Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Targeting histone modifiers in bladder cancer therapy — preclinical and clinical evidence

Abstract

Bladder cancer in the most advanced, muscle-invasive stage is lethal, and very limited therapeutic advances have been reported for decades. To date, cisplatin-based chemotherapy remains the first-line therapy for advanced bladder cancer. Late-line options have historically been limited. In the past few years, next-generation sequencing technology has enabled chromatin remodelling gene mutations to be characterized, showing that these alterations are more frequent in urothelial bladder carcinoma than in other cancer types. Histone modifiers have functional roles in tumour progression by modulating the expression of tumour suppressors and oncogenes and, therefore, have been considered as novel drug targets for cancer therapy. The roles of epigenetic reprogramming through histone modifications have been increasingly studied in bladder cancer, and the therapeutic efficacy of targeting those histone modifiers genetically or chemically is being assessed in preclinical studies. Results from preclinical studies in bladder cancer encouraged the investigation of some of these drugs in clinical trials, which yield mixed results. Further understanding of how alterations of histone modification mechanistically contribute to bladder cancer progression, drug resistance and tumour microenvironment remodelling will be required to facilitate clinical application of epigenetic drugs in bladder cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Histone modifications potentially targetable in bladder cancer.

Similar content being viewed by others

References

  1. Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).

    Article  PubMed  Google Scholar 

  2. Magers, M. J. et al. Staging of bladder cancer. Histopathology 74, 112–134 (2019).

    Article  PubMed  Google Scholar 

  3. Burger, M. et al. Epidemiology and risk factors of urothelial bladder cancer. Eur. Urol. 63, 234–241 (2013).

    Article  PubMed  Google Scholar 

  4. Lenis, A. T., Lec, P. M., Chamie, K. & Mshs, M. D. Bladder cancer. JAMA 324, 1980–1991 https://doi.org/10.1001/jama.2020.17598 (2020).

  5. Patel, V. G., Oh, W. K. & Galsky, M. D. Treatment of muscle‐invasive and advanced bladder cancer in 2020. CA Cancer J. Clin. 70, 404–423 (2020).

    Article  PubMed  Google Scholar 

  6. Siegel, R. L., Miller, K. D., Fuchs, H. E. & Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 72, 7–33 (2022).

    Article  PubMed  Google Scholar 

  7. Ritch, C. R. et al. Use and validation of the AUA/SUO risk grouping for nonmuscle invasive bladder cancer in a contemporary cohort. J. Urol. 203, 505–511 (2020).

    Article  PubMed  Google Scholar 

  8. van den Bosch, S. & Alfred Witjes, J. Long-term cancer-specific survival in patients with high-risk, non-muscle-invasive bladder cancer and tumour progression: a systematic review. Eur. Urol. 60, 493–500 (2011).

    Article  PubMed  Google Scholar 

  9. Dinney, C. P. et al. Focus on bladder cancer. Cancer Cell 6, 111–116 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Knowles, M. A. & Hurst, C. D. Molecular biology of bladder cancer: new insights into pathogenesis and clinical diversity. Nat. Rev. Cancer 15, 25–41 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Stein, J. P. et al. Radical cystectomy in the treatment of invasive bladder cancer: long-term results in 1,054 patients. J. Clin. Oncol. 19, 666–675 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Yafi, F. A. et al. Contemporary outcomes of 2287 patients with bladder cancer who were treated with radical cystectomy: a Canadian multicentre experience. BJU Int. 108, 539–545 (2011).

    Article  PubMed  Google Scholar 

  13. Neoadjuvant chemotherapy in invasive bladder cancer: update of a systematic review and meta-analysis of individual patient data advanced bladder cancer (ABC) meta-analysis collaboration. Eur. Urol. 48, 202–205; discussion 205–206 (2005).

  14. Galsky, M. D. et al. Treatment of patients with metastatic urothelial cancer “unfit” for cisplatin-based chemotherapy. J. Clin. Oncol. 29, 2432–2438 (2011).

    Article  PubMed  Google Scholar 

  15. Pietzak, E. J. et al. Next-generation sequencing of nonmuscle invasive bladder cancer reveals potential biomarkers and rational therapeutic targets. Eur. Urol. 72, 952–959 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tran, L., Xiao, J.-F., Agarwal, N., Duex, J. E. & Theodorescu, D. Advances in bladder cancer biology and therapy. Nat. Rev. Cancer 21, 104–121 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Shen, H. & Laird, P. W. Interplay between the cancer genome and epigenome. Cell 153, 38–55 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mills, A. A. Throwing the cancer switch: reciprocal roles of polycomb and trithorax proteins. Nat. Rev. Cancer 10, 669–682 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Allis, C. D. & Jenuwein, T. The molecular hallmarks of epigenetic control. Nat. Rev. Genet. 17, 487–500 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Cheshmazar, N. et al. Current trends in development of HDAC-based chemotherapeutics. Life Sci. 308, 120946 (2022).

    Article  CAS  PubMed  Google Scholar 

  22. Pfister, S. X. & Ashworth, A. Marked for death: targeting epigenetic changes in cancer. Nat. Rev. Drug Discov. 16, 241–263 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Filippakopoulos, P. et al. Selective inhibition of BET bromodomains. Nature 468, 1067–1073 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pinkerneil, M., Hoffmann, M. J., Schulz, W. A. & Niegisch, G. HDACs and HDAC inhibitors in urothelial carcinoma — perspectives for an antineoplastic treatment. Curr. Med. Chem. 24, 4151–4165 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Kim, K. H. & Roberts, C. W. Targeting EZH2 in cancer. Nat. Med. 22, 128–134 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ler, L. D. et al. Loss of tumor suppressor KDM6A amplifies PRC2-regulated transcriptional repression in bladder cancer and can be targeted through inhibition of EZH2. Sci. Transl. Med. 9, eaai8312 (2017).

    Article  PubMed  Google Scholar 

  27. Andrew, R. J. Extensive heterogeneity in somatic mutation and selection in the human bladder. Science 370, 75–82 (2020).

    Article  Google Scholar 

  28. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 507, 315–322 (2014).

    Article  ADS  Google Scholar 

  29. Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).

    Article  PubMed  Google Scholar 

  30. Hoffmann, M. J. & Schulz, W. A. Alterations of chromatin regulators in the pathogenesis of urinary bladder urothelial carcinoma. Cancers 13, 6040 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ozawa, A. et al. Inhibition of bladder tumour growth by histone deacetylase inhibitor. BJU Int. 105, 1181–1186 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Pinkerneil, M. et al. Inhibition of class I histone deacetylases 1 and 2 promotes urothelial carcinoma cell death by various mechanisms. Mol. Cancer Ther. 15, 299–312 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Di Cerbo, V. & Schneider, R. Cancers with wrong HATs: the impact of acetylation. Brief. Funct. Genomics 12, 231–243 (2013).

    Article  PubMed  Google Scholar 

  34. Marmorstein, R. & Zhou, M. M. Writers and readers of histone acetylation: structure, mechanism, and inhibition. Cold Spring Harb. Perspect. Biol. 6, a018762 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Koutsogiannouli, E. A. et al. Differential effects of histone acetyltransferase GCN5 or PCAF knockdown on urothelial carcinoma cells. Int. J. Mol. Sci. 18, 1449 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Jin, Q. et al. Distinct roles of GCN5/PCAF-mediated H3K9ac and CBP/p300-mediated H3K18/27ac in nuclear receptor transactivation. EMBO J. 30, 249–262 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Robertson, A. G. et al. Comprehensive molecular characterization of muscle-invasive bladder cancer. Cell 171, 540–556.e525 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim, P. H. et al. Genomic predictors of survival in patients with high-grade urothelial carcinoma of the bladder. Eur. Urol. 67, 198–201 (2015).

    Article  PubMed  Google Scholar 

  39. Pietzak, E. J. et al. Genomic differences between “Primary” and “Secondary” muscle-invasive bladder cancer as a basis for disparate outcomes to cisplatin-based neoadjuvant chemotherapy. Eur. Urol. 75, 231–239 (2019).

    Article  PubMed  Google Scholar 

  40. Ogiwara, H. et al. Targeting p300 addiction in CBP-deficient cancers causes synthetic lethality by apoptotic cell death due to abrogation of MYC expression. Cancer Discov. 6, 430–445 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Li, J. et al. A CRISPR interference of CBP and p300 selectively induced synthetic lethality in bladder cancer cells in vitro. Int. J. Biol. Sci. 15, 1276–1286 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ontario, D. L. et al. HATs off: selective synthetic inhibitors of the histone acetyltransferases p300 and PCAF. Mol. Cell 5, 589–595 (2000).

    Article  Google Scholar 

  43. Rajendran, P., Williams, D. E., Ho, E. & Dashwood, R. H. Metabolism as a key to histone deacetylase inhibition. Crit. Rev. Biochem. Mol. Biol. 46, 181–199 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Alivand, M. et al. Histonedeacetylase 1 mRNA has elevated expression in clinical specimen of bladder cancer. Bratisl. Lek. Listy 119, 12–16 (2018).

    CAS  PubMed  Google Scholar 

  45. Cédric, P. et al. Expression of histone deacetylases 1, 2 and 3 in urothelial bladder cancer. BMC Clin. Pathol. 13, 10 (2014).

    Google Scholar 

  46. Jurkin, J. et al. Distinct and redundant functions of histone deacetylases HDAC1 and HDAC2 in proliferation and tumorigenesis. Cell Cycle 10, 406–412 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kelly, R. D. & Cowley, S. M. The physiological roles of histone deacetylase (HDAC) 1 and 2: complex co-stars with multiple leading parts. Biochem. Soc. Trans. 41, 741–749 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Niegisch, G. et al. Changes in histone deacetylase (HDAC) expression patterns and activity of HDAC inhibitors in urothelial cancers. Urol. Oncol. 31, 1770–1779 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Jaguva Vasudevan, A. A. et al. Proteomic and transcriptomic profiles of human urothelial cancer cells with histone deacetylase 5 overexpression. Sci. Data 9, 240 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jaguva Vasudevan, A. A. et al. HDAC5 expression in urothelial carcinoma cell lines inhibits long-term proliferation but can promote epithelial-to-mesenchymal transition. Int. J. Mol. Sci. 20, 2135 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Butler, K. V. et al. Rational design and simple chemistry yield a superior, neuroprotective HDAC6 inhibitor, tubastatin A. J. Am. Chem. Soc. 132, 10842–10846 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kuroki, H. et al. Histone deacetylase 6 inhibition in urothelial cancer as a potential new strategy for cancer treatment. Oncol. Lett. 21, 64 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ota, S., Zhou, Z. Q. & Hurlin, P. J. Suppression of FGFR3- and MYC-dependent oncogenesis by tubacin: association with HDAC6-dependent and independent activities. Oncotarget 9, 3172–3187 (2018).

    Article  PubMed  Google Scholar 

  54. Rosik, L. et al. Limited efficacy of specific HDAC6 inhibition in urothelial cancer cells. Cancer Biol. Ther. 15, 742–757 (2014).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  55. Carafa, V. et al. Sirtuin functions and modulation: from chemistry to the clinic. Clin. Epigenetics 8, 61 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Chalkiadaki, A. & Guarente, L. The multifaceted functions of sirtuins in cancer. Nat. Rev. Cancer 15, 608–624 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Monteiro-Reis, S. et al. Sirtuins’ deregulation in bladder cancer: SIRT7 is implicated in tumor progression through epithelial to mesenchymal transition promotion. Cancers 12, 1066 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tan, P. et al. SRT1720 inhibits the growth of bladder cancer in organoids and murine models through the SIRT1-HIF axis. Oncogene 40, 6081–6092 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Chen, J., Cao, L., Li, Z. & Li, Y. SIRT1 promotes GLUT1 expression and bladder cancer progression via regulation of glucose uptake. Hum. Cell 32, 193–201 (2019).

    Article  CAS  PubMed  Google Scholar 

  60. Muller, S., Filippakopoulos, P. & Knapp, S. Bromodomains as therapeutic targets. Expert Rev. Mol. Med. 13, e29 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Filippakopoulos, P. et al. Histone recognition and large-scale structural analysis of the human bromodomain family. Cell 149, 214–231 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zaware, N. & Zhou, M. M. Bromodomain biology and drug discovery. Nat. Struct. Mol. Biol. 26, 870–879 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wu, X. et al. BRD4 regulates EZH2 transcription through upregulation of C-MYC and represents a novel therapeutic target in bladder cancer. Mol. Cancer Ther. 15, 1029–1042 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Liu, T., Zhang, Z., Wang, C., Huang, H. & Li, Y. BRD4 promotes the migration and invasion of bladder cancer cells through the Sonic hedgehog signaling pathway and enhances cisplatin resistance. Biochem. Cell Biol. 100, 179–187 (2022).

    Article  CAS  PubMed  Google Scholar 

  65. Huang, N., Liao, P., Zuo, Y., Zhang, L. & Jiang, R. Design, synthesis, and biological evaluation of a potent dual EZH2-BRD4 inhibitor for the treatment of some solid tumors. J. Med. Chem. 66, 2646–2662 (2023).

    Article  CAS  PubMed  Google Scholar 

  66. Hölscher, A. S., Schulz, W. A., Pinkerneil, M., Niegisch, G. & Hoffmann, M. J. Combined inhibition of BET proteins and class I HDACs synergistically induces apoptosis in urothelial carcinoma cell lines. Clin. Epigenetics 10, 1 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Martin, C. & Zhang, Y. The diverse functions of histone lysine methylation. Nat. Rev. Mol. Cell Biol. 6, 838–849 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Völkel, P. & Angrand, P. O. The control of histone lysine methylation in epigenetic regulation. Biochimie 89, 1–20 (2007).

    Article  PubMed  Google Scholar 

  69. Jenuweina, T., Laiblea, G., Dornb, R. & Reuterb, G. SET domain proteins modulate chromatin domains in eu- and heterochromatin. Cell Mol. Life Sci. 54, 80–93 (1998).

    Article  Google Scholar 

  70. Min, J., Feng, Q., Li, Z., Zhang, Y. & Xu, R. M. Structure of the catalytic domain of human DOT1L, a non-SET domain nucleosomal histone methyltransferase. Cell 112, 711–723 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Li, Y., Ge, K., Li, T., Cai, R. & Chen, Y. The engagement of histone lysine methyltransferases with nucleosomes: structural basis, regulatory mechanisms, and therapeutic implications. Protein Cell 14, 165–179 (2023).

    PubMed  Google Scholar 

  72. Wang, C. et al. Enhancer priming by H3K4 methyltransferase MLL4 controls cell fate transition. Proc. Natl Acad. Sci. USA 113, 11871–11876 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rampias, T. et al. The lysine-specific methyltransferase KMT2C/MLL3 regulates DNA repair components in cancer. EMBO Rep. 20, e46821 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Sun, P. et al. KMT2D inhibits the growth and metastasis of bladder cancer cells by maintaining the tumor suppressor genes. Biomed. Pharmacother. 115, 108924 (2019).

    Article  CAS  PubMed  Google Scholar 

  75. Lin-Shiao, E. et al. KMT2D regulates p63 target enhancers to coordinate epithelial homeostasis. Genes Dev. 32, 181–193 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Baker, S. C., Mason, A. S. & Southgate, J. Does a novel mutagenic process target KMT2D mutation in the most common first event on the path to bladder cancer? Eur. Urol. 79, 435–436 (2021).

    Article  CAS  PubMed  Google Scholar 

  77. Li, R. et al. Macroscopic somatic clonal expansion in morphologically normal human urothelium. Science 370, 82–89 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  78. Rozen, S. G. Mutational selection in normal urothelium. Science 370, 34–35 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  79. Xu, J. et al. KMT2D deficiency promotes myeloid leukemias which is vulnerable to ribosome biogenesis inhibition. Adv. Sci. 10, e2206098 (2023).

    Article  Google Scholar 

  80. Margueron, R. & Reinberg, D. The polycomb complex PRC2 and its mark in life. Nature 469, 343–349 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  81. McCabe, M. T. et al. Mutation of A677 in histone methyltransferase EZH2 in human B-cell lymphoma promotes hypertrimethylation of histone H3 on lysine 27 (H3K27). Proc. Natl Acad. Sci. USA 109, 2989–2994 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  82. Andrea Piunti et al. Immune activation is essential for the antitumor activity of EZH2 inhibition in urothelial carcinoma. Sci. Adv. 8, eabo8043 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Fantini, D. et al. A Carcinogen-induced mouse model recapitulates the molecular alterations of human muscle invasive bladder cancer. Oncogene 37, 1911–1925 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. ClinicalTrials.gov. US National Library of Medicine. https://clinicaltrials.gov/ct2/show/NCT03854474 (2023).

  85. Tachibana, M., Sugimoto, K., Fukushima, T. & Shinkai, Y. Set domain-containing protein, G9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3. J. Biol. Chem. 276, 25309–25317 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Casciello, F., Windloch, K., Gannon, F. & Lee, J. S. Functional role of G9a histone methyltransferase in cancer. Front. Immunol. 6, 487 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Li, F. et al. G9a inhibition induces autophagic cell death via AMPK/mTOR pathway in bladder transitional cell carcinoma. PLoS ONE 10, e0138390 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Cao, Y. P. et al. Inhibition of G9a by a small molecule inhibitor, UNC0642, induces apoptosis of human bladder cancer cells. Acta Pharmacol. Sin. 40, 1076–1084 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  89. San Jose-Eneriz, E. et al. Discovery of first-in-class reversible dual small molecule inhibitors against G9a and DNMTs in hematological malignancies. Nat. Commun. 8, 15424 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  90. Segovia, C. et al. Inhibition of a G9a/DNMT network triggers immune-mediated bladder cancer regression. Nat. Med. 25, 1073–1081 (2019).

    Article  CAS  PubMed  Google Scholar 

  91. Cristina, S. et al. Opposing roles of PIK3CA gene alterations to EZH2 signaling in non-muscle invasive bladder cancer. Oncotarget 8, 10531–10542 (2017).

    Article  Google Scholar 

  92. Hu, G., Wang, X., Han, Y. & Wang, P. Protein arginine methyltransferase 5 promotes bladder cancer growth through inhibiting NF-kB dependent apoptosis. EXCLI J. 17, 1157–1166 (2018).

    PubMed  PubMed Central  Google Scholar 

  93. Liu, S. et al. Flavokawain A is a natural inhibitor of PRMT5 in bladder cancer. J. Exp. Clin. Cancer Res. 41, 293 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Shi, Y. et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119, 941–953 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Hayami, S. et al. Overexpression of LSD1 contributes to human carcinogenesis through chromatin regulation in various cancers. Int. J. Cancer 128, 574–586 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Metzger, E. et al. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437, 436–439 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  97. Kauffman, E. C. et al. Role of androgen receptor and associated lysine-demethylase coregulators, LSD1 and JMJD2A, in localized and advanced human bladder cancer. Mol. Carcinog. 50, 931–944 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Xie, Q. et al. LSD1 promotes bladder cancer progression by upregulating LEF1 and enhancing EMT. Front. Oncol. 10, 1234 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Wan, W. et al. Histone demethylase JMJD1A promotes urinary bladder cancer progression by enhancing glycolysis through coactivation of hypoxia inducible factor 1α. Oncogene 36, 3868–3877 (2017).

    Article  CAS  PubMed  Google Scholar 

  100. Cho, H. S. et al. The JmjC domain-containing histone demethylase KDM3A is a positive regulator of the G1/S transition in cancer cells via transcriptional regulation of the HOXA1 gene. Int. J. Cancer 131, E179–E189 (2012).

    Article  CAS  PubMed  Google Scholar 

  101. Pearson, J. C., Lemons, D. & McGinnis, W. Modulating Hox gene functions during animal body patterning. Nat. Rev. Genet. 6, 893–904 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Chen, S. et al. HOXA1 promotes proliferation and metastasis of bladder cancer by enhancing SMAD3 transcription. Pathol. Res. Pract. 239, 154141 (2022).

    Article  CAS  PubMed  Google Scholar 

  103. Belpaire, M., Taminiau, A., Geerts, D. & Rezsohazy, R. HOXA1, a breast cancer oncogene. Biochim. Biophys. Acta Rev. Cancer 1877, 188747 (2022).

    Article  CAS  PubMed  Google Scholar 

  104. Berry, W. L. & Janknecht, R. KDM4/JMJD2 histone demethylases: epigenetic regulators in cancer cells. Cancer Res. 73, 2936–2942 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kogure, M. et al. Deregulation of the histone demethylase JMJD2A is involved in human carcinogenesis through regulation of the G1/S transition. Cancer Lett. 336, 76–84 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Wang, F. et al. Upregulation of JMJD2A promotes migration and invasion in bladder cancer through regulation of SLUG. Oncol. Rep. 42, 1431–1440 (2019).

    MathSciNet  CAS  PubMed  Google Scholar 

  107. Hong, S. et al. Identification of JmjC domain-containing UTX and JMJD3 as histone H3 lysine 27 demethylases. Proc. Natl Acad. Sci. USA 104, 18439–18444 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  108. Shilatifard, A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu. Rev. Biochem. 81, 65–95 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Nickerson, M. L. et al. Concurrent alterations in TERT, KDM6A, and the BRCA pathway in bladder cancer. Clin. Cancer Res. 20, 4935–4948 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Gui, Y. et al. Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder. Nat. Genet. 43, 875–878 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Nassar, A. H. et al. Mutational analysis of 472 urothelial carcinoma across grades and anatomic sites. Clin. Cancer Res. 25, 2458–2470 (2019).

    Article  PubMed  Google Scholar 

  112. Kaneko, S., Li, X. X chromosome protects against bladder cancer in females via a KDM6A-dependent epigenetic mechanism. Sci. Adv. 4, eaar5598 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  113. van Haaften, G. et al. Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nat. Genet. 41, 521–523 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Liu, L. et al. KDM6A-ARHGDIB axis blocks metastasis of bladder cancer by inhibiting Rac1. Mol. Cancer 20, 77 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Yimin, W. et al. Src phosphorylation of RhoGDI2 regulates its metastasis suppressor function. Proc. Natl Acad. Sci. USA 106, 5807–5812 (2009).

    Article  Google Scholar 

  116. Kong, N. et al. Intravesical delivery of KDM6A-mRNA via mucoadhesive nanoparticles inhibits the metastasis of bladder cancer. Proc. Natl Acad. Sci. USA 119, e2112696119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Agger, K. et al. UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature 449, 731–734 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  118. Ramakrishnan, S. et al. Inhibition of EZH2 induces NK cell-mediated differentiation and death in muscle-invasive bladder cancer. Cell Death Differ. 26, 2100–2114 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kobatake, K. et al. Kdm6a deficiency activates inflammatory pathways, promotes M2 macrophage polarization, and causes bladder cancer in cooperation with p53 dysfunction. Clin. Cancer Res. 26, 2065–2079 (2020).

    Article  CAS  PubMed  Google Scholar 

  120. Goswami, K. K. et al. Tumor promoting role of anti-tumor macrophages in tumor microenvironment. Cell Immunol. 316, 1–10 (2017).

    Article  CAS  PubMed  Google Scholar 

  121. Mantovani, A., Allavena, P., Marchesi, F. & Garlanda, C. Macrophages as tools and targets in cancer therapy. Nat. Rev. Drug Discov. 21, 799–820 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Chaturvedi, S. S., Ramanan, R., Waheed, S. O., Karabencheva-Christova, T. G. & Christov, C. Z. Structure-function relationships in KDM7 histone demethylases. Adv. Protein Chem. Struct. Biol. 117, 113–125 (2019).

    Article  CAS  PubMed  Google Scholar 

  123. Lee, K. H. et al. Histone demethylase KDM7A regulates androgen receptor activity, and its chemical inhibitor TC-E 5002 overcomes cisplatin-resistance in bladder cancer cells. Int. J. Mol. Sci. 21, 5658 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Lee, K. H. et al. Histone demethylase KDM7A controls androgen receptor activity and tumor growth in prostate cancer. Int. J. Cancer 143, 2849–2861 (2018).

    Article  CAS  PubMed  Google Scholar 

  125. Chen, J. et al. The androgen receptor in bladder cancer. Nat. Rev. Urol. 20, 560–574 (2023).

    Article  CAS  PubMed  Google Scholar 

  126. Lee, J. H., Tate, C. M., You, J. S. & Skalnik, D. G. Identification and characterization of the human Set1B histone H3-Lys4 methyltransferase complex. J. Biol. Chem. 282, 13419–13428 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Lu, K., Tao, H., Si, X. & Chen, Q. The histone H3 lysine 4 presenter WDR5 as an oncogenic protein and novel epigenetic target in cancer. Front. Oncol. 8, 502 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Chen, X. et al. Upregulated WDR5 promotes proliferation, self-renewal and chemoresistance in bladder cancer via mediating H3K4 trimethylation. Sci. Rep. 5, 8293 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Grebien, F. et al. Pharmacological targeting of the Wdr5-MLL interaction in C/EBPα N-terminal leukemia. Nat. Chem. Biol. 11, 571–578 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Zhang, J. et al. Targeting WD repeat domain 5 enhances chemosensitivity and inhibits proliferation and programmed death-ligand 1 expression in bladder cancer. J. Exp. Clin. Cancer Res. 40, 203 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Huang, X. et al. Targeting epigenetic crosstalk as a therapeutic strategy for EZH2-aberrant solid tumors. Cell 175, 186–199 e119 (2018).

    Article  CAS  PubMed  Google Scholar 

  132. Mohammad, H. P., Barbash, O. & Creasy, C. L. Targeting epigenetic modifications in cancer therapy: erasing the roadmap to cancer. Nat. Med. 25, 403–418 (2019).

    Article  CAS  PubMed  Google Scholar 

  133. Pan, D. et al. A major chromatin regulator determines resistance of tumor cells to T cell-mediated killing. Science 359, 770–775 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ghorani, E. & Quezada, S. A. Chromatin regulation and immune escape. Science 359, 745–746 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  135. Juergens, R. A. et al. Combination epigenetic therapy has efficacy in patients with refractory advanced non-small cell lung cancer. Cancer Discov. 1, 598–607 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Chou, T. C. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res 70, 440–446 (2010).

    Article  CAS  PubMed  Google Scholar 

  137. Zheng, H. et al. HDAC inhibitors enhance T-cell chemokine expression and augment response to PD-1 immunotherapy in lung adenocarcinoma. Clin. Cancer Res. 22, 4119–4132 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Kim, K. et al. Eradication of metastatic mouse cancers resistant to immune checkpoint blockade by suppression of myeloid-derived cells. Proc. Natl Acad. Sci. USA 111, 11774–11779 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  139. Orillion, A. et al. Entinostat neutralizes myeloid-derived suppressor cells and enhances the antitumor effect of PD-1 inhibition in murine models of lung and renal cell carcinoma. Clin. Cancer Res. 23, 5187–5201 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Woods, D. M. et al. HDAC inhibition upregulates PD-1 ligands in melanoma and augments immunotherapy with PD-1 blockade. Cancer Immunol. Res. 3, 1375–1385 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Stone, M. L. et al. Epigenetic therapy activates type I interferon signaling in murine ovarian cancer to reduce immunosuppression and tumor burden. Proc. Natl Acad. Sci. USA 114, E10981–e10990 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  142. Llopiz, D. et al. Enhanced anti-tumor efficacy of checkpoint inhibitors in combination with the histone deacetylase inhibitor Belinostat in a murine hepatocellular carcinoma model. Cancer Immunol. Immunother. 68, 379–393 (2019).

    Article  CAS  PubMed  Google Scholar 

  143. Knox, T. et al. Selective HDAC6 inhibitors improve anti-PD-1 immune checkpoint blockade therapy by decreasing the anti-inflammatory phenotype of macrophages and down-regulation of immunosuppressive proteins in tumor cells. Sci. Rep. 9, 6136 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  144. Briere, D. et al. The class I/IV HDAC inhibitor mocetinostat increases tumor antigen presentation, decreases immune suppressive cell types and augments checkpoint inhibitor therapy. Cancer Immunol. Immunother. 67, 381–392 (2018).

    Article  CAS  PubMed  Google Scholar 

  145. Cycon, K. A., Mulvaney, K., Rimsza, L. M., Persky, D. & Murphy, S. P. Histone deacetylase inhibitors activate CIITA and MHC class II antigen expression in diffuse large B-cell lymphoma. Immunology 140, 259–272 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Jensen, H., Andresen, L., Hansen, K. A. & Skov, S. Cell-surface expression of Hsp70 on hematopoietic cancer cells after inhibition of HDAC activity. J. Leukoc. Biol. 86, 923–932 (2009).

    Article  CAS  PubMed  Google Scholar 

  147. Burke, B. et al. Inhibition of histone deacetylase (HDAC) enhances checkpoint blockade efficacy by rendering bladder cancer cells visible for T cell-mediated destruction. Front. Oncol. 10, 699 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Saito, R. et al. Molecular subtype-specific immunocompetent models of high-grade urothelial carcinoma reveal differential neoantigen expression and response to immunotherapy. Cancer Res. 78, 3954–3968 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Truong, A. S. et al. Entinostat induces antitumor immune responses through immune editing of tumor neoantigens. J. Clin. Invest. 131, e138560 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. ClinicalTrials.gov. US National Library of Medicine. https://clinicaltrials.gov/ct2/show/NCT00045006 (2013).

  151. ClinicalTrials.gov. US National Library of Medicine. https://clinicaltrials.gov/ct2/show/NCT00413075 (2015).

  152. ClinicalTrials.gov. US National Library of Medicine. https://clinicaltrials.gov/ct2/show/NCT00363883 (2015).

  153. Grivas, P. et al. Mocetinostat for patients with previously treated, locally advanced/metastatic urothelial carcinoma and inactivating alterations of acetyltransferase genes. Cancer 125, 533–540 (2019).

    Article  CAS  PubMed  Google Scholar 

  154. US ClinicalTrials.gov. US National Library of Medicine. https://clinicaltrials.gov/ct2/show/NCT02619253 (2023).

  155. Roberto, P. et al. Immunomodulation by HDAC inhibition: results from a phase Ib study with vorinostat and pembrolizumab in metastatic urothelial, renal, and prostate carcinoma patients. J. Clin. Oncol. 37, 2572–2572 (2019).

    Article  Google Scholar 

  156. ClinicalTrials.gov. US National Library of Medicine. https://clinicaltrials.gov/ct2/show/NCT00565227 (2016).

  157. ClinicalTrials.gov. US National Library of Medicine. https://clinicaltrials.gov/ct2/show/NCT03978624 (2023).

  158. ClinicalTrials.gov. US National Library of Medicine. https://clinicaltrials.gov/ct2/show/NCT00421889 (2015).

  159. Leslie, M. First EZH2 inhibitor approved — for rare sarcoma. Cancer Discov. 10, 333–334 (2020).

    Article  Google Scholar 

  160. Joshua, J. et al. A pilot study of tazemetostat and MK-3475 (pembrolizumab) in advanced urothelial carcinoma (ETCTN 10183). J. Clin. Oncol. 38, TPS607 (2020).

    Article  Google Scholar 

  161. Audia, J. E. & Campbell, R. M. Histone modifications and cancer. Cold Spring Harb. Perspect. Biol. 8, a019521 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Chuikov, S. et al. Regulation of p53 activity through lysine methylation. Nature 432, 353–360 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  163. Kim, E. et al. Phosphorylation of EZH2 activates STAT3 signaling via STAT3 methylation and promotes tumorigenicity of glioblastoma stem-like cells. Cancer Cell 23, 839–852 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Kexin, X. et al. Oncogenic activity in castration-resistant prostate cancer cells is polycomb-independent. Science 338, 1465–1469 (2012).

    Article  Google Scholar 

  165. Jung, H. Y. et al. PAF and EZH2 induce Wnt/β-catenin signaling hyperactivation. Mol. Cell 52, 193–205 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Gonzalez, M. E. et al. EZH2 expands breast stem cells through activation of NOTCH1 signaling. Proc. Natl Acad. Sci. USA 111, 3098–3103 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  167. Kim, K. H. et al. SWI/SNF-mutant cancers depend on catalytic and non-catalytic activity of EZH2. Nat. Med. 21, 1491–1496 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Flavahan, W. A., Gaskell, E. & Bernstein, B. E. Epigenetic plasticity and the hallmarks of cancer. Science 357, eaal2380 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the 1.3.5 project for disciplines of excellence, West China Hospital, Sichuan University ZYGD23001 and Sichuan Science and Technology Program (2023NSFSC1905).

Author information

Authors and Affiliations

Authors

Contributions

S.Z. and X.X. researched data for the article. S.Z., T.L. and P.T. contributed substantially to discussion of the content. S.Z. wrote the article. Q.W., S.Z., C.C. and P.T. reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Chong Chen, Ping Tan or Qiang Wei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks A. Sato, W. Schulz and F. Khanim for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Lin, T., Xiong, X. et al. Targeting histone modifiers in bladder cancer therapy — preclinical and clinical evidence. Nat Rev Urol (2024). https://doi.org/10.1038/s41585-024-00857-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41585-024-00857-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing