Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Unlocking ferroptosis in prostate cancer — the road to novel therapies and imaging markers

Abstract

Ferroptosis is a distinct form of regulated cell death that is predominantly driven by the build-up of intracellular iron and lipid peroxides. Ferroptosis suppression is widely accepted to contribute to the pathogenesis of several tumours including prostate cancer. Results from some studies reported that prostate cancer cells can be highly susceptible to ferroptosis inducers, providing potential for an interesting new avenue of therapeutic intervention for advanced prostate cancer. In this Perspective, we describe novel molecular underpinnings and metabolic drivers of ferroptosis, analyse the functions and mechanisms of ferroptosis in tumours, and highlight prostate cancer-specific susceptibilities to ferroptosis by connecting ferroptosis pathways to the distinctive metabolic reprogramming of prostate cancer cells. Leveraging these novel mechanistic insights could provide innovative therapeutic opportunities in which ferroptosis induction augments the efficacy of currently available prostate cancer treatment regimens, pending the elimination of major bottlenecks for the clinical translation of these treatment combinations, such as the development of clinical-grade inhibitors of the anti-ferroptotic enzymes as well as non-invasive biomarkers of ferroptosis. These biomarkers could be exploited for diagnostic imaging and treatment decision-making.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms of ferroptosis in prostate cancer.
Fig. 2: Combination of ferroptosis inducers with standard-of-care therapies in prostate cancer.

Similar content being viewed by others

References

  1. Siegel, R. L., Miller, K. D., Wagle, N. S. & Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 73, 17–48 (2023).

    Article  PubMed  Google Scholar 

  2. Moreira, D. M. et al. Predicting time from metastasis to overall survival in castration-resistant prostate cancer: results from SEARCH. Clin. Genitourin. Cancer 15, 60–66. e62 (2017).

    Article  PubMed  Google Scholar 

  3. Chen, X., Comish, P. B., Tang, D. & Kang, R. Characteristics and biomarkers of ferroptosis. Front. Cell Dev. Biol. 9, 637162 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Yang, W. S. et al. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc. Natl Acad. Sci. USA 113, E4966–E4975 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lin, Z. et al. The lipid flippase SLC47A1 blocks metabolic vulnerability to ferroptosis. Nat. Commun. 13, 7965 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Catala, A. Lipid peroxidation of membrane phospholipids generates hydroxy-alkenals and oxidized phospholipids active in physiological and/or pathological conditions. Chem. Phys. Lipids 157, 1–11 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Gao, M. et al. Role of mitochondria in ferroptosis. Mol. Cell 73, 354–363 e353 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Park, M. W. et al. NOX4 promotes ferroptosis of astrocytes by oxidative stress-induced lipid peroxidation via the impairment of mitochondrial metabolism in Alzheimer’s diseases. Redox Biol. 41, 101947 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yan, B. et al. Membrane damage during ferroptosis is caused by oxidation of phospholipids catalyzed by the oxidoreductases POR and CYB5R1. Mol. Cell 81, 355–369 e310 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Zhang, S. et al. Double-edge sword roles of iron in driving energy production versus instigating ferroptosis. Cell Death Dis. 13, 40 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. von Krusenstiern, A. N. et al. Identification of essential sites of lipid peroxidation in ferroptosis. Nat. Chem. Biol. 19, 719–730 (2023).

    Article  Google Scholar 

  12. Yang, W. S. & Stockwell, B. R. Ferroptosis: death by lipid peroxidation. Trends Cell Biol. 26, 165–176 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Conrad, M. & Friedmann Angeli, J. P. Glutathione peroxidase 4 (Gpx4) and ferroptosis: what’s so special about it? Mol. Cell Oncol. 2, e995047 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lu, S. C. Glutathione synthesis. Biochim. Biophys. Acta 1830, 3143–3153 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Du, Y. & Guo, Z. Recent progress in ferroptosis: inducers and inhibitors. Cell Death Discov. 8, 501 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li, Q. et al. Understanding sorafenib-induced ferroptosis and resistance mechanisms: implications for cancer therapy. Eur. J. Pharmacol. 955, 175913 (2023).

    Article  CAS  PubMed  Google Scholar 

  17. Friedmann Angeli, J. P. et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat. Cell Biol. 16, 1180–1191 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Yan, H. F. et al. Ferroptosis: mechanisms and links with diseases. Signal. Transduct. Target. Ther. 6, 49 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mao, C. et al. DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature 593, 586–590 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cirilli, I. et al. Role of coenzyme Q10 in health and disease: an update on the last 10 years (2010–2020). Antioxidants 10, 1325 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bentinger, M., Tekle, M. & Dallner, G. Coenzyme Q — biosynthesis and functions. Biochem. Biophys. Res. Commun. 396, 74–79 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Kraft, V. A. N. et al. GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling. ACS Cent. Sci. 6, 41–53 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Lei, G., Zhuang, L. & Gan, B. Targeting ferroptosis as a vulnerability in cancer. Nat. Rev. Cancer 22, 381–396 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dixon, S. J. et al. Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. Elife 3, e02523 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jeong, S. D. et al. Enhanced immunogenic cell death by apoptosis/ferroptosis hybrid pathway potentiates PD-L1 blockade cancer immunotherapy. ACS Biomater. Sci. Eng. 8, 5188–5198 (2022).

    Article  CAS  PubMed  Google Scholar 

  26. Lei, G. et al. The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression. Cell Res. 30, 146–162 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Viswanathan, V. S. et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature 547, 453–457 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tousignant, K. D. et al. Therapy-induced lipid uptake and remodeling underpin ferroptosis hypersensitivity in prostate cancer. Cancer Metab. 8, 11 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ghoochani, A. et al. Ferroptosis inducers are a novel therapeutic approach for advanced prostate cancer. Cancer Res. 81, 1583–1594 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yang, Y. et al. Ferroptosis inducer erastin downregulates androgen receptor and its splice variants in castration-resistant prostate cancer. Oncol. Rep. 45, 25 (2021).

    Article  PubMed  Google Scholar 

  31. Mathur, D. et al. PTEN regulates glutamine flux to pyrimidine synthesis and sensitivity to dihydroorotate dehydrogenase inhibition. Cancer Discov. 7, 380–390 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lv, Z. et al. Identifying a ferroptosis-related gene signature for predicting biochemical recurrence of prostate cancer. Front. Cell Dev. Biol. 9, 666025 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mao, C., Liu, X., Yan, Y., Olszewski, K. & Gan, B. Reply to: DHODH inhibitors sensitize to ferroptosis by FSP1 inhibition. Nature 619, E19–E23 (2023).

    Article  CAS  PubMed  Google Scholar 

  34. Mishima, E. et al. DHODH inhibitors sensitize to ferroptosis by FSP1 inhibition. Nature 619, E9–E18 (2023).

    Article  CAS  PubMed  Google Scholar 

  35. Yoo, S. E. et al. Gpx4 ablation in adult mice results in a lethal phenotype accompanied by neuronal loss in brain. Free. Radic. Biol. Med. 52, 1820–1827 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mei, J., Webb, S., Zhang, B. & Shu, H. B. The p53-inducible apoptotic protein AMID is not required for normal development and tumor suppression. Oncogene 25, 849–856 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Doll, S. et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat. Chem. Biol. 13, 91–98 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Rodriguez, R., Schreiber, S. L. & Conrad, M. Persister cancer cells: iron addiction and vulnerability to ferroptosis. Mol. Cell 82, 728–740 (2022).

    Article  CAS  PubMed  Google Scholar 

  39. Scheinberg, T., Mak, B., Butler, L., Selth, L. & Horvath, L. G. Targeting lipid metabolism in metastatic prostate cancer. Ther. Adv. Med. Oncol. 15, 17588359231152839 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mah, C. Y., Nassar, Z. D., Swinnen, J. V. & Butler, L. M. Lipogenic effects of androgen signaling in normal and malignant prostate. Asian J. Urol. 7, 258–270 (2020).

    Article  PubMed  Google Scholar 

  41. Poulose, N. et al. Genetics of lipid metabolism in prostate cancer. Nat. Genet. 50, 169–171 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Scaglia, N., Frontini-Lopez, Y. R. & Zadra, G. Prostate cancer progression: as a matter of fats. Front. Oncol. 11, 719865 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Castelli, S., De Falco, P., Ciccarone, F., Desideri, E. & Ciriolo, M. R. Lipid catabolism and ROS in cancer: a bidirectional liaison. Cancers 13, 5484 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Iglesias-Gato, D. et al. The proteome of primary prostate cancer. Eur. Urol. 69, 942–952 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Magtanong, L. et al. Exogenous monounsaturated fatty acids promote a ferroptosis-resistant cell state. Cell Chem. Biol. 26, 420–432 e429 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Das, U. N. Saturated fatty acids, MUFAs and PUFAs regulate ferroptosis. Cell Chem. Biol. 26, 309–311 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Yuan, H., Li, X., Zhang, X., Kang, R. & Tang, D. Identification of ACSL4 as a biomarker and contributor of ferroptosis. Biochem. Biophys. Res. Commun. 478, 1338–1343 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. Yang, Y. et al. ACSL3 and ACSL4, distinct roles in ferroptosis and cancers. Cancers 14, 5896 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Doll, S. & Conrad, M. Iron and ferroptosis: a still ill-defined liaison. IUBMB Life 69, 423–434 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. Ma, Y. et al. Long-chain Acyl-CoA synthetase 4-mediated fatty acid metabolism sustains androgen receptor pathway-independent prostate cancer. Mol. Cancer Res. 19, 124–135 (2021).

    Article  CAS  PubMed  Google Scholar 

  51. Marques, R. B. et al. Modulation of androgen receptor signaling in hormonal therapy-resistant prostate cancer cell lines. PLoS ONE 6, e23144 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wu, X. et al. ACSL4 promotes prostate cancer growth, invasion and hormonal resistance. Oncotarget 6, 44849–44863 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wang, M. E. et al. RB1-deficient prostate tumor growth and metastasis are vulnerable to ferroptosis induction via the E2F/ACSL4 axis. J. Clin. Invest. 133, e166647 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Orlando, U. D. et al. Acyl-CoA synthetase-4 is implicated in drug resistance in breast cancer cell lines involving the regulation of energy-dependent transporter expression. Biochem. Pharmacol. 159, 52–63 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Sanchez-Martinez, R., Cruz-Gil, S., Garcia-Alvarez, M. S., Reglero, G. & Ramirez de Molina, A. Complementary ACSL isoforms contribute to a non-Warburg advantageous energetic status characterizing invasive colon cancer cells. Sci. Rep. 7, 11143 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Wu, X. et al. Long chain fatty Acyl-CoA synthetase 4 is a biomarker for and mediator of hormone resistance in human breast cancer. PLoS ONE 8, e77060 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Xia, H. et al. Simultaneous silencing of ACSL4 and induction of GADD45B in hepatocellular carcinoma cells amplifies the synergistic therapeutic effect of aspirin and sorafenib. Cell Death Discov. 3, 17058 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mashima, T., Seimiya, H. & Tsuruo, T. De novo fatty-acid synthesis and related pathways as molecular targets for cancer therapy. Br. J. Cancer 100, 1369–1372 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sena, L. A. & Denmeade, S. R. Fatty acid synthesis in prostate cancer: vulnerability or epiphenomenon? Cancer Res. 81, 4385–4393 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).

    Article  PubMed  Google Scholar 

  61. Swinnen, J. V., Brusselmans, K. & Verhoeven, G. Increased lipogenesis in cancer cells: new players, novel targets. Curr. Opin. Clin. Nutr. Metab. Care 9, 358–365 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Swinnen, J. V., Esquenet, M., Goossens, K., Heyns, W. & Verhoeven, G. Androgens stimulate fatty acid synthase in the human prostate cancer cell line LNCaP. Cancer Res. 57, 1086–1090 (1997).

    CAS  PubMed  Google Scholar 

  63. Heemers, H. V., Verhoeven, G. & Swinnen, J. V. Androgen activation of the sterol regulatory element-binding protein pathway: current insights. Mol. Endocrinol. 20, 2265–2277 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Butler, L. M., Centenera, M. M. & Swinnen, J. V. Androgen control of lipid metabolism in prostate cancer: novel insights and future applications. Endocr. Relat. Cancer 23, R219–227, (2016).

    Article  CAS  PubMed  Google Scholar 

  65. Han, L. Q., Gao, T. Y., Yang, G. Y. & Loor, J. J. Overexpression of SREBF chaperone (SCAP) enhances nuclear SREBP1 translocation to upregulate fatty acid synthase (FASN) gene expression in bovine mammary epithelial cells. J. Dairy. Sci. 101, 6523–6531 (2018).

    Article  CAS  PubMed  Google Scholar 

  66. Rossi, S. et al. Fatty acid synthase expression defines distinct molecular signatures in prostate cancer. Mol. Cancer Res. 1, 707–715 (2003).

    CAS  PubMed  Google Scholar 

  67. Shah, U. S. et al. Fatty acid synthase gene overexpression and copy number gain in prostate adenocarcinoma. Hum. Pathol. 37, 401–409 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Epstein, J. I., Carmichael, M. & Partin, A. W. OA-519 (fatty acid synthase) as an independent predictor of pathologic state in adenocarcinoma of the prostate. Urology 45, 81–86 (1995).

    Article  CAS  PubMed  Google Scholar 

  69. Song, X. et al. PDK4 dictates metabolic resistance to ferroptosis by suppressing pyruvate oxidation and fatty acid synthesis. Cell Rep. 34, 108767 (2021).

    Article  CAS  PubMed  Google Scholar 

  70. Li, C. et al. LKB1-AMPK axis negatively regulates ferroptosis by inhibiting fatty acid synthesis. Signal. Transduct. Target. Ther. 5, 187 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lee, H. et al. Energy-stress-mediated AMPK activation inhibits ferroptosis. Nat. Cell Biol. 22, 225–234 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bartolacci, C. et al. Targeting de novo lipogenesis and the Lands cycle induces ferroptosis in KRAS-mutant lung cancer. Nat. Commun. 13, 4327 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hardie, D. G., Ross, F. A. & Hawley, S. A. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol. 13, 251–262 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Park, H. U. et al. AMP-activated protein kinase promotes human prostate cancer cell growth and survival. Mol. Cancer Ther. 8, 733–741 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tennakoon, J. B. et al. Androgens regulate prostate cancer cell growth via an AMPK-PGC-1ɑ-mediated metabolic switch. Oncogene 33, 5251–5261 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Lin, C. et al. Inhibition of CAMKK2 impairs autophagy and castration-resistant prostate cancer via suppression of AMPK-ULK1 signaling. Oncogene 40, 1690–1705 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Khan, A. S. & Frigo, D. E. A spatiotemporal hypothesis for the regulation, role, and targeting of AMPK in prostate cancer. Nat. Rev. Urol. 14, 164–180 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Frigo, D. E. et al. CaM kinase kinase beta-mediated activation of the growth regulatory kinase AMPK is required for androgen-dependent migration of prostate cancer cells. Cancer Res. 71, 528–537 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Enoch, H. G., Catala, A. & Strittmatter, P. Mechanism of rat liver microsomal stearyl-CoA desaturase. Studies of the substrate specificity, enzyme-substrate interactions, and the function of lipid. J. Biol. Chem. 251, 5095–5103 (1976).

    Article  CAS  PubMed  Google Scholar 

  80. Amezaga, J. et al. Altered red blood cell membrane fatty acid profile in cancer patients. Nutrients 10, 1853 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Chavarro, J. E. et al. Blood levels of saturated and monounsaturated fatty acids as markers of de novo lipogenesis and risk of prostate cancer. Am. J. Epidemiol. 178, 1246–1255 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Fritz, V. et al. Abrogation of de novo lipogenesis by stearoyl-CoA desaturase 1 inhibition interferes with oncogenic signaling and blocks prostate cancer progression in mice. Mol. Cancer Ther. 9, 1740–1754 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yi, J., Zhu, J., Wu, J., Thompson, C. B. & Jiang, X. Oncogenic activation of PI3K-AKT-mTOR signaling suppresses ferroptosis via SREBP-mediated lipogenesis. Proc. Natl Acad. Sci. USA 117, 31189–31197 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tesfay, L. et al. Stearoyl-CoA desaturase 1 protects ovarian cancer cells from ferroptotic cell death. Cancer Res. 79, 5355–5366 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kagan, V. E. et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat. Chem. Biol. 13, 81–90 (2017).

    Article  CAS  PubMed  Google Scholar 

  86. D’Angelo, S., Motti, M. L. & Meccariello, R. ω-3 and ω-6 polyunsaturated fatty acids, obesity and cancer. Nutrients 12, 2751 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Lee, J. M., Lee, H., Kang, S. & Park, W. J. Fatty acid desaturases, polyunsaturated fatty acid regulation, and biotechnological advances. Nutrients 8, 23 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Lee, J. Y. et al. Polyunsaturated fatty acid biosynthesis pathway determines ferroptosis sensitivity in gastric cancer. Proc. Natl Acad. Sci. USA 117, 32433–32442 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yamane, D. et al. FADS2-dependent fatty acid desaturation dictates cellular sensitivity to ferroptosis and permissiveness for hepatitis C virus replication. Cell Chem. Biol. 29, 799–810 e794 (2022).

    Article  CAS  PubMed  Google Scholar 

  90. Xu, H. et al. ELOVL5-mediated long chain fatty acid elongation contributes to enzalutamide resistance of prostate cancer. Cancers 13, 3957 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Centenera, M. M. et al. ELOVL5 is a critical and targetable fatty acid elongase in prostate cancer. Cancer Res. 81, 1704–1718 (2021).

    Article  CAS  PubMed  Google Scholar 

  92. Schlaepfer, I. R. & Joshi, M. CPT1A-mediated fat oxidation, mechanisms, and therapeutic potential. Endocrinology 161, bqz046 (2020).

    Article  PubMed  Google Scholar 

  93. Flaig, T. W. et al. Lipid catabolism inhibition sensitizes prostate cancer cells to antiandrogen blockade. Oncotarget 8, 56051–56065 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Joshi, M. et al. CPT1A supports castration-resistant prostate cancer in androgen-deprived conditions. Cells 8, 115 (2019).

    Article  Google Scholar 

  95. Nassar, Z. D. et al. Human DECR1 is an androgen-repressed survival factor that regulates PUFA oxidation to protect prostate tumor cells from ferroptosis. Elife 9, e54166 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gao, M., Monian, P., Quadri, N., Ramasamy, R. & Jiang, X. Glutaminolysis and transferrin regulate ferroptosis. Mol. Cell 59, 298–308 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Philpott, C. C. et al. Iron-tracking strategies: chaperones capture iron in the cytosolic labile iron pool. Front. Mol. Biosci. 10, 1127690 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yanatori, I., Richardson, D. R., Imada, K. & Kishi, F. Iron export through the transporter ferroportin 1 is modulated by the iron chaperone PCBP2. J. Biol. Chem. 291, 17303–17318 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Donovan, A. et al. The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metab. 1, 191–200 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Nemeth, E. & Ganz, T. The role of hepcidin in iron metabolism. Acta Haematol. 122, 78–86 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hubert, N. & Hentze, M. W. Previously uncharacterized isoforms of divalent metal transporter (DMT)-1: implications for regulation and cellular function. Proc. Natl Acad. Sci. USA 99, 12345–12350 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Dai, E., Meng, L., Kang, R., Wang, X. & Tang, D. ESCRT-III-dependent membrane repair blocks ferroptosis. Biochem. Biophys. Res. Commun. 522, 415–421 (2020).

    Article  CAS  PubMed  Google Scholar 

  103. Vela, D. Iron metabolism in prostate cancer; from basic science to new therapeutic strategies. Front. Oncol. 8, 547 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Torti, S. V., Manz, D. H., Paul, B. T., Blanchette-Farra, N. & Torti, F. M. Iron and cancer. Annu. Rev. Nutr. 38, 97–125 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Brown, R. A. M. et al. Altered iron metabolism and impact in cancer biology, metastasis, and immunology. Front. Oncol. 10, 476 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Deng, Z., Manz, D. H., Torti, S. V. & Torti, F. M. Iron-responsive element-binding protein 2 plays an essential role in regulating prostate cancer cell growth. Oncotarget 8, 82231–82243 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Keer, H. N. et al. Elevated transferrin receptor content in human prostate cancer cell lines assessed in vitro and in vivo. J. Urol. 143, 381–385 (1990).

    Article  CAS  PubMed  Google Scholar 

  108. Kuvibidila, S., Gauthier, T., Warrier, R. P. & Rayford, W. Increased levels of serum transferrin receptor and serum transferrin receptor/log ferritin ratios in men with prostate cancer and the implications for body-iron stores. J. Lab. Clin. Med. 144, 176–182 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Xue, D., Zhou, C. X., Shi, Y. B., Lu, H. & He, X. Z. Decreased expression of ferroportin in prostate cancer. Oncol. Lett. 10, 913–916 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Burnell, S. E. A. et al. STEAP2 knockdown reduces the invasive potential of prostate cancer cells. Sci. Rep. 8, 6252 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Hou, W. et al. Autophagy promotes ferroptosis by degradation of ferritin. Autophagy 12, 1425–1428 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Winterbourn, C. C. Toxicity of iron and hydrogen peroxide: the Fenton reaction. Toxicol. Lett. 82-83, 969–974 (1995).

    Article  CAS  PubMed  Google Scholar 

  113. Dhur, A., Galan, P. & Hercberg, S. Effects of different degrees of iron deficiency on cytochrome P450 complex and pentose phosphate pathway dehydrogenases in the rat. J. Nutr. 119, 40–47 (1989).

    Article  CAS  PubMed  Google Scholar 

  114. Pistorius, E. K. & Axelrod, B. Iron, an essential component of lipoxygenase. J. Biol. Chem. 249, 3183–3186 (1974).

    Article  CAS  PubMed  Google Scholar 

  115. Yauger, Y. J. et al. Iron accentuated reactive oxygen species release by NADPH oxidase in activated microglia contributes to oxidative stress in vitro. J. Neuroinflammation 16, 41 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Bordini, J. et al. Induction of iron excess restricts malignant plasma cells expansion and potentiates bortezomib effect in models of multiple myeloma. Leukemia 31, 967–970 (2017).

    Article  CAS  PubMed  Google Scholar 

  117. Campanella, A. et al. Iron increases the susceptibility of multiple myeloma cells to bortezomib. Haematologica 98, 971–979 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Bordini, J. et al. Iron induces cell death and strengthens the efficacy of antiandrogen therapy in prostate cancer models. Clin. Cancer Res. 26, 6387–6398 (2020).

    Article  CAS  PubMed  Google Scholar 

  119. Maccarinelli, F. et al. Iron supplementation enhances RSL3-induced ferroptosis to treat naive and prevent castration-resistant prostate cancer. Cell Death Discov. 9, 81 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Liu, Y. et al. Liposomes embedded with PEGylated iron oxide nanoparticles enable ferroptosis and combination therapy in cancer. Natl Sci. Rev. 10, nwac167 (2023).

    Article  CAS  PubMed  Google Scholar 

  121. Fernandez-Acosta, R. et al. Novel iron oxide nanoparticles induce ferroptosis in a panel of cancer cell lines. Molecules 27, 3970 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Bonvin, D. et al. Tuning properties of iron oxide nanoparticles in aqueous synthesis without ligands to improve MRI relaxivity and SAR. Nanomaterials 7, 225 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Hajikarimi, Z., Khoei, S., Khoee, S. & Mahdavi, S. R. Evaluation of the cytotoxic effects of PLGA coated iron oxide nanoparticles as a carrier of 5- fluorouracil and mega-voltage X-ray radiation in DU145 prostate cancer cell line. IEEE Trans. Nanobiosci. 13, 403–408 (2014).

    Article  Google Scholar 

  124. Kader, A. et al. Iron oxide nanoparticles for visualization of prostate cancer in MRI. Cancers 14, 2909 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Cluntun, A. A., Lukey, M. J., Cerione, R. A. & Locasale, J. W. Glutamine metabolism in cancer: understanding the heterogeneity. Trends Cancer 3, 169–180 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Gong, T. et al. Glutamine metabolism in cancers: targeting the oxidative homeostasis. Front. Oncol. 12, 994672 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Wang, Q. et al. Targeting ASCT2-mediated glutamine uptake blocks prostate cancer growth and tumour development. J. Pathol. 236, 278–289 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wang, Q. et al. Androgen receptor and nutrient signaling pathways coordinate the demand for increased amino acid transport during prostate cancer progression. Cancer Res. 71, 7525–7536 (2011).

    Article  CAS  PubMed  Google Scholar 

  129. Cardoso, H. J. et al. Glutaminolysis is a metabolic route essential for survival and growth of prostate cancer cells and a target of 5ɑ-dihydrotestosterone regulation. Cell Oncol. 44, 385–403 (2021).

    Article  CAS  Google Scholar 

  130. Serpa, J. Cysteine as a carbon source, a hot spot in cancer cells survival. Front. Oncol. 10, 947 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Poltorack, C. D. & Dixon, S. J. Understanding the role of cysteine in ferroptosis: progress & paradoxes. FEBS J. 289, 374–385 (2022).

    Article  CAS  PubMed  Google Scholar 

  132. Yang, J., Dai, X., Xu, H., Tang, Q. & Bi, F. Regulation of ferroptosis by amino acid metabolism in cancer. Int. J. Biol. Sci. 18, 1695–1705 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zhong, W. et al. Extracellular redox state shift: a novel approach to target prostate cancer invasion. Free. Radic. Biol. Med. 117, 99–109 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Doxsee, D. W. et al. Sulfasalazine-induced cystine starvation: potential use for prostate cancer therapy. Prostate 67, 162–171 (2007).

    Article  CAS  PubMed  Google Scholar 

  135. Cramer, S. L. et al. Systemic depletion of L-cyst(e)ine with cyst(e)inase increases reactive oxygen species and suppresses tumor growth. Nat. Med. 23, 120–127 (2017).

    Article  CAS  PubMed  Google Scholar 

  136. Mandigo, A. C. et al. RB/E2F1 as a master regulator of cancer cell metabolism in advanced disease. Cancer Discov. 11, 2334–2353 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Nikfar, S., Rahimi, R., Rezaie, A. & Abdollahi, M. A meta-analysis of the efficacy of sulfasalazine in comparison with 5-aminosalicylates in the induction of improvement and maintenance of remission in patients with ulcerative colitis. Dig. Dis. Sci. 54, 1157–1170 (2009).

    Article  CAS  PubMed  Google Scholar 

  138. Rains, C. P., Noble, S. & Faulds, D. Sulfasalazine. A review of its pharmacological properties and therapeutic efficacy in the treatment of rheumatoid arthritis. Drugs 50, 137–156 (1995).

    Article  CAS  PubMed  Google Scholar 

  139. Kavallaris, M. Microtubules and resistance to tubulin-binding agents. Nat. Rev. Cancer 10, 194–204 (2010).

    Article  CAS  PubMed  Google Scholar 

  140. Ogura, T., Tanaka, Y., Tamaki, H. & Harada, M. Docetaxel induces Bcl-2- and pro-apoptotic caspase-independent death of human prostate cancer DU145 cells. Int. J. Oncol. 48, 2330–2338 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Darshan, M. S. et al. Taxane-induced blockade to nuclear accumulation of the androgen receptor predicts clinical responses in metastatic prostate cancer. Cancer Res. 71, 6019–6029 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. de Bono, J. S. et al. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet 376, 1147–1154 (2010).

    Article  PubMed  Google Scholar 

  143. Galsky, M. D., Dritselis, A., Kirkpatrick, P. & Oh, W. K. Cabazitaxel. Nat. Rev. Drug. Discov. 9, 677–678 (2010).

    Article  CAS  PubMed  Google Scholar 

  144. Chen, X. et al. Ferroptosis induction improves the sensitivity of docetaxel in prostate cancer. Oxid. Med. Cell. Longev. 2022, 1–16 (2022).

    Google Scholar 

  145. Jiang, X. et al. TFAP2C-mediated lncRNA PCAT1 inhibits ferroptosis in docetaxel-resistant prostate cancer through c-Myc/miR-25-3p/SLC7A11 signaling. Front. Oncol. 12, 862015 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. He, S. et al. ChaC glutathione specific γ-glutamylcyclotransferase 1 inhibits cell viability and increases the sensitivity of prostate cancer cells to docetaxel by inducing endoplasmic reticulum stress and ferroptosis. Exp. Ther. Med. 22, 997 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Ogawa, T. et al. CHAC1 overexpression in human gastric parietal cells with Helicobacter pylori infection in the secretory canaliculi. Helicobacter 24, e12598 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Takeda, D. Y. et al. A somatically acquired enhancer of the androgen receptor is a noncoding driver in advanced prostate cancer. Cell 174, 422–432 e413 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Schweizer, M. T. & Yu, E. Y. Persistent androgen receptor addiction in castration-resistant prostate cancer. J. Hematol. Oncol. 8, 128 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Abida, W. et al. Genomic correlates of clinical outcome in advanced prostate cancer. Proc. Natl Acad. Sci. USA 116, 11428–11436 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Watson, P. A., Arora, V. K. & Sawyers, C. L. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat. Rev. Cancer 15, 701–711 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Cattrini, C. et al. Apalutamide, darolutamide and enzalutamide for nonmetastatic castration-resistant prostate cancer (nmCRPC): a critical review. Cancers 14, 1492 (2022).

    Article  Google Scholar 

  153. Desai, K., McManus, J. M. & Sharifi, N. Hormonal therapy for prostate cancer. Endocr. Rev. 42, 354–373 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Clarke, N. W. et al. Abiraterone and olaparib for metastatic castration-resistant prostate cancer. NEJM Evid. 1, EVIDoa2200043 (2022).

    Article  PubMed  Google Scholar 

  155. Chi, K. N. et al. Niraparib and abiraterone acetate for metastatic castration-resistant prostate cancer. J. Clin. Oncol. 41, 3339–3351 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Hong, T. et al. PARP inhibition promotes ferroptosis via repressing SLC7A11 and synergizes with ferroptosis inducers in BRCA-proficient ovarian cancer. Redox Biol. 42, 101928 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Sugiura, M. et al. Identification of AR-V7 downstream genes commonly targeted by AR/AR-V7 and specifically targeted by AR-V7 in castration resistant prostate cancer. Transl. Oncol. 14, 100915 (2021).

    Article  CAS  PubMed  Google Scholar 

  158. Yang, F. et al. Ferroptosis heterogeneity in triple-negative breast cancer reveals an innovative immunotherapy combination strategy. Cell Metab. 35, 84–100.e8 (2023).

    Article  CAS  PubMed  Google Scholar 

  159. Sun, R. et al. Androgen receptor variants confer castration resistance in prostate cancer by counteracting antiandrogen-induced ferroptosis. Cancer Res. 83, 3192–3204 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Liang, D. et al. Ferroptosis surveillance independent of GPX4 and differentially regulated by sex hormones. Cell 186, 2748–2764 e2722 (2023).

    Article  CAS  PubMed  Google Scholar 

  161. Ma, D. et al. Crystal structure of a membrane-bound O-acyltransferase. Nature 562, 286–290 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Masumoto, N. et al. Membrane bound O-acyltransferases and their inhibitors. Biochem. Soc. Trans. 43, 246–252 (2015).

    Article  CAS  PubMed  Google Scholar 

  163. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Runcie, K. D. & Dallos, M. C. Prostate cancer immunotherapy — finally in from the cold? Curr. Oncol. Rep. 23, 88 (2021).

    Article  PubMed  Google Scholar 

  165. Graff, J. N. et al. Phase II study of ipilimumab in men with metastatic prostate cancer with an incomplete response to androgen deprivation therapy. Front. Oncol. 10, 1381 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Fizazi, K. et al. Final analysis of the ipilimumab versus placebo following radiotherapy phase III trial in postdocetaxel metastatic castration-resistant prostate cancer identifies an excess of long-term survivors. Eur. Urol. 78, 822–830 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Cabel, L. et al. Long-term complete remission with Ipilimumab in metastatic castrate-resistant prostate cancer: case report of two patients. J. Immunother. Cancer 5, 31 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Sharma, P. et al. Nivolumab plus ipilimumab for metastatic castration-resistant prostate cancer: preliminary analysis of patients in the checkmate 650 trial. Cancer Cell 38, 489–499 e483 (2020).

    Article  CAS  PubMed  Google Scholar 

  169. Fizazi, K. et al. Nivolumab plus rucaparib for metastatic castration-resistant prostate cancer: results from the phase 2 CheckMate 9KD trial. J. Immunother. Cancer 10, e004761 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Fizazi, K. et al. Nivolumab plus docetaxel in patients with chemotherapy-naive metastatic castration-resistant prostate cancer: results from the phase II CheckMate 9KD trial. Eur. J. Cancer 160, 61–71 (2022).

    Article  CAS  PubMed  Google Scholar 

  171. Petrylak, D. P. et al. KEYNOTE-921: phase III study of pembrolizumab plus docetaxel for metastatic castration-resistant prostate cancer. Future Oncol. 17, 3291–3299 (2021).

    Article  CAS  PubMed  Google Scholar 

  172. Antonarakis, E. S. et al. Pembrolizumab for treatment-refractory metastatic castration-resistant prostate cancer: multicohort, open-label phase II KEYNOTE-199 study. J. Clin. Oncol. 38, 395–405 (2020).

    Article  CAS  PubMed  Google Scholar 

  173. Petrylak, D. P. et al. Safety and clinical activity of atezolizumab in patients with metastatic castration-resistant prostate cancer: a phase I study. Clin. Cancer Res. 27, 3360–3369 (2021).

    Article  CAS  PubMed  Google Scholar 

  174. Powles, T. et al. Atezolizumab with enzalutamide versus enzalutamide alone in metastatic castration-resistant prostate cancer: a randomized phase 3 trial. Nat. Med. 28, 144–153 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Rodriguez-Vida, A. et al. Safety and efficacy of avelumab plus carboplatin in patients with metastatic castration-resistant prostate cancer in an open-label Phase Ib study. Br. J. Cancer 128, 21–29 (2023).

    Article  CAS  PubMed  Google Scholar 

  176. Kwan, E. M. et al. Avelumab combined with stereotactic ablative body radiotherapy in metastatic castration-resistant prostate cancer: the phase 2 ICE-PAC clinical trial. Eur. Urol. 81, 253–262 (2022).

    Article  CAS  PubMed  Google Scholar 

  177. Karzai, F. et al. Activity of durvalumab plus olaparib in metastatic castration-resistant prostate cancer in men with and without DNA damage repair mutations. J. Immunother. Cancer 6, 141 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Kantoff, P. W. et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 363, 411–422 (2010).

    Article  CAS  PubMed  Google Scholar 

  179. Shore, N. D. et al. CD8+ T cells impact rising PSA in biochemically relapsed cancer patients using immunotherapy targeting tumor-associated antigens. Mol. Ther. 28, 1238–1250 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Kyriakopoulos, C. E. et al. Multicenter phase I trial of a DNA vaccine encoding the androgen receptor ligand-binding domain (pTVG-AR, MVI-118) in patients with metastatic prostate cancer. Clin. Cancer Res. 26, 5162–5171 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Singh, P., Pal, S. K., Alex, A. & Agarwal, N. Development of PROSTVAC immunotherapy in prostate cancer. Future Oncol. 11, 2137–2148 (2015).

    Article  CAS  PubMed  Google Scholar 

  182. Gulley, J. L. et al. Phase III trial of PROSTVAC in asymptomatic or minimally symptomatic metastatic castration-resistant prostate cancer. J. Clin. Oncol. 37, 1051–1061 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. van den Eertwegh, A. J. et al. Combined immunotherapy with granulocyte-macrophage colony-stimulating factor-transduced allogeneic prostate cancer cells and ipilimumab in patients with metastatic castration-resistant prostate cancer: a phase 1 dose-escalation trial. Lancet Oncol. 13, 509–517 (2012).

    Article  PubMed  Google Scholar 

  184. Small, E. J. et al. Granulocyte macrophage colony-stimulating factor-secreting allogeneic cellular immunotherapy for hormone-refractory prostate cancer. Clin. Cancer Res. 13, 3883–3891 (2007).

    Article  CAS  PubMed  Google Scholar 

  185. Higano, C. S. et al. Phase 1/2 dose-escalation study of a GM-CSF-secreting, allogeneic, cellular immunotherapy for metastatic hormone-refractory prostate cancer. Cancer 113, 975–984 (2008).

    Article  CAS  PubMed  Google Scholar 

  186. Tschernia, N. P., Norberg, S. M. & Gulley, J. L. CAR T cells reach clinical milestone in prostate cancer. Nat. Med. 28, 635–636 (2022).

    Article  CAS  PubMed  Google Scholar 

  187. Perera, M. P. J. et al. Chimeric antigen receptor T-cell therapy in metastatic castrate-resistant prostate cancer. Cancers 14, 503 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Narayan, V. et al. PSMA-targeting TGFβ-insensitive armored CAR T cells in metastatic castration-resistant prostate cancer: a phase 1 trial. Nat. Med. 28, 724–734 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Yunger, S. et al. Tumor-infiltrating lymphocytes from human prostate tumors reveal anti-tumor reactivity and potential for adoptive cell therapy. Oncoimmunology 8, e1672494 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Karbach, J. et al. Tumor-infiltrating lymphocytes mediate complete and durable remission in a patient with NY-ESO-1 expressing prostate cancer. J. Immunother. Cancer 11, e005847 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Kamat, N. V., Yu, E. Y. & Lee, J. K. BiTE-ing into prostate cancer with bispecific T-cell engagers. Clin. Cancer Res. 27, 2675–2677 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Hummel, H. D. et al. Pasotuxizumab, a BiTE® immune therapy for castration-resistant prostate cancer: phase I, dose-escalation study findings. Immunotherapy 13, 125–141 (2021).

    Article  CAS  PubMed  Google Scholar 

  193. Wang, W. et al. CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature 569, 270–274 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Liao, P. et al. CD8+ T cells and fatty acids orchestrate tumor ferroptosis and immunity via ACSL4. Cancer Cell 40, 365–378.e6 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Jiang, Z. et al. TYRO3 induces anti-PD-1/PD-L1 therapy resistance by limiting innate immunity and tumoral ferroptosis. J. Clin. Invest. 131, e139434 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Efimova, I. et al. Vaccination with early ferroptotic cancer cells induces efficient antitumor immunity. J. Immunother. Cancer 8, e001369 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Tang, D., Kepp, O. & Kroemer, G. Ferroptosis becomes immunogenic: implications for anticancer treatments. Oncoimmunology 10, 1862949 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Wen, Q., Liu, J., Kang, R., Zhou, B. & Tang, D. The release and activity of HMGB1 in ferroptosis. Biochem. Biophys. Res. Commun. 510, 278–283 (2019).

    Article  CAS  PubMed  Google Scholar 

  199. Yu, B., Choi, B., Li, W. & Kim, D. H. Magnetic field boosted ferroptosis-like cell death and responsive MRI using hybrid vesicles for cancer immunotherapy. Nat. Commun. 11, 3637 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Wu, Z. et al. The landscape of immune cells infiltrating in prostate cancer. Front. Oncol. 10, 517637 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Martin, A. M. et al. Paucity of PD-L1 expression in prostate cancer: innate and adaptive immune resistance. Prostate Cancer Prostatic Dis. 18, 325–332 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Matsushita, M. et al. T cell lipid peroxidation induces ferroptosis and prevents immunity to infection. J. Exp. Med. 212, 555–568 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Ma, X. et al. CD36-mediated ferroptosis dampens intratumoral CD8+ T cell effector function and impairs their antitumor ability. Cell Metab. 33, 1001–1012.e5 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Zhou, X. et al. Abrogation of HnRNP L enhances anti-PD-1 therapy efficacy via diminishing PD-L1 and promoting CD8+ T cell-mediated ferroptosis in castration-resistant prostate cancer. Acta Pharm. Sin. B 12, 692–707 (2022).

    Article  CAS  PubMed  Google Scholar 

  205. Sindhu, K. K., Nehlsen, A. D. & Stock, R. G. Radium-223 for metastatic castrate-resistant prostate cancer. Pract. Radiat. Oncol. 12, 312–316 (2022).

    Article  PubMed  Google Scholar 

  206. Parker, C. et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N. Engl. J. Med. 369, 213–223 (2013).

    Article  CAS  PubMed  Google Scholar 

  207. Violet, J. et al. Dosimetry of 177Lu-PSMA-617 in metastatic castration-resistant prostate cancer: correlations between pretherapeutic imaging and whole-body tumor dosimetry with treatment outcomes. J. Nucl. Med. 60, 517–523 (2019).

    Article  CAS  PubMed  Google Scholar 

  208. Sun, M., Niaz, M. O., Nelson, A., Skafida, M. & Niaz, M. J. Review of 177Lu-PSMA-617 in patients with metastatic castration-resistant prostate cancer. Cureus 12, e8921 (2020).

    PubMed  PubMed Central  Google Scholar 

  209. Schuchardt, C. et al. Prostate-specific membrane antigen radioligand therapy using 177Lu-PSMA I&T and 177Lu-PSMA-617 in patients with metastatic castration-resistant prostate cancer: comparison of safety, biodistribution, and dosimetry. J. Nucl. Med. 63, 1199–1207 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Kratochwil, C. et al. 225Ac-PSMA-617 for PSMA-targeted ɑ-radiation therapy of metastatic castration-resistant prostate cancer. J. Nucl. Med. 57, 1941–1944 (2016).

    Article  CAS  PubMed  Google Scholar 

  211. Hammer, S. et al. Preclinical efficacy of a PSMA-targeted thorium-227 conjugate (PSMA-TTC), a targeted ɑ therapy for prostate cancer. Clin. Cancer Res. 26, 1985–1996 (2020).

    Article  CAS  PubMed  Google Scholar 

  212. Kiess, A. P. et al. 2S)-2-(3-(1-Carboxy-5-(4-211At-Astatobenzamido)Pentyl)Ureido)-pentanedioic acid for PSMA-targeted ɑ-particle radiopharmaceutical therapy. J. Nucl. Med. 57, 1569–1575 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Ye, L. F. et al. Radiation-induced lipid peroxidation triggers ferroptosis and synergizes with ferroptosis inducers. ACS Chem. Biol. 15, 469–484 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Lang, X. et al. Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11. Cancer Discov. 9, 1673–1685 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Lowe, S. W., Schmitt, E. M., Smith, S. W., Osborne, B. A. & Jacks, T. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362, 847–849 (1993).

    Article  CAS  PubMed  Google Scholar 

  216. Kastan, M. B., Onyekwere, O., Sidransky, D., Vogelstein, B. & Craig, R. W. Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 51, 6304–6311 (1991).

    CAS  PubMed  Google Scholar 

  217. Jiang, L. et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520, 57–62 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Wang, Y. et al. Epigenetic regulation of ferroptosis by H2B monoubiquitination and p53. EMBO Rep. 20, e47563 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Shen, D. et al. PARPi treatment enhances radiotherapy-induced ferroptosis and antitumor immune responses via the cGAS signaling pathway in colorectal cancer. Cancer Lett. 550, 215919 (2022).

    Article  CAS  PubMed  Google Scholar 

  220. Lei, G., Mao, C., Yan, Y., Zhuang, L. & Gan, B. Ferroptosis, radiotherapy, and combination therapeutic strategies. Protein Cell 12, 836–857 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Beretta, G. L. & Zaffaroni, N. Radiotherapy-induced ferroptosis for cancer treatment. Front. Mol. Biosci. 10, 1216733 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Upadhyayula, P. S. et al. Dietary restriction of cysteine and methionine sensitizes gliomas to ferroptosis and induces alterations in energetic metabolism. Nat. Commun. 14, 1187 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Xue, Y. et al. Intermittent dietary methionine deprivation facilitates tumoral ferroptosis and synergizes with checkpoint blockade. Nat. Commun. 14, 4758 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Dierge, E. et al. Peroxidation of n-3 and n-6 polyunsaturated fatty acids in the acidic tumor environment leads to ferroptosis-mediated anticancer effects. Cell Metab. 33, 1701–1715 e1705 (2021).

    Article  CAS  PubMed  Google Scholar 

  225. Ferrer, M. et al. Ketogenic diet promotes tumor ferroptosis but induces relative corticosterone deficiency that accelerates cachexia. Cell Metab. 35, 1147–1162 e1147 (2023).

    Article  CAS  PubMed  Google Scholar 

  226. Pissios, P. et al. Methionine and choline regulate the metabolic phenotype of a ketogenic diet. Mol. Metab. 2, 306–313 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Eaton, J. K. et al. Selective covalent targeting of GPX4 using masked nitrile-oxide electrophiles. Nat. Chem. Biol. 16, 497–506 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Eaton, J. K., Ruberto, R. A., Kramm, A., Viswanathan, V. S. & Schreiber, S. L. Diacylfuroxans are masked nitrile oxides that inhibit GPX4 covalently. J. Am. Chem. Soc. 141, 20407–20415 (2019).

    Article  CAS  PubMed  Google Scholar 

  229. Yang, W. S. et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 156, 317–331 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Koppula, P. et al. A targetable CoQ-FSP1 axis drives ferroptosis- and radiation-resistance in KEAP1 inactive lung cancers. Nat. Commun. 13, 2206 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Doll, S. et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature 575, 693–698 (2019).

    Article  CAS  PubMed  Google Scholar 

  232. Xavier da Silva, T. N., Schulte, C., Alves, A. N., Maric, H. M. & Friedmann Angeli, J. P. Molecular characterization of AIFM2/FSP1 inhibition by iFSP1-like molecules. Cell Death Dis. 14, 281 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Hendricks, J. M. et al. Identification of structurally diverse FSP1 inhibitors that sensitize cancer cells to ferroptosis. Cell Chem. Biol. 30, 1090–1103 e1097 (2023).

    Article  CAS  PubMed  Google Scholar 

  234. Yoshioka, H. et al. Identification of a small molecule that enhances ferroptosis via inhibition of ferroptosis suppressor protein 1 (FSP1). ACS Chem. Biol. 17, 483–491 (2022).

    Article  CAS  PubMed  Google Scholar 

  235. Antoszczak, M. & Huczynski, A. Salinomycin and its derivatives — a new class of multiple-targeted “magic bullets”. Eur. J. Med. Chem. 176, 208–227 (2019).

    Article  CAS  PubMed  Google Scholar 

  236. Miyazaki, Y., Shibuya, M., Sugawara, H., Kawaguchi, O. & Hirsoe, C. Salinomycin, a new polyether antibiotic. J. Antibiot. 27, 814–821 (1974).

    Article  CAS  Google Scholar 

  237. Zhou, S. et al. Salinomycin: a novel anti-cancer agent with known anti-coccidial activities. Curr. Med. Chem. 20, 4095–4101 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Mai, T. T. et al. Salinomycin kills cancer stem cells by sequestering iron in lysosomes. Nat. Chem. 9, 1025–1033 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Mohammad, A. et al. Abstract 3107: HSB-1216, a novel agent for the treatment of chemotherapy-resistant ES-SCLC. Cancer Res. 81, 3107–3107 (2021).

    Article  Google Scholar 

  240. Kharbanda, S. et al. Novel iron-mediated cell death (Ferroptosis) inducer, HSB-1216, suppress acute myeloid leukemia growth. Eur. J. Cancer https://doi.org/10.1016/s0959-8049(22)00936-4 (2022).

  241. Li, J. et al. Ferroptosis: past, present and future. Cell Death Dis. 11, 88 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Kloditz, K. & Fadeel, B. Three cell deaths and a funeral: macrophage clearance of cells undergoing distinct modes of cell death. Cell Death Discov. 5, 65 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  243. Zou, Y. & Schreiber, S. L. Progress in understanding ferroptosis and challenges in its targeting for therapeutic benefit. Cell Chem. Biol. 27, 463–471 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Li, Z. et al. In vivo tracking cystine/glutamate antiporter-mediated cysteine/cystine pool under ferroptosis. Anal. Chim. Acta 1125, 66–75 (2020).

    Article  CAS  PubMed  Google Scholar 

  245. Li, Z. Imaging of hydrogen peroxide (H(2)O(2)) during the ferroptosis process in living cancer cells with a practical fluorescence probe. Talanta 212, 120804 (2020).

    Article  CAS  PubMed  Google Scholar 

  246. Conrad, M. & Pratt, D. A. The chemical basis of ferroptosis. Nat. Chem. Biol. 15, 1137–1147 (2019).

    Article  CAS  PubMed  Google Scholar 

  247. Zeng, F. et al. Ferroptosis detection: from approaches to applications. Angew. Chem. Int. Ed. 62, e202300379 (2023).

    Article  CAS  Google Scholar 

  248. Li, J., Kang, R. & Tang, D. Monitoring autophagy-dependent ferroptosis. Methods Cell Biol. 165, 163–176 (2021).

    Article  CAS  PubMed  Google Scholar 

  249. Wang, F. et al. PALP: a rapid imaging technique for stratifying ferroptosis sensitivity in normal and tumor tissues in situ. Cell Chem. Biol. 29, 157–170 e156 (2022).

    Article  CAS  PubMed  Google Scholar 

  250. Wang, F., Naowarojna, N. & Zou, Y. Stratifying ferroptosis sensitivity in cells and mouse tissues by photochemical activation of lipid peroxidation and fluorescent imaging. Star. Protoc. 3, 101189 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Drummen, G. P., van Liebergen, L. C., Op den Kamp, J. A. & Post, J. A. C11-BODIPY(581/591), an oxidation-sensitive fluorescent lipid peroxidation probe: (micro)spectroscopic characterization and validation of methodology. Free. Radic. Biol. Med. 33, 473–490 (2002).

    Article  CAS  PubMed  Google Scholar 

  252. Hirayama, T., Okuda, K. & Nagasawa, H. A highly selective turn-on fluorescent probe for iron(II) to visualize labile iron in living cells. Chem. Sci. 4, 1250–1256, (2013).

    Article  CAS  Google Scholar 

  253. Kapralov, A. A. et al. Redox lipid reprogramming commands susceptibility of macrophages and microglia to ferroptotic death. Nat. Chem. Biol. 16, 278–290 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Weigand, I. et al. Active steroid hormone synthesis renders adrenocortical cells highly susceptible to type II ferroptosis induction. Cell Death Dis. 11, 192 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Zhao, N. et al. Ferronostics: measuring tumoral ferrous iron with PET to predict sensitivity to iron-targeted cancer therapies. J. Nucl. Med. 62, 949–955 (2021).

    Article  CAS  PubMed  Google Scholar 

  256. Phyo, A. P. et al. Antimalarial activity of artefenomel (OZ439), a novel synthetic antimalarial endoperoxide, in patients with Plasmodium falciparum and Plasmodium vivax malaria: an open-label phase 2 trial. Lancet Infect. Dis. 16, 61–69 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Feng, H. et al. Transferrin receptor is a specific ferroptosis marker. Cell Rep. 30, 3411–3423 e3417 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Shibata, Y., Yasui, H., Higashikawa, K. & Kuge, Y. Transferrin-based radiolabeled probe predicts the sensitivity of human renal cancer cell lines to ferroptosis inducer erastin. Biochem. Biophys. Rep. 26, 100957 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  259. McCormick, P. N. et al. Assessment of tumor redox status through (S)-4-(3-[18F]fluoropropyl)-L-glutamic acid PET imaging of system xc activity. Cancer Res. 79, 853–863 (2019).

    Article  CAS  PubMed  Google Scholar 

  260. Hoehne, A. et al. [18F]FSPG-PET reveals increased cystine/glutamate antiporter (xc-) activity in a mouse model of multiple sclerosis. J. Neuroinflammation 15, 55 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  261. Park, S. Y. et al. Clinical evaluation of (4S)-4-(3-[18F]fluoropropyl)-L-glutamate (18F-FSPG) for PET/CT imaging in patients with newly diagnosed and recurrent prostate cancer. Clin. Cancer Res. 26, 5380–5387 (2020).

    Article  CAS  PubMed  Google Scholar 

  262. Park, S. Y. et al. Initial evaluation of (4S)-4-(3-[18F]fluoropropyl)-L-glutamate (FSPG) PET/CT imaging in patients with head and neck cancer, colorectal cancer, or non-Hodgkin lymphoma. EJNMMI Res. 10, 100 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Zeng, F. et al. Ferroptosis MRI for early detection of anticancer drug-induced acute cardiac/kidney injuries. Sci. Adv. 9, eadd8539 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Zhang, C. et al. Fe-based theranostic agents respond to the tumor microenvironment for MRI-guided ferroptosis-/apoptosis-inducing anticancer therapy. ACS Biomater. Sci. Eng. 8, 2610–2623 (2022).

    Article  CAS  PubMed  Google Scholar 

  265. Zhu, L. et al. Efficient magnetic nanocatalyst-induced chemo- and ferroptosis synergistic cancer therapy in combination with T1-T2 dual-mode magnetic resonance imaging through doxorubicin delivery. ACS Appl. Mater. Interfaces 14, 3621–3632 (2022).

    Article  CAS  PubMed  Google Scholar 

  266. Chen, Q. et al. Iron-based nanoparticles for MR imaging-guided ferroptosis in combination with photodynamic therapy to enhance cancer treatment. Nanoscale 13, 4855–4870 (2021).

    Article  CAS  PubMed  Google Scholar 

  267. Zheng, J. & Conrad, M. The metabolic underpinnings of ferroptosis. Cell Metab. 32, 920–937 (2020).

    Article  CAS  PubMed  Google Scholar 

  268. Bayir, H. et al. Achieving life through death: redox biology of lipid peroxidation in ferroptosis. Cell Chem. Biol. 27, 387–408 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Friedmann Angeli, J. P., Krysko, D. V. & Conrad, M. Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nat. Rev. Cancer 19, 405–414 (2019).

    Article  CAS  PubMed  Google Scholar 

  270. Gu, Y. et al. Targeting ferroptosis: paving new roads for drug design and discovery. Eur. J. Med. Chem. 247, 115015 (2023).

    Article  CAS  PubMed  Google Scholar 

  271. Wang, D. et al. Regulatory pathways and drugs associated with ferroptosis in tumors. Cell Death Dis. 13, 544 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  272. Jin, J. et al. Machine learning classifies ferroptosis and apoptosis cell death modalities with TfR1 immunostaining. ACS Chem. Biol. 17, 654–660 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Shibata, Y., Yasui, H., Higashikawa, K., Miyamoto, N. & Kuge, Y. Erastin, a ferroptosis-inducing agent, sensitized cancer cells to X-ray irradiation via glutathione starvation in vitro and in vivo. PLoS ONE 14, e0225931 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Liu, W. et al. Ferroptosis inducer improves the efficacy of oncolytic virus-mediated cancer immunotherapy. Biomedicines 10, 1425 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Lu, Z. et al. Combined anti-cancer effects of platycodin D and sorafenib on androgen-independent and PTEN-deficient prostate cancer. Front. Oncol. 11, 648985 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Oh, S. J., Erb, H. H., Hobisch, A., Santer, F. R. & Culig, Z. Sorafenib decreases proliferation and induces apoptosis of prostate cancer cells by inhibition of the androgen receptor and Akt signaling pathways. Endocr. Relat. Cancer 19, 305–319 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Roh, J. L., Kim, E. H., Jang, H. & Shin, D. Aspirin plus sorafenib potentiates cisplatin cytotoxicity in resistant head and neck cancer cells through xCT inhibition. Free. Radic. Biol. Med. 104, 1–9 (2017).

    Article  CAS  PubMed  Google Scholar 

  278. Cobler, L., Zhang, H., Suri, P., Park, C. & Timmerman, L. A. xCT inhibition sensitizes tumors to gamma-radiation via glutathione reduction. Oncotarget 9, 32280–32297 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  279. Nagane, M. et al. Sulfasalazine, an inhibitor of the cystine-glutamate antiporter, reduces DNA damage repair and enhances radiosensitivity in murine B16F10 melanoma. PLoS ONE 13, e0195151 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  280. Shamaa, M. M. Sulfasalazine synergistically enhances the inhibitory effects of imatinib against hepatocellular carcinoma (HCC) cells by targeting NFκB, BCR/ABL, and PI3K/AKT signaling pathway-related proteins. FEBS Open. Bio 11, 588–597 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Chen, C. et al. Flubendazole plays an important anti-tumor role in different types of cancers. Int. J. Mol. Sci. 23, 519 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Zhou, X. et al. Flubendazole, FDA-approved anthelmintic, elicits valid antitumor effects by targeting P53 and promoting ferroptosis in castration-resistant prostate cancer. Pharmacol. Res. 164, 105305 (2021).

    Article  CAS  PubMed  Google Scholar 

  283. Li, M. et al. RSL3 enhances the antitumor effect of cisplatin on prostate cancer cells via causing glycolysis dysfunction. Biochem. Pharmacol. 192, 114741 (2021).

    Article  CAS  PubMed  Google Scholar 

  284. Wang, J. et al. Inhibition of phosphoglycerate dehydrogenase induces ferroptosis and overcomes enzalutamide resistance in castration-resistant prostate cancer cells. Drug Resist. Updat. 70, 100985 (2023).

    Article  CAS  PubMed  Google Scholar 

  285. Zhao, R. et al. ATF6ɑ promotes prostate cancer progression by enhancing PLA2G4A-mediated arachidonic acid metabolism and protecting tumor cells against ferroptosis. Prostate 82, 617–629 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Wang, H. et al. Discovery of ML210-Based glutathione peroxidase 4 (GPX4) degrader inducing ferroptosis of human cancer cells. Eur. J. Med. Chem. 254, 115343 (2023).

    Article  CAS  PubMed  Google Scholar 

  287. Eling, N., Reuter, L., Hazin, J., Hamacher-Brady, A. & Brady, N. R. Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells. Oncoscience 2, 517–532 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  288. Luo, J. et al. Artemisinin derivative artesunate induces radiosensitivity in cervical cancer cells in vitro and in vivo. Radiat. Oncol. 9, 84 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  289. Yin, X. et al. Artesunate suppresses the proliferation and development of estrogen receptor-alpha-positive endometrial cancer in HAND2-dependent pathway. Front. Cell Dev. Biol. 8, 606969 (2020).

    Article  PubMed  Google Scholar 

  290. Zhang, Z. Y. et al. [Artesunate combined with vinorelbine plus cisplatin in treatment of advanced non-small cell lung cancer: a randomized controlled trial]. Zhong Xi Yi Jie He Xue Bao 6, 134–138 (2008).

    Article  CAS  PubMed  Google Scholar 

  291. Sun, Y. et al. Fin56-induced ferroptosis is supported by autophagy-mediated GPX4 degradation and functions synergistically with mTOR inhibition to kill bladder cancer cells. Cell Death Dis. 12, 1028 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  292. Khalil, R. et al. Withaferin A increases the effectiveness of immune checkpoint blocker for the treatment of non-small cell lung cancer. Cancers 15, 3089 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Kim, S. H. et al. RNA-seq reveals novel mechanistic targets of withaferin A in prostate cancer cells. Carcinogenesis 41, 778–789 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Kyakulaga, A. H., Aqil, F., Munagala, R. & Gupta, R. C. Synergistic combinations of paclitaxel and withaferin A against human non-small cell lung cancer cells. Oncotarget 11, 1399–1416 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  295. Nishikawa, Y. et al. Withaferin A induces cell death selectively in androgen-independent prostate cancer cells but not in normal fibroblast cells. PLoS ONE 10, e0134137 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  296. Yang, E. S., Choi, M. J., Kim, J. H., Choi, K. S. & Kwon, T. K. Combination of withaferin A and X-ray irradiation enhances apoptosis in U937 cells. Toxicol. Vitr. 25, 1803–1810 (2011).

    Article  CAS  Google Scholar 

  297. Kristensen, G. B., Baekelandt, M., Vergote, I. B. & Trope, C. A phase II study of carboplatin and hexamethylmelamine as induction chemotherapy in advanced epithelial ovarian carcinoma. Eur. J. Cancer 31A, 1778–1780 (1995).

    Article  CAS  PubMed  Google Scholar 

  298. Malik, I. A. Altretamine is an effective palliative therapy of patients with recurrent epithelial ovarian cancer. Jpn. J. Clin. Oncol. 31, 69–73 (2001).

    Article  CAS  PubMed  Google Scholar 

  299. Woo, J. H. et al. Elucidating compound mechanism of action by network perturbation analysis. Cell 162, 441–451 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Wang, L., Chen, X. & Yan, C. Ferroptosis: an emerging therapeutic opportunity for cancer. Genes. Dis. 9, 334–346 (2022).

    Article  PubMed  Google Scholar 

  301. Qin, Z. et al. Design and synthesis of isothiocyanate-containing hybrid androgen receptor (AR) antagonist to downregulate AR and induce ferroptosis in GSH-deficient prostate cancer cells. Chem. Biol. Drug. Des. 97, 1059–1078 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Li, Q. et al. The effects of buthionine sulfoximine on the proliferation and apoptosis of biliary tract cancer cells induced by cisplatin and gemcitabine. Oncol. Lett. 11, 474–480 (2016).

    Article  CAS  PubMed  Google Scholar 

  303. Bump, E. A. & Brown, J. M. Role of glutathione in the radiation response of mammalian cells in vitro and in vivo. Pharmacol. Ther. 47, 117–136 (1990).

    Article  CAS  PubMed  Google Scholar 

  304. Guo, J. et al. Ferroptosis: a novel anti-tumor action for cisplatin. Cancer Res. Treat. 50, 445–460 (2018).

    Article  CAS  PubMed  Google Scholar 

  305. Efferth, T. Cancer combination therapies with artemisinin-type drugs. Biochem. Pharmacol. 139, 56–70 (2017).

    Article  CAS  PubMed  Google Scholar 

  306. Sundar, S. N., Marconett, C. N., Doan, V. B., Willoughby, J. A. Sr & Firestone, G. L. Artemisinin selectively decreases functional levels of estrogen receptor-ɑ and ablates estrogen-induced proliferation in human breast cancer cells. Carcinogenesis 29, 2252–2258 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Wang, T. et al. Combination treatment with artemisinin and oxaliplatin inhibits tumorigenesis in esophageal cancer EC109 cell through Wnt/β-catenin signaling pathway. Thorac. Cancer 11, 2316–2324 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Willoughby, J. A. Sr. et al. Artemisinin blocks prostate cancer growth and cell cycle progression by disrupting Sp1 interactions with the cyclin-dependent kinase-4 (CDK4) promoter and inhibiting CDK4 gene expression. J. Biol. Chem. 284, 2203–2213 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Dai, X. et al. Dihydroartemisinin: a potential natural anticancer drug. Int. J. Biol. Sci. 17, 603–622 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Han, W. et al. Co-delivery of dihydroartemisinin and pyropheophorbide-iron elicits ferroptosis to potentiate cancer immunotherapy. Biomaterials 280, 121315 (2022).

    Article  CAS  PubMed  Google Scholar 

  311. Li, Q. et al. Dihydroartemisinin as a sensitizing agent in cancer therapies. Onco Targets Ther. 14, 2563–2573 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  312. Lin, R. et al. Dihydroartemisinin (DHA) induces ferroptosis and causes cell cycle arrest in head and neck carcinoma cells. Cancer Lett. 381, 165–175 (2016).

    Article  CAS  PubMed  Google Scholar 

  313. Abrams, R. P., Carroll, W. L. & Woerpel, K. A. Five-membered ring peroxide selectively initiates ferroptosis in cancer cells. ACS Chem. Biol. 11, 1305–1312 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Gaschler, M. M. et al. FINO2 initiates ferroptosis through GPX4 inactivation and iron oxidation. Nat. Chem. Biol. 14, 507–515 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Saha, A. et al. Cysteine depletion sensitizes prostate cancer cells to agents that enhance DNA damage and to immune checkpoint inhibition. J. Exp. Clin. Cancer Res. 42, 119 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Badgley, M. A. et al. Cysteine depletion induces pancreatic tumor ferroptosis in mice. Science 368, 85–89 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are thankful to D. Chalaire, Editing Services, Research Medical Library, The UT MD Anderson Cancer Center for helping us with the editing of the manuscript. This work was supported by grants from the Department of Defense (W81XWH-19-1-0410, W81XWH-22-1-0686 and HT9425-23-1-0424 (D.E.F.)), the National Institutes of Health (R01CA184208 (D.E.F.)), an UT MD Anderson Cancer Center Quantitative Imaging Analysis Core (QIAC) Pilot Grant (D.E.F.), and a grant from the Mike Slive Foundation for Prostate Cancer Research (D.E.F.). This work was also supported by Marilyn and Frederick R. Lummis, Jr., M.D., Fellowship in Biomedical Sciences (P.H.A.C.).

Author information

Authors and Affiliations

Authors

Contributions

D.E.F., P.H.A.C., A.D., F.E.L., S.S. and E.S. researched data for the article. D.E.F., P.H.A.C., A.D., P.K.B. and E.S. contributed substantially to discussion of the content. P.H.A.C., A.D., F.E.L., S.S. and E.S. wrote the article. D.E.F., P.H.A.C., A.D., P.K.B. and E.S. reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Daniel E. Frigo or Elavarasan Subramani.

Ethics declarations

Competing interests

D.E.F. has received research funding from GTx, Inc., and has a familial relationship with Biocity Biopharmaceuticals, Hummingbird Bioscience, Bellicum Pharmaceuticals, Maia Biotechnology, Alms Therapeutics, Hinova Pharmaceuticals and Barricade Therapeutics. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, P.H.A., Dominic, A., Lujan, F.E. et al. Unlocking ferroptosis in prostate cancer — the road to novel therapies and imaging markers. Nat Rev Urol (2024). https://doi.org/10.1038/s41585-024-00869-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41585-024-00869-9

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer