complex releases Pol II from the elongation complex. Three biological repeats were done, see Supplementary Fig.  1. f, The RNA cleavage result shows the Rat1-Rai1 complex has exoribonuclease activity. Three biological repeats were done, see Supplementary Fig.  1.

Source Data

Extended Data Fig. 2 Cryo-EM data processing of Pol II Rat1-PTTC1.

a, The flowchart of data processing for Pol II Rat1-PTTC1. b, Representative cryo-EM micrograph. c, Representative 2D class averages. d-f, Gold-standard FSC curves of map 1a, map 1b, and map 1c. g, The 3D FSC plot. The dotted line represents 0.143 cutoff of the global FSC curve. h, Nominal 2.7 Å-resolution cryo-EM reconstruction of map 2a filtered by local resolution. i-j, Map classified from Pol II Rat1-PTTC1. Map 1a represents the Pol II Rat1-PTTC1. Map 1c represents Pol II Spt4-Spt5 bound TEC. The Rat1-Rai1 map is colored green, and the Spt4-Spt5 map is colored blue.

Extended Data Fig. 3 Cryo-EM data processing of Pol II Rat1-PTTC2.

a, The flowchart of data processing for Pol II Rat1-PTTC2. b-c, Gold-standard FSC curves of map 2a, map 2b. d, The 3D FSC plot. The dotted line represents the 0.143 cutoff of the global FSC curve. e, Nominal 2.8 Å-resolution cryo-EM reconstruction of map 2a filtered by local resolution. f, Local refined map (map 2b) of Rat1, Rai1, Rpb4-Rpb7, and structure elements around the RNA exit channel of Pol II.

Extended Data Fig. 4 The interface between Rat1 and Rai1 in Pol II Rat1-PTTC1.

a, Overview of the interface between Rat1 and Rai1. The dashed boxes highlight the structure elements of Rat1 that contact the two concaves of Rai1. Green represents the Rat1 regions not observed in the crystal structure of S. pombe Rat1-Rai1 complex. b, Structural comparison of the Rat1-Rai1 complex in Pol II Rat1-PTTC1 and the crystal structure of S. pombe Rat1-Rai1 complex (PDB:3FQD26). c-d, The cryo-EM maps (map 1b) of interfaces 1 and 2.

Extended Data Fig. 5 The cryo-EM map of interfaces between Pol II and the Rat1-Rai1 complex in the structure of Pol II Rat1-PTTC1.

The view orientation and cartoon color are the same as in Fig. 2d. The cryo-EM map is colored in blue.

Extended Data Fig. 6 Sequence alignment of Rat1 homologs.

Sequence alignment shows that Rat1 residues in arms 1 and 2 contacting Pol II are generally conserved (red circles). Other Rat1 residues contacting Pol II are shown in blue circles.

Extended Data Fig. 7 Rat1 is incompatible with Pol II elongation factors.

a, Structural comparison between Pol II Rat1-PTTC1 and Pol II TEC (PDB:7XN755) shows the steric clash of Rat1 and Spt5 KOW1/2/3 domains. b, Structural comparison between Pol II Rat1-PTTC1 and Pol II TEC (PDB:7XN755) shows the steric clash of Rat1 and Spt6.

Extended Data Fig. 8 Rat1 can be recruited to Pol II independent of RNA.

a-b, Elution peaks and SDS-PAGE result of Pol II-RR from a size-exclusion chromatography without a nucleic-acid scaffold. Two biological repeats were done, see source data and Supplementary Fig.  1. c, The native-page result shows that the Rat1-Rai1(RR) complex slows the migration of Pol II in a concentration-dependent way, suggesting that the Rat1-Rai1 complex forms a stable complex with Pol II. Three biological repeats were done, see Supplementary Fig.  1. d, The native-page result shows that removing arms 1 and 2 weakens the interaction with Pol II. Three biological repeats were done, see Supplementary Fig.  1. e. The flag pull-down result shows Spt5 does not affect the interaction between Rat1-Rai1 and Pol II. Three biological repeats were done, see Supplementary Fig.  1.

Source Data

Extended Data Fig. 9 The interaction of nascent RNA with Rat1 in Pol II Rat1-PTTC1.

a, The interaction between the 5′ phosphate groups of the first two nucleotides with the active site of Rat1. Black dash, the coordination bonds. Blue dash, the H-bonds. b, The interaction of nascent RNA with Rat1 and Pol II. The cryo-EM map for the RNA-contacting residues is shown in blue. C, The modeled triphosphate group of the RNA 5′ terminus clashes with Rat1. Left, RNA with a monophosphate group in the structure of Pol II Rat1-PTTC1; right, RNA with a modeled triphosphate group in the structure of Pol II Rat1-PTTC1.

Extended Data Table 1 The statistics of cryo-EM structures in this study

Supplementary information

Supplementary Fig. 1

Uncropped gels from Extended Data Figs. 1 and 8.

Reporting Summary

Peer Review File

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Y., Zhang, HW., Wu, XX. et al. Structural basis of exoribonuclease-mediated mRNA transcription termination. Nature 628, 887–893 (2024). https://doi.org/10.1038/s41586-024-07240-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-07240-3

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing