Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hallmark discoveries in the biology of Wilms tumour

Abstract

The modern study of Wilms tumour was prompted nearly 50 years ago, when Alfred Knudson proposed the ‘two-hit’ model of tumour development. Since then, the efforts of researchers worldwide have substantially expanded our knowledge of Wilms tumour biology, including major advances in genetics — from cloning the first Wilms tumour gene to high-throughput studies that have revealed the genetic landscape of this tumour. These discoveries improve understanding of the embryonal origin of Wilms tumour, familial occurrences and associated syndromic conditions. Many efforts have been made to find and clinically apply prognostic biomarkers to Wilms tumour, for which outcomes are generally favourable, but treatment of some affected individuals remains challenging. Challenges are also posed by the intratumoural heterogeneity of biomarkers. Furthermore, preclinical models of Wilms tumour, from cell lines to organoid cultures, have evolved. Despite these many achievements, much still remains to be discovered: further molecular understanding of relapse in Wilms tumour and of the multiple origins of bilateral Wilms tumour are two examples of areas under active investigation. International collaboration, especially when large tumour series are required to obtain robust data, will help to answer some of the remaining unresolved questions.

Key points

  • The genetic landscape of Wilms tumours has been deeply investigated, but the relationship to intratumoural heterogeneity and how abnormal nephrogenesis relates to malignant transformation to Wilms tumour are still being explored.

  • Genetics of the classical syndromic conditions associated with Wilms tumour development have been described in detail, but whole-exome sequencing is revealing a wide range of constitutional mutations in children that lack any clear phenotype.

  • Prognostic biomarkers are starting to be used in clinical practice and for risk stratification in trials, but more need to be identified and validated.

  • Many complementary preclinical Wilms tumour models are now available.

  • Efforts to explore the events that lead to aggressive and/or recurrent disease are needed.

  • Worldwide international collaborations between experts in the field have been established.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Key discoveries in Wilms tumour biology.
Fig. 2: Nephrogenic rest.
Fig. 3: Diffuse anaplasia in Wilms tumour.
Fig. 4: Blastemal Wilms tumour.
Fig. 5: Evolutionary trajectories in Wilms tumour.

Similar content being viewed by others

References

  1. Wilms, C. M. W. Die Mischgeschwulste der Niere (1899).

  2. Brok, J. et al. Unmet needs for relapsed or refractory Wilms tumour: mapping the molecular features, exploring organoids and designing early phase trials – a collaborative SIOP-RTSG, COG and ITCC session at the first SIOPE meeting. Eur. J. Cancer 144, 113–122 (2021).

    Article  PubMed  Google Scholar 

  3. Nelson, M. V., van den Heuvel-Eibrink, M. M., Graf, N. & Dome, J. S. New approaches to risk stratification for Wilms tumor. Curr. Opin. Pediatr. 33, 40–48 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. van den Heuvel-Eibrink, M. M., Fernandez, C. V., Graf, N. & Geller, J. I. Progress by international collaboration for pediatric renal tumors by HARMONIzation and COllaboration: the HARMONICA initiative. Pediatr. Blood Cancer 70, e30082 (2023).

    Article  PubMed  Google Scholar 

  5. Beckwith, J. B., Kiviat, N. B. & Bonadio, J. F. Nephrogenic rests, nephroblastomatosis, and the pathogenesis of Wilms’ tumor. Pediatr. Pathol. 10, 1–36 (1990).

    Article  CAS  PubMed  Google Scholar 

  6. Vujanić, G. M. & Sandstedt, B. The pathology of Wilms’ tumour (nephroblastoma): the international society of paediatric oncology approach. J. Clin. Pathol. 63, 102–109 (2010).

    Article  PubMed  Google Scholar 

  7. Knudson, A. G. Mutation and cancer: statistical study of retinoblastoma. Proc. Natl Acad. Sci. USA 68, 820–823 (1971).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  8. Knudson, A. G. & Strong, L. C. Mutation and cancer: a model for Wilms’ tumor of the kidney. J. Natl Cancer Inst. 48, 313–324 (1972).

    PubMed  Google Scholar 

  9. Call, K. M. et al. Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms’ tumor locus. Cell 60, 509–520 (1990).

    Article  CAS  PubMed  Google Scholar 

  10. Gessler, M. et al. Homozygous deletion in Wilms tumours of a zinc-finger gene identified by chromosome jumping. Nature 343, 774–778 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Grundy, P. et al. Familial predisposition to Wilms’ tumour does not map to the short arm of chromosome 11. Nature 336, 374–376 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Koufos, A. et al. Familial Wiedemann-Beckwith syndrome and a second Wilms tumor locus both map to 11p15.5. Am. J. Hum. Genet. 44, 711–719 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Pal, N. et al. Preferential loss of maternal alleles in sporadic Wilms’ tumour. Oncogene 5, 1665–1668 (1990).

    CAS  PubMed  Google Scholar 

  14. Peters, J. The role of genomic imprinting in biology and disease: an expanding view. Nat. Rev. Genet. 15, 517–530 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Breslow, N. E., Beckwith, J. B., Perlman, E. J. & Reeve, A. E. Age distributions, birth weights, nephrogenic rests, and heterogeneity in the pathogenesis of Wilms tumor. Pediatr. Blood Cancer 47, 260–267 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Coorens, T. H. H. et al. Embryonal precursors of Wilms tumor. Science 366, 1247–1251 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Diets, I. J. et al. TRIM28 haploinsufficiency predisposes to Wilms tumor. Int. J. Cancer 145, 941–951 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Mahamdallie, S. et al. Identification of new Wilms tumour predisposition genes: an exome sequencing study. Lancet Child Adolesc. Health 3, 322–331 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Scott, R. H. et al. Stratification of Wilms tumor by genetic and epigenetic analysis. Oncotarget 3, 327–335 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Riccardi, V. M., Sujansky, E., Smith, A. C. & Francke, U. Chromosomal imbalance in the Aniridia–Wilms’ tumor association: 11p interstitial deletion. Pediatrics 61, 604–610 (1978).

    Article  CAS  PubMed  Google Scholar 

  21. Gessler, M. & Bruns, G. A. A physical map around the WAGR complex on the short arm of chromosome 11. Genomics 5, 43–55 (1989).

    Article  CAS  PubMed  Google Scholar 

  22. Gessler, M. et al. A deletion map of the WAGR region on chromosome 11. Am. J. Hum. Genet. 44, 486–495 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Rose, E. A. et al. Complete physical map of the WAGR region of 11p13 localizes a candidate Wilms’ tumor gene. Cell 60, 495–508 (1990).

    Article  CAS  PubMed  Google Scholar 

  24. Pritchard-Jones, K. et al. The candidate Wilms’ tumour gene is involved in genitourinary development. Nature 346, 194–197 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Schumacher, V. et al. Correlation of germ-line mutations and two-hit inactivation of the WT1 gene with Wilms tumors of stromal-predominant histology. Proc. Natl Acad. Sci. USA 94, 3972–3977 (1997).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Holmes, G. et al. Two N-terminal self-association domains are required for the dominant negative transcriptional activity of WT1 Denys–Drash mutant proteins. Biochem. Biophys. Res. Commun. 233, 723–728 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Maiti, S., Alam, R., Amos, C. I. & Huff, V. Frequent association of beta-catenin and WT1 mutations in Wilms tumors. Cancer Res. 60, 6288–6292 (2000).

    CAS  PubMed  Google Scholar 

  28. Haruta, M. et al. Different incidences of epigenetic but not genetic abnormalities between Wilms tumors in Japanese and Caucasian children. Cancer Sci. 103, 1129–1135 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ruteshouser, E. C., Robinson, S. M. & Huff, V. Wilms tumor genetics: mutations in WT1, WTX, and CTNNB1 account for only about one-third of tumors. Genes Chromosomes Cancer 47, 461–470 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gadd, S. et al. A Children’s Oncology Group and TARGET initiative exploring the genetic landscape of Wilms tumor. Nat. Genet. 49, 1487–1494 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Varanasi, R. et al. Fine structure analysis of the WT1 gene in sporadic Wilms tumors. Proc. Natl Acad. Sci. USA 91, 3554–3558 (1994).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hastie, N. D. Wilms’ tumour 1 (WT1) in development, homeostasis and disease. Development 144, 2862–2872 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. van Heyningen, V. et al. Role for the Wilms tumor gene in genital development. Proc. Natl Acad. Sci. USA 87, 5383–5386 (1990).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  34. Kreidberg, J. A. et al. WT-1 is required for early kidney development. Cell 74, 679–691 (1993).

    Article  CAS  PubMed  Google Scholar 

  35. Bruening, W. et al. Germline intronic and exonic mutations in the Wilms’ tumour gene (WT1) affecting urogenital development. Nat. Genet. 1, 144–148 (1992).

    Article  CAS  PubMed  Google Scholar 

  36. Barbaux, S. et al. Donor splice-site mutations in WT1 are responsible for Frasier syndrome. Nat. Genet. 17, 467–470 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Klamt, B. et al. Frasier syndrome is caused by defective alternative splicing of WT1 leading to an altered ratio of WT1 +/−KTS splice isoforms. Hum. Mol. Genet. 7, 709–714 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Reeve, A. E., Sih, S. A., Raizis, A. M. & Feinberg, A. P. Loss of allelic heterozygosity at a second locus on chromosome 11 in sporadic Wilms’ tumor cells. Mol. Cell. Biol. 9, 1799–1803 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ping, A. J. et al. Genetic linkage of Beckwith–Wiedemann syndrome to 11p15. Am. J. Hum. Genet. 44, 720–723 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Li, M., Squire, J. A. & Weksberg, R. Molecular genetics of Wiedemann–Beckwith syndrome. Am. J. Med. Genet. 79, 253–259 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Hao, Y., Crenshaw, T., Moulton, T., Newcomb, E. & Tycko, B. Tumour-suppressor activity of H19 RNA. Nature 365, 764–767 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Ogawa, O. et al. Constitutional relaxation of insulin-like growth factor II gene imprinting associated with Wilms’ tumour and gigantism. Nat. Genet. 5, 408–412 (1993).

    Article  CAS  PubMed  Google Scholar 

  43. Brioude, F. et al. Beckwith–Wiedemann syndrome: growth pattern and tumor risk according to molecular mechanism, and guidelines for tumor surveillance. Horm. Res. Paediatr. 80, 457–465 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Duffy, K. A. et al. Characterization of the Beckwith–Wiedemann spectrum: diagnosis and management. Am. J. Med. Genet. C. Semin. Med. Genet. 181, 693–708 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Scott, R. H. et al. Constitutional 11p15 abnormalities, including heritable imprinting center mutations, cause nonsyndromic Wilms tumor. Nat. Genet. 40, 1329–1334 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Ogawa, O. et al. Relaxation of insulin-like growth factor II gene imprinting implicated in Wilms’ tumour. Nature 362, 749–751 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Gadd, S. et al. Clinically relevant subsets identified by gene expression patterns support a revised ontogenic model of Wilms tumor: a Children’s Oncology Group Study. Neoplasia 14, 742–756 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Charlton, J. et al. Comparative methylome analysis identifies new tumour subtypes and biomarkers for transformation of nephrogenic rests into Wilms tumour. Genome Med. 7, 11 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Charles, A. K., Brown, K. W. & Berry, P. J. Microdissecting the genetic events in nephrogenic rests and Wilms’ tumor development. Am. J. Pathol. 153, 991–1000 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hu, Q. et al. Wt1 ablation and Igf2 upregulation in mice result in Wilms tumors with elevated ERK1/2 phosphorylation. J. Clin. Invest. 121, 174–183 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Houghton, P. J. et al. Initial testing of a monoclonal antibody (IMC-A12) against IGF-1R by the pediatric preclinical testing program. Pediatr. Blood Cancer 54, 921–926 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Weigel, B. et al. Phase 2 trial of cixutumumab in children, adolescents, and young adults with refractory solid tumors: a report from the Children’s Oncology Group. Pediatr. Blood Cancer 61, 452–456 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. DeLeo, A. B. et al. Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse. Proc. Natl Acad. Sci. USA 76, 2420–2424 (1979).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kress, M., May, E., Cassingena, R. & May, P. Simian virus 40-transformed cells express new species of proteins precipitable by anti-simian virus 40 tumor serum. J. Virol. 31, 472–483 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lane, D. P. & Benchimol, S. p53: oncogene or anti-oncogene. Genes Dev. 4, 1–8 (1990).

    Article  CAS  PubMed  Google Scholar 

  56. Yue, X. et al. Mutant p53 in cancer: accumulation, gain-of-function, and therapy. J. Mol. Biol. 429, 1595–1606 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bouaoun, L. et al. TP53 variations in human cancers: new lessons from the IARC TP53 database and genomics data. Hum. Mutat. 37, 865–876 (2016).

    Article  CAS  PubMed  Google Scholar 

  58. Maschietto, M. et al. TP53 mutational status is a potential marker for risk stratification in Wilms tumour with diffuse anaplasia. PLoS ONE 9, e109924 (2014).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  59. Ooms, A. H. et al. Significance of TP53 mutation in Wilms tumors with diffuse anaplasia: a report from the Children’s Oncology Group. Clin. Cancer Res. 22, 5582–5591 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wegert, J. et al. TP53 alterations in Wilms tumour represent progression events with strong intratumour heterogeneity that are closely linked but not limited to anaplasia. J. Pathol. Clin. Res. 3, 234–248 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bardeesy, N. et al. Anaplastic Wilms’ tumour, a subtype displaying poor prognosis, harbours p53 gene mutations. Nat. Genet. 7, 91–97 (1994).

    Article  CAS  PubMed  Google Scholar 

  62. Wegert, J. et al. Mutations in the SIX1/2 pathway and the DROSHA/DGCR8 miRNA microprocessor complex underlie high-risk blastemal type Wilms tumors. Cancer Cell 27, 298–311 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Lemoine, N. R., Hughes, C. M. & Cowell, J. K. Aberrant expression of the tumour suppressor gene p53 is very frequent in Wilms’ tumours. J. Pathol. 168, 237–242 (1992).

    Article  CAS  PubMed  Google Scholar 

  64. Lahoti, C., Thorner, P., Malkin, D. & Yeger, H. Immunohistochemical detection of p53 in Wilms’ tumors correlates with unfavorable outcome. Am. J. Pathol. 148, 1577–1589 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Franken, J., Lerut, E., Van Poppel, H. & Bogaert, G. p53 Immunohistochemistry expression in Wilms tumor: a prognostic tool in the detection of tumor aggressiveness. J. Urol. 189, 664–670 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Koesters, R. et al. Mutational activation of the beta-catenin proto-oncogene is a common event in the development of Wilms’ tumors. Cancer Res. 59, 3880–3882 (1999).

    CAS  PubMed  Google Scholar 

  67. Nusse, R. & Clevers, H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell 169, 985–999 (2017).

    Article  CAS  PubMed  Google Scholar 

  68. PolakisPWnt signaling in cancerCold Spring Harb. Perspect. Biol.4a0080522012

    Article  PubMed  PubMed Central  Google Scholar 

  69. Perotti, D. et al. Is Wilms tumor a candidate neoplasia for treatment with WNT/β-catenin pathway modulators?—a report from the renal tumors biology-driven drug development workshop. Mol. Cancer Ther. 12, 2619–2627 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Clevers, H. & Nusse, R. Wnt/β-catenin signaling and disease. Cell 149, 1192–1205 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Fukuzawa, R. et al. Myogenesis in Wilms’ tumors is associated with mutations of the WT1 gene and activation of Bcl-2 and the Wnt signaling pathway. Pediatr. Dev. Pathol. 7, 125–137 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Huber, A. H., Nelson, W. J. & Weis, W. I. Three-dimensional structure of the armadillo repeat region of beta-catenin. Cell 90, 871–882 (1997).

    Article  CAS  PubMed  Google Scholar 

  73. Fukuzawa, R., Anaka, M. R., Weeks, R. J., Morison, I. M. & Reeve, A. E. Canonical WNT signalling determines lineage specificity in Wilms tumour. Oncogene 28, 1063–1075 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. US National Library of Medicine. Clinicaltrials.gov https://clinicaltrials.gov/ct2/show/NCT04851119 (2023).

  75. Rivera, M. N. et al. An X chromosome gene, WTX, is commonly inactivated in Wilms tumor. Science 315, 642–645 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  76. Perotti, D. et al. Functional inactivation of the WTX gene is not a frequent event in Wilms’ tumors. Oncogene 27, 4625–4632 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Wegert, J. et al. WTX inactivation is a frequent, but late event in Wilms tumors without apparent clinical impact. Genes Chromosomes Cancer 48, 1102–1111 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Jenkins, Z. A. et al. Germline mutations in WTX cause a sclerosing skeletal dysplasia but do not predispose to tumorigenesis. Nat. Genet. 41, 95–100 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Major, M. B. et al. Wilms tumor suppressor WTX negatively regulates WNT/beta-catenin signaling. Science 316, 1043–1046 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  80. Moisan, A. et al. The WTX tumor suppressor regulates mesenchymal progenitor cell fate specification. Dev. Cell 20, 583–596 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ruiz-Pérez, M. V., Henley, A. B. & Arsenian-Henriksson, M. The MYCN protein in health and disease. Genes 8, 113 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Pfister, S. et al. Outcome prediction in pediatric medulloblastoma based on DNA copy-number aberrations of chromosomes 6q and 17q and the MYC and MYCN loci. J. Clin. Oncol. 27, 1627–1636 (2009).

    Article  PubMed  Google Scholar 

  83. Aldosari, N. et al. MYCC and MYCN oncogene amplification in medulloblastoma. A fluorescence in situ hybridization study on paraffin sections from the Children’s Oncology Group. Arch. Pathol. Lab. Med. 126, 540–544 (2002).

    Article  PubMed  Google Scholar 

  84. Williamson, D. et al. Relationship between MYCN copy number and expression in rhabdomyosarcomas and correlation with adverse prognosis in the alveolar subtype. J. Clin. Oncol. 23, 880–888 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Norris, M. D., Brian, M. J., Vowels, M. R. & Stewart, B. W. N-myc amplification in Wilms’ tumor. Cancer Genet. Cytogenet. 30, 187–189 (1988).

    Article  CAS  PubMed  Google Scholar 

  86. McQuaid, S. & O’Meara, A. N-myc oncogene amplification in paediatric tumours. Ir. J. Med. Sci. 159, 172–174 (1990).

    Article  CAS  PubMed  Google Scholar 

  87. Schaub, R. et al. Array comparative genomic hybridization reveals unbalanced gain of the MYCN region in Wilms tumors. Cancer Genet. Cytogenet. 172, 61–65 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Williams, R. D. et al. Subtype-specific FBXW7 mutation and MYCN copy number gain in Wilms’ tumor. Clin. Cancer Res. 16, 2036–2045 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  89. Williams, R. D. et al. Molecular profiling reveals frequent gain of MYCN and anaplasia-specific loss of 4q and 14q in Wilms tumor. Genes Chromosomes Cancer 50, 982–995 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Williams, R. D. et al. Multiple mechanisms of MYCN dysregulation in Wilms tumour. Oncotarget 6, 7232–7243 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Rakheja, D. et al. Somatic mutations in DROSHA and DICER1 impair microRNA biogenesis through distinct mechanisms in Wilms tumours. Nat. Commun. 2, 4802 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Chagtai, T. et al. Gain of 1q as a prognostic biomarker in Wilms tumors (WTs) treated with preoperative chemotherapy in the International Society of Paediatric Oncology (SIOP) WT 2001 trial: a SIOP Renal Tumours Biology Consortium study. J. Clin. Oncol. 34, 3195–3203 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wittmann, S. et al. New prognostic markers revealed by evaluation of genes correlated with clinical parameters in Wilms tumors. Genes Chromosomes Cancer 47, 386–395 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Walz, A. L. et al. Recurrent DGCR8, DROSHA, and SIX homeodomain mutations in favorable histology Wilms tumors. Cancer Cell 27, 286–297 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Christensen, K. L., Patrick, A. N., McCoy, E. L. & Ford, H. L. The Six family of homeobox genes in development and cancer. Adv. Cancer Res. 101, 93–126 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Xu, P. X. et al. Six1 is required for the early organogenesis of mammalian kidney. Development 130, 3085–3094 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Li, X. et al. Eya protein phosphatase activity regulates Six1–Dach–Eya transcriptional effects in mammalian organogenesis. Nature 426, 247–254 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  98. Torrezan, G. T. et al. Recurrent somatic mutation in DROSHA induces microRNA profile changes in Wilms tumour. Nat. Commun. 5, 4039 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  99. Hua, Y. et al. miRConnect 2.0: identification of oncogenic, antagonistic miRNA families in three human cancers. BMC Genomics 14, 179 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kumar, M. S., Lu, J., Mercer, K. L., Golub, T. R. & Jacks, T. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat. Genet. 39, 673–677 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Spreafico, F. et al. Chromosomal anomalies at 1q, 3, 16q, and mutations of SIX1 and DROSHA genes underlie Wilms tumor recurrences. Oncotarget 7, 8908–8915 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Ciceri, S. et al. Analysis of the mutational status of SIX1/2 and microRNA processing genes in paired primary and relapsed Wilms tumors and association with relapse. Cancer Gene Ther. 28, 1016–1024 (2020).

    Article  PubMed  Google Scholar 

  103. Perlman, E. J. et al. MLLT1 YEATS domain mutations in clinically distinctive favourable histology Wilms tumours. Nat. Commun. 6, 10013 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  104. Pierce, J. et al. SIX2 effects on Wilms tumor biology. Transl. Oncol. 7, 800–811 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Essafi, A. et al. A wt1-controlled chromatin switching mechanism underpins tissue-specific wnt4 activation and repression. Dev. Cell 21, 559–574 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Chu, J. Y. et al. Dicer function is required in the metanephric mesenchyme for early kidney development. Am. J. Physiol. Ren. Physiol. 306, F764–F772 (2014).

    Article  CAS  Google Scholar 

  107. Wan, L. et al. Impaired cell fate through gain-of-function mutations in a chromatin reader. Nature 577, 121–126 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  108. Brioude, F. et al. Expert consensus document: clinical and molecular diagnosis, screening and management of Beckwith–Wiedemann syndrome: an international consensus statement. Nat. Rev. Endocrinol. 14, 229–249 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Kalish, J. M. et al. Surveillance recommendations for children with overgrowth syndromes and predisposition to Wilms tumors and hepatoblastoma. Clin. Cancer Res. 23, e115–e122 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Turner, J. T., Brzezinski, J. & Dome, J. S. Wilms tumor predisposition. in Geneviews (eds Adam, M. P. et al.) (Univ. Washington, 2003; updated 2022).

  111. Hol, J. A. et al. Wilms tumour surveillance in at-risk children: literature review and recommendations from the SIOP-Europe Host Genome Working Group and SIOP Renal Tumour Study Group. Eur. J. Cancer 153, 51–63 (2021).

    Article  CAS  PubMed  Google Scholar 

  112. Fischbach, B. V., Trout, K. L., Lewis, J., Luis, C. A. & Sika, M. WAGR syndrome: a clinical review of 54 cases. Pediatrics 116, 984–988 (2005).

    Article  PubMed  Google Scholar 

  113. Yamamoto, T. et al. Narrowing of the responsible region for severe developmental delay and autistic behaviors in WAGR syndrome down to 1.6 Mb including PAX6, WT1, and PRRG4. Am. J. Med. Genet. A 164A, 634–638 (2014).

    Article  PubMed  Google Scholar 

  114. Lipska, B. S. et al. Genotype-phenotype associations in WT1 glomerulopathy. Kidney Int. 85, 1169–1178 (2014).

    Article  CAS  PubMed  Google Scholar 

  115. Schumacher, V. et al. Spectrum of early onset nephrotic syndrome associated with WT1 missense mutations. Kidney Int. 53, 1594–1600 (1998).

    Article  CAS  PubMed  Google Scholar 

  116. Weksberg, R., Shuman, C. & Beckwith, J. B. Beckwith-Wiedemann syndrome. Eur. J. Hum. Genet. 18, 8–14 (2010).

    Article  PubMed  Google Scholar 

  117. Mussa, A. et al. (Epi)genotype-phenotype correlations in Beckwith–Wiedemann syndrome. Eur. J. Hum. Genet. 24, 183–190 (2016).

    Article  CAS  PubMed  Google Scholar 

  118. Brzezinski, J. et al. Wilms tumour in Beckwith–Wiedemann syndrome and loss of methylation at imprinting centre 2: revisiting tumour surveillance guidelines. Eur. J. Hum. Genet. 25, 1031–1039 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Fiala, E. M. et al. 11p15.5 epimutations in children with Wilms tumor and hepatoblastoma detected in peripheral blood. Cancer 126, 3114–3121 (2020).

    Article  CAS  PubMed  Google Scholar 

  120. Mahamdallie, S. S. et al. Mutations in the transcriptional repressor REST predispose to Wilms tumor. Nat. Genet. 47, 1471–1474 (2015).

    Article  CAS  PubMed  Google Scholar 

  121. Hanks, S. et al. Germline mutations in the PAF1 complex gene CTR9 predispose to Wilms tumour. Nat. Commun. 5, 4398 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  122. Scott, R. H., Stiller, C. A., Walker, L. & Rahman, N. Syndromes and constitutional chromosomal abnormalities associated with Wilms tumour. J. Med. Genet. 43, 705–715 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Rahman, N. et al. Evidence for a familial Wilms’ tumour gene (FWT1) on chromosome 17q12–q21. Nat. Genet. 13, 461–463 (1996).

    Article  CAS  PubMed  Google Scholar 

  124. Rahman, N. et al. Confirmation of FWT1 as a Wilms’ tumour susceptibility gene and phenotypic characteristics of Wilms’ tumour attributable to FWT1. Hum. Genet. 103, 547–556 (1998).

    Article  CAS  PubMed  Google Scholar 

  125. McDonald, J. M. et al. Linkage of familial Wilms’ tumor predisposition to chromosome 19 and a two-locus model for the etiology of familial tumors. Cancer Res. 58, 1387–1390 (1998).

    CAS  PubMed  Google Scholar 

  126. Martins, A. G., Pinto, A. T., Domingues, R. & Cavaco, B. M. Identification of a novel CTR9 germline mutation in a family with Wilms tumor. Eur. J. Med. Genet. 61, 294–299 (2018).

    Article  PubMed  Google Scholar 

  127. Halliday, B. J. et al. Germline mutations and somatic inactivation of TRIM28 in Wilms tumour. PLoS Genet. 14, e1007399 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Beckwith, J. B. Nephrogenic rests and the pathogenesis of Wilms tumor: developmental and clinical considerations. Am. J. Med. Genet. 79, 268–273 (1998).

    Article  CAS  PubMed  Google Scholar 

  129. Beckwith, J. B. in Renal Pathology with Clinical and Functional Correlations (eds Tisher, C. C. and Brenner, B. M.) Vol. II 1513–1539 (Lippincott, 1994).

  130. James, R. G., Kamei, C. N., Wang, Q., Jiang, R. & Schultheiss, T. M. Odd-skipped related 1 is required for development of the metanephric kidney and regulates formation and differentiation of kidney precursor cells. Development 133, 2995–3004 (2006).

    Article  CAS  PubMed  Google Scholar 

  131. Trink, A. et al. Geometry of gene expression space of Wilms’ tumors from human patients. Neoplasia 20, 871–881 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Pode-Shakked, N. et al. Dissecting stages of human kidney development and tumorigenesis with surface markers affords simple prospective purification of nephron stem cells. Sci. Rep. 6, 23562 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  133. Young, M. D. et al. Single-cell transcriptomes from human kidneys reveal the cellular identity of renal tumors. Science 361, 594–599 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  134. Cerrato, F. et al. Different mechanisms cause imprinting defects at the IGF2/H19 locus in Beckwith–Wiedemann syndrome and Wilms’ tumour. Hum. Mol. Genet. 17, 1427–1435 (2008).

    Article  CAS  PubMed  Google Scholar 

  135. Park, J. S. et al. Six2 and Wnt regulate self-renewal and commitment of nephron progenitors through shared gene regulatory networks. Dev. Cell 23, 637–651 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Urbach, A. et al. Lin28 sustains early renal progenitors and induces Wilms tumor. Genes Dev. 28, 971–982 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Schübeler, D. Function and information content of DNA methylation. Nature 517, 321–326 (2015).

    Article  ADS  PubMed  Google Scholar 

  138. Brzezinski, J. et al. Clinically and biologically relevant subgroups of Wilms tumour defined by genomic and epigenomic analyses. Br. J. Cancer 124, 437–446 (2021).

    Article  CAS  PubMed  Google Scholar 

  139. Guerra, J. V. D. S. et al. Genes controlled by DNA methylation are involved in wilms tumor progression. Cells 8, 921 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Breslow, N. E. et al. End stage renal disease in patients with Wilms tumor: results from the National Wilms Tumor Study Group and the United States Renal Data System. J. Urol. 174, 1972–1975 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Berry, R. L. et al. Deducing the stage of origin of Wilms’ tumours from a developmental series of Wt1-mutant mice. Dis. Model. Mech. 8, 903–917 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Huang, L. et al. Nephron progenitor but not stromal progenitor cells give rise to wilms tumors in mouse models with β-catenin activation or Wt1 ablation and Igf2 uregulation. Neoplasia 18, 71–81 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Clark, P. E. et al. β-Catenin and K-RAS synergize to form primitive renal epithelial tumors with features of epithelial Wilms’ tumors. Am. J. Pathol. 179, 3045–3055 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Nagalakshmi, V. K. et al. Dicer regulates the development of nephrogenic and ureteric compartments in the mammalian kidney. Kidney Int. 79, 317–330 (2011).

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  145. Huff, V. et al. Lack of linkage of familial Wilms’ tumour to chromosomal band 11p13. Nature 336, 377–378 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  146. Maw, M. A. et al. A third Wilms’ tumor locus on chromosome 16q. Cancer Res. 52, 3094–3098 (1992).

    CAS  PubMed  Google Scholar 

  147. Grundy, P. E. et al. Loss of heterozygosity for chromosomes 16q and 1p in Wilms’ tumors predicts an adverse outcome. Cancer Res. 54, 2331–2333 (1994).

    CAS  PubMed  Google Scholar 

  148. Grundy, P. et al. Loss of heterozygosity for chromosomes 1p and 16q is an adverse prognostic factor in favorable-histology Wilms tumor. a report from the National Wilms Tumor Study Group. J. Clin. Oncol. 23, 7312–7321 (2005).

    Article  CAS  PubMed  Google Scholar 

  149. Messahel, B. et al. Allele loss at 16q defines poorer prognosis Wilms tumour irrespective of treatment approach in the UKW1-3 clinical trials: a Children’s Cancer and Leukaemia Group (CCLG) study. Eur. J. Cancer 45, 819–826 (2009).

    Article  CAS  PubMed  Google Scholar 

  150. Spreafico, F. et al. Loss of heterozygosity analysis at different chromosome regions in Wilms tumor confirms 1p allelic loss as a marker of worse prognosis: a study from the Italian Association of Pediatric Hematology and Oncology. J. Urol. 189, 260–266 (2013).

    Article  CAS  PubMed  Google Scholar 

  151. Dix, D. B. et al. Augmentation of therapy for combined loss of heterozygosity 1p and 16q in favorable histology Wilms tumor: a Children’s Oncology Group AREN0532 and AREN0533 study report. J. Clin. Oncol. 37, 2769–2777 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Fernandez, C. V. et al. Outcome and prognostic factors in stage III favorable-histology Wilms tumor: a report from the Children’s Oncology Group Study AREN0532. J. Clin. Oncol. 36, 254–261 (2018).

    Article  CAS  PubMed  Google Scholar 

  153. Betts, D. R., Ilg, E. C., Oezahin, H., von der Weid, N. & Niggli, F. K. Trisomy 1q generating translocations in Wilms tumor. Cancer Genet. Cytogenet. 112, 138–143 (1999).

    Article  CAS  PubMed  Google Scholar 

  154. Kondo, K., Chilcote, R. R., Maurer, H. S. & Rowley, J. D. Chromosome abnormalities in tumor cells from patients with sporadic Wilms’ tumor. Cancer Res. 44, 5376–5381 (1984).

    CAS  PubMed  Google Scholar 

  155. Solis, V., Pritchard, J. & Cowell, J. K. Cytogenetic changes in Wilms’ tumors. Cancer Genet. Cytogenet. 34, 223–234 (1988).

    Article  CAS  PubMed  Google Scholar 

  156. Hing, S. et al. Gain of 1q is associated with adverse outcome in favorable histology Wilms’ tumors. Am. J. Pathol. 158, 393–398 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Lu, Y. J. et al. Chromosome 1q expression profiling and relapse in Wilms’ tumour. Lancet 360, 385–386 (2002).

    Article  CAS  PubMed  Google Scholar 

  158. Williams, R. D. et al. Prognostic classification of relapsing favorable histology Wilms tumor using cDNA microarray expression profiling and support vector machines. Genes Chromosomes Cancer 41, 65–79 (2004).

    Article  CAS  PubMed  Google Scholar 

  159. Natrajan, R. et al. Array CGH profiling of favourable histology Wilms tumours reveals novel gains and losses associated with relapse. J. Pathol. 210, 49–58 (2006).

    Article  CAS  PubMed  Google Scholar 

  160. Perotti, D. et al. Genomic profiling by whole-genome single nucleotide polymorphism arrays in Wilms tumor and association with relapse. Genes. Chromosomes Cancer 51, 644–653 (2012).

    Article  CAS  PubMed  Google Scholar 

  161. Segers, H. et al. Gain of 1q is a marker of poor prognosis in Wilms’ tumors. Genes Chromosomes Cancer 52, 1065–1074 (2013).

    Article  CAS  PubMed  Google Scholar 

  162. Cresswell, G. D. et al. Intra-tumor genetic heterogeneity in Wilms tumor: clonal evolution and clinical implications. EBioMedicine 9, 120–129 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Gratias, E. J. et al. Gain of 1q is associated with inferior event-free and overall survival in patients with favorable histology Wilms tumor: a report from the Children’s Oncology Group. Cancer 119, 3887–3894 (2013).

    Article  PubMed  Google Scholar 

  164. Gratias, E. J. et al. Association of chromosome 1q gain with inferior survival in favorable-histology Wilms tumor: a report from the Children’s Oncology Group. J. Clin. Oncol. 34, 3189–3194 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  165. van den Heuvel-Eibrink, M. M. et al. Position paper: rationale for the treatment of Wilms tumour in the UMBRELLA SIOP-RTSG 2016 protocol. Nat. Rev. Urol. 14, 743–752 (2017).

    Article  PubMed  Google Scholar 

  166. Madanat-Harjuoja, L. M. et al. Circulating tumor DNA as a biomarker in patients with stage III and IV Wilms tumor: analysis from a Children’s Oncology Group trial, AREN0533. J. Clin. Oncol. 40, 3047–3056 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Bardeesy, N., Beckwith, J. B. & Pelletier, J. Clonal expansion and attenuated apoptosis in Wilms’ tumors are associated with p53 gene mutations. Cancer Res. 55, 215–219 (1995).

    CAS  PubMed  Google Scholar 

  168. Faria, P. et al. Focal versus diffuse anaplasia in Wilms tumor—new definitions with prognostic significance: a report from the National Wilms Tumor Study Group. Am. J. Surg. Pathol. 20, 909–920 (1996).

    Article  CAS  PubMed  Google Scholar 

  169. Oue, T. et al. Anaplastic histology Wilms’ tumors registered to the Japan Wilms’ Tumor Study Group are less aggressive than that in the National Wilms’ Tumor Study 5. Pediatr. Surg. Int. 32, 851–855 (2016).

    Article  PubMed  Google Scholar 

  170. Treger, T. D. et al. Somatic TP53 mutations are detectable in circulating tumor DNA from children with anaplastic Wilms tumors. Transl. Oncol. 11, 1301–1306 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Weirich, A. et al. Clinical impact of histologic subtypes in localized non-anaplastic nephroblastoma treated according to the trial and study SIOP-9/GPOH. Ann. Oncol. 12, 311–319 (2001).

    Article  CAS  PubMed  Google Scholar 

  172. Reinhard, H. et al. Results of the SIOP 93-01/GPOH trial and study for the treatment of patients with unilateral nonmetastatic Wilms tumor. Klin. Padiatr. 216, 132–140 (2004).

    Article  CAS  PubMed  Google Scholar 

  173. Vujanić, G. M. et al. The UMBRELLA SIOP-RTSG 2016 Wilms tumour pathology and molecular biology protocol. Nat. Rev. Urol. 15, 693–701 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  174. van den Heuvel-Eibrink, M. M. et al. Outcome of localised blastemal-type Wilms tumour patients treated according to intensified treatment in the SIOP WT 2001 protocol, a report of the SIOP Renal Tumour Study Group (SIOP-RTSG). Eur. J. Cancer 51, 498–506 (2015).

    Article  PubMed  Google Scholar 

  175. Vujanić, G. M. et al. Revised International Society of Paediatric Oncology (SIOP) working classification of renal tumors of childhood. Med. Pediatr. Oncol. 38, 79–82 (2002).

    Article  PubMed  Google Scholar 

  176. Graf, N. et al. Is absolute blastema volume after preoperative chemotherapy in nephroblastoma relevant for prognosis. Pediatr. Blood Cancer 57, 741–742 (2011).

    Google Scholar 

  177. Sredni, S. T. et al. Subsets of very low risk Wilms tumor show distinctive gene expression, histologic, and clinical features. Clin. Cancer Res. 15, 6800–6809 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Armstrong, A. E. et al. A unique subset of low-risk Wilms tumors is characterized by loss of function of TRIM28 (KAP1), a gene critical in early renal development: a Children’s Oncology Group study. PLoS ONE 13, e0208936 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Parsons, L. N. et al. Outcome analysis of stage I epithelial-predominant favorable-histology Wilms tumors: a report from Children’s Oncology Group study AREN03B2. Cancer 126, 2866–2871 (2020).

    Article  PubMed  Google Scholar 

  180. Fernandez, C. V. et al. Clinical outcome and biological predictors of relapse after nephrectomy only for very low-risk Wilms tumor: a report from Children’s Oncology Group AREN0532. Ann. Surg. 265, 835–840 (2017).

    Article  PubMed  Google Scholar 

  181. Huang, C. C. et al. Predicting relapse in favorable histology Wilms tumor using gene expression analysis: a report from the Renal Tumor Committee of the Children’s Oncology Group. Clin. Cancer Res. 15, 1770–1778 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Perlman, E. J. et al. WT1 mutation and 11p15 loss of heterozygosity predict relapse in very low-risk wilms tumors treated with surgery alone: a children’s oncology group study. J. Clin. Oncol. 29, 698–703 (2011).

    Article  CAS  PubMed  Google Scholar 

  183. Stern, M., Longaker, M. T., Adzick, N. S., Harrison, M. R. & Stern, R. Hyaluronidase levels in urine from Wilms’ tumor patients. J. Natl Cancer Inst. 83, 1569–1574 (1991).

    Article  CAS  PubMed  Google Scholar 

  184. Lin, R. Y., Argenta, P. A., Sullivan, K. M. & Adzick, N. S. Diagnostic and prognostic role of basic fibroblast growth factor in Wilms’ tumor patients. Clin. Cancer Res. 1, 327–331 (1995).

    CAS  PubMed  Google Scholar 

  185. Lin, R. Y., Argenta, P. A., Sullivan, K. M., Stern, R. & Adzick, N. S. Urinary hyaluronic acid is a Wilms’ tumor marker. J. Pediatr. Surg. 30, 304–308 (1995).

    Article  CAS  PubMed  Google Scholar 

  186. Ortiz, M. V. et al. Prohibitin is a prognostic marker and therapeutic target to block chemotherapy resistance in Wilms’ tumor. JCI Insight 4, e127098 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Biderman Waberski, M. et al. Urine cell-free DNA is a biomarker for nephroblastomatosis or Wilms tumor in PIK3CA-related overgrowth spectrum (PROS). Genet. Med. 20, 1077–1081 (2018).

    Article  CAS  PubMed  Google Scholar 

  188. Miguez, A. C. K. et al. Assessment of somatic mutations in urine and plasma of Wilms tumor patients. Cancer Med. 9, 5948–5959 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 (1993).

    Article  CAS  PubMed  Google Scholar 

  190. Lagos-Quintana, M., Rauhut, R., Lendeckel, W. & Tuschl, T. Identification of novel genes coding for small expressed RNAs. Science 294, 853–858 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  191. Calin, G. A. et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl Acad. Sci. USA 99, 15524–15529 (2002).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  192. Mitchell, P. S. et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl Acad. Sci. USA 105, 10513–10518 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  193. Kort, E. J. et al. The E2F3–Oncomir-1 axis is activated in Wilms’ tumor. Cancer Res. 68, 4034–4038 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Watson, J. A. et al. miRNA profiles as a predictor of chemoresponsiveness in Wilms’ tumor blastema. PLoS ONE 8, e53417 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  195. Wu, M. K. et al. Biallelic DICER1 mutations occur in Wilms tumours. J. Pathol. 230, 154–164 (2013).

    Article  CAS  PubMed  Google Scholar 

  196. Schmitt, J. et al. Treatment-independent miRNA signature in blood of Wilms tumor patients. BMC Genomics 13, 379 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Murray, M. J. et al. Solid tumors of childhood display specific serum microRNA profiles. Cancer Epidemiol. Biomark. Prev. 24, 350–360 (2015).

    Article  CAS  Google Scholar 

  198. Ludwig, N. et al. Circulating serum miRNAs as potential biomarkers for nephroblastoma. Pediatr. Blood Cancer 62, 1360–1367 (2015).

    Article  CAS  PubMed  Google Scholar 

  199. Vuononvirta, R. et al. Perilobar nephrogenic rests are nonobligate molecular genetic precursor lesions of insulin-like growth factor-II-associated Wilms tumors. Clin. Cancer Res. 14, 7635–7644 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Mengelbier, L. H. et al. Intratumoral genome diversity parallels progression and predicts outcome in pediatric cancer. Nat. Commun. 6, 6125 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  201. Karlsson, J. et al. Four evolutionary trajectories underlie genetic intratumoral variation in childhood cancer. Nat. Genet. 50, 944–950 (2018).

    Article  CAS  PubMed  Google Scholar 

  202. Rastegar, B. et al. Resolving the pathogenesis of anaplastic Wilms tumors through spatial mapping of cancer cell evolution. Clin. Cancer Res. 29, 2668–2677 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Andersson, N. et al. Extensive clonal branching shapes the evolutionary history of high-risk pediatric cancers. Cancer Res. 80, 1512–1523 (2020).

    Article  CAS  PubMed  Google Scholar 

  204. Masters, J. R. Human cancer cell lines: fact and fantasy. Nat. Rev. Mol. Cell Biol. 1, 233–236 (2000).

    Article  CAS  PubMed  Google Scholar 

  205. Sachs, N. & Clevers, H. Organoid cultures for the analysis of cancer phenotypes. Curr. Opin. Genet. Dev. 24, 68–73 (2014).

    Article  CAS  PubMed  Google Scholar 

  206. Brown, K. W. et al. Loss of chromosome 11p alleles in cultured cells derived from Wilms’ tumours. Br. J. Cancer 60, 25–29 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Robinson, K. M., Gregory, M. A., Nuss, D. & Kasvalu, K. M. Growth patterns, ultrastructure, and chromosomal constitution of normal kidney and nephroblastoma cells in short-term culture. J. Pediatr. Surg. 15, 297–302 (1980).

    Article  CAS  PubMed  Google Scholar 

  208. Rousseau, M. F., Nabarra, B. & Nezelof, C. Behaviour of Wilms tumour and normal metanephros in organ culture. Eur. J. Cancer 10, 461–466 (1974).

    Article  CAS  Google Scholar 

  209. Alami, J., Williams, B. R. & Yeger, H. Derivation and characterization of a Wilms’ tumour cell line, WiT 49. Int. J. Cancer 107, 365–374 (2003).

    Article  CAS  PubMed  Google Scholar 

  210. Brown, K. W. et al. Characterization of 17.94, a novel anaplastic Wilms’ tumor cell line. Cancer Genet. 205, 319–326 (2012).

    Article  CAS  PubMed  Google Scholar 

  211. Faussillon, M. et al. Molecular cytogenetic anomalies and phenotype alterations in a newly established cell line from Wilms tumor with diffuse anaplasia. Cancer Genet. Cytogenet. 184, 22–30 (2008).

    Article  CAS  PubMed  Google Scholar 

  212. Garvin, A. J. et al. The in vitro growth and characterization of the skeletal muscle component of Wilms’ tumor. Am. J. Pathol. 121, 298–310 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Hazen-Martin, D. J., Garvin, A. J., Gansler, T., Tarnowski, B. I. & Sens, D. A. Morphology and growth characteristics of epithelial cells from classic Wilms’ tumors. Am. J. Pathol. 142, 893–905 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Royer-Pokora, B. et al. Comprehensive biology and genetics compendium of Wilms tumor cell lines with different WT1 mutations. Cancers 13, 60 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Wegert, J. et al. Characterization of primary Wilms tumor cultures as an in vitro model. Genes Chromosomes Cancer 51, 92–104 (2012).

    Article  CAS  PubMed  Google Scholar 

  216. Pode-Shakked, N. et al. The isolation and characterization of renal cancer initiating cells from human Wilms’ tumour xenografts unveils new therapeutic targets. EMBO Mol. Med. 5, 18–37 (2013).

    Article  CAS  PubMed  Google Scholar 

  217. Wegert, J. et al. High-risk blastemal Wilms tumor can be modeled by 3D spheroid cultures in vitro. Oncogene 39, 849–861 (2020).

    Article  CAS  PubMed  Google Scholar 

  218. Drost, J. & Clevers, H. Organoids in cancer research. Nat. Rev. Cancer 18, 407–418 (2018).

    Article  CAS  PubMed  Google Scholar 

  219. Sato, T. et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 141, 1762–1772 (2011).

    Article  CAS  PubMed  Google Scholar 

  220. Sachs, N. et al. A living biobank of breast cancer organoids captures disease heterogeneity. Cell 172, 373–386.e310 (2018).

    Article  CAS  PubMed  Google Scholar 

  221. Kopper, O. et al. An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity. Nat. Med. 25, 838–849 (2019).

    Article  CAS  PubMed  Google Scholar 

  222. Boj, S. F. et al. Organoid models of human and mouse ductal pancreatic cancer. Cell 160, 324–338 (2015).

    Article  CAS  PubMed  Google Scholar 

  223. Broutier, L. et al. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening. Nat. Med. 23, 1424–1435 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Tiriac, H. et al. Organoid profiling identifies common responders to chemotherapy in pancreatic cancer. Cancer Discov. 8, 1112–1129 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Ooft, S. N. et al. Patient-derived organoids can predict response to chemotherapy in metastatic colorectal cancer patients. Sci. Transl. Med. 11, eaay2574 (2019).

    Article  CAS  PubMed  Google Scholar 

  226. Ganesh, K. et al. A rectal cancer organoid platform to study individual responses to chemoradiation. Nat. Med. 25, 1607–1614 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Vlachogiannis, G. et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science 359, 920–926 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  228. Schutgens, F. et al. Tubuloids derived from human adult kidney and urine for personalized disease modeling. Nat. Biotechnol. 37, 303–313 (2019).

    Article  CAS  PubMed  Google Scholar 

  229. Calandrini, C. et al. An organoid biobank for childhood kidney cancers that captures disease and tissue heterogeneity. Nat. Commun. 11, 1310 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  230. Yeger, H., Baumal, R., Bailey, D., Pawlin, G. & Phillips, M. J. Histochemical and immunohistochemical characterization of surgically resected and heterotransplanted Wilms’ tumor. Cancer Res. 45, 2350–2357 (1985).

    CAS  PubMed  Google Scholar 

  231. Yeger, H., Baumal, R., Pawlin, G. & Phillips, M. J. Relationship of histology of Wilms’ tumor to growth characteristics of nude mouse heterotransplants. Cancer Res. 45, 2340–2349 (1985).

    CAS  PubMed  Google Scholar 

  232. Garvin, A. J. et al. The in vitro growth, heterotransplantation, and immunohistochemical characterization of the blastemal component of Wilms’ tumor. Am. J. Pathol. 129, 353–363 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Dekel, B. et al. Multiple imprinted and stemness genes provide a link between normal and tumor progenitor cells of the developing human kidney. Cancer Res. 66, 6040–6049 (2006).

    Article  CAS  PubMed  Google Scholar 

  234. Metsuyanim, S. et al. Accumulation of malignant renal stem cells is associated with epigenetic changes in normal renal progenitor genes. Stem Cell 26, 1808–1817 (2008).

    Article  CAS  Google Scholar 

  235. Pode-Shakked, N. et al. Developmental tumourigenesis: NCAM as a putative marker for the malignant renal stem/progenitor cell population. J. Cell Mol. Med. 13, 1792–1808 (2009).

    Article  PubMed  Google Scholar 

  236. Houghton, P. J. et al. The pediatric preclinical testing program: description of models and early testing results. Pediatr. Blood Cancer 49, 928–940 (2007).

    Article  PubMed  Google Scholar 

  237. Bielen, A. et al. Dependence of Wilms tumor cells on signaling through insulin-like growth factor 1 in an orthotopic xenograft model targetable by specific receptor inhibition. Proc. Natl Acad. Sci. USA 109, E1267–E1276 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Stewart, E. et al. Orthotopic patient-derived xenografts of paediatric solid tumours. Nature 549, 96–100 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  239. Murphy, A. J. et al. Forty-five patient-derived xenografts capture the clinical and biological heterogeneity of Wilms tumor. Nat. Commun. 10, 5806 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  240. Groenendijk, A. et al. Prognostic factors for Wilms tumor recurrence: a review of the literature. Cancers 13, 3142 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Groenendijk, A. et al. Outcome of SIOP patients with low- or intermediate-risk Wilms tumour relapsing after initial vincristine and actinomycin-D therapy only – the SIOP 93-01 and 2001 protocols. Eur. J. Cancer 163, 88–97 (2022).

    Article  CAS  PubMed  Google Scholar 

  242. Natrajan, R. et al. Analysis by array CGH of genomic changes associated with the progression or relapse of Wilms’ tumour. J. Pathol. 211, 52–59 (2007).

    Article  CAS  PubMed  Google Scholar 

  243. Gadd, S. et al. Genetic changes associated with relapse in favorable histology Wilms tumor: a Children’s Oncology Group AREN03B2 study. Cell Rep. Med 3, 100644 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Spreafico, F., Ciceri, S. & Perotti, D. Finding the way to Wilms tumor by comparing the primary and relapse tumor samples. Cell Rep. Med. 3, 100667 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Dome, J. S. et al. Advances in Wilms tumor treatment and biology: progress through international collaboration. J. Clin. Oncol. 33, 2999–3007 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Gooskens, S. L. et al. TCF21 hypermethylation in genetically quiescent clear cell sarcoma of the kidney. Oncotarget 6, 15828–15841 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  247. Malogolowkin, M. et al. Incidence and outcomes of patients with late recurrence of Wilms’ tumor. Pediatr. Blood Cancer 60, 1612–1615 (2013).

    Article  CAS  PubMed  Google Scholar 

  248. Segers, H. et al. Management of adults with Wilms’ tumor: recommendations based on international consensus. Expert Rev. Anticancer. Ther. 11, 1105–1113 (2011).

    Article  PubMed  Google Scholar 

  249. van den Heuvel-Eibrink, M. M. et al. Characteristics and survival of 750 children diagnosed with a renal tumor in the first seven months of life: a collaborative study by the SIOP/GPOH/SFOP, NWTSG, and UKCCSG Wilms tumor study groups. Pediatr. Blood Cancer 50, 1130–1134 (2008).

    Article  PubMed  Google Scholar 

  250. van der Beek, J. N. et al. Characteristics and outcome of children with renal cell carcinoma: a narrative review. Cancers 12, 1776 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  251. Graf, N. et al. Fifty years of clinical and research studies for childhood renal tumors within the International Society of Pediatric Oncology (SIOP). Ann. Oncol. 32, 1327–1331 (2021).

    Article  CAS  PubMed  Google Scholar 

  252. Hol, J. A. et al. Clinical characteristics and outcomes of children with WAGR syndrome and Wilms tumor and/or nephroblastomatosis: the 30-year SIOP-RTSG experience. Cancer 127, 628–638 (2021).

    Article  PubMed  Google Scholar 

  253. Lehnhardt, A. et al. Clinical and molecular characterization of patients with heterozygous mutations in Wilms tumor suppressor gene 1. Clin. J. Am. Soc. Nephrol. 10, 825–831 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Maas, S. M. et al. Phenotype, cancer risk, and surveillance in Beckwith–Wiedemann syndrome depending on molecular genetic subgroups. Am. J. Med. Genet. A 170, 2248–2260 (2016).

    Article  CAS  PubMed  Google Scholar 

  255. Bliek, J., Maas, S., Alders, M., Merks, J. H. & Mannens, M. Epigenotype, phenotype, and tumors in patients with isolated hemihyperplasia. J. Pediatr. 153, 95–100 (2008).

    Article  CAS  PubMed  Google Scholar 

  256. Astuti, D. et al. Germline mutations in DIS3L2 cause the Perlman syndrome of overgrowth and Wilms tumor susceptibility. Nat. Genet. 44, 277–284 (2012).

    Article  CAS  PubMed  Google Scholar 

  257. Alessandri, J. L. et al. Perlman syndrome: report, prenatal findings and review. Am. J. Med. Genet. A 146A, 2532–2537 (2008).

    Article  PubMed  Google Scholar 

  258. Li, M. et al. GPC3 mutation analysis in a spectrum of patients with overgrowth expands the phenotype of Simpson–Golabi–Behmel syndrome. Am. J. Med. Genet. 102, 161–168 (2001).

    Article  CAS  PubMed  Google Scholar 

  259. Peterman, C. M. et al. Sonographic screening for Wilms tumor in children with CLOVES syndrome. Pediatr. Blood Cancer 64, e26684 (2017).

    Article  Google Scholar 

  260. Lapunzina, P. Risk of tumorigenesis in overgrowth syndromes: a comprehensive review. Am. J. Med. Genet. C. Semin. Med. Genet. 137C, 53–71 (2005).

    Article  PubMed  Google Scholar 

  261. Hartley, A. L. et al. Wilms’ tumor in the Li–Fraumeni cancer family syndrome. Cancer Genet. Cytogenet. 67, 133–135 (1993).

    Article  CAS  PubMed  Google Scholar 

  262. Reid, S. et al. Biallelic BRCA2 mutations are associated with multiple malignancies in childhood including familial Wilms tumour. J. Med. Genet. 42, 147–151 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Moreira, M. B. et al. Discrepant outcomes in two Brazilian patients with Bloom syndrome and Wilms’ tumor: two case reports. J. Med. Case Rep. 7, 284 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  264. Cairney, A. E., Andrews, M., Greenberg, M., Smith, D. & Weksberg, R. Wilms tumor in three patients with Bloom syndrome. J. Pediatr. 111, 414–416 (1987).

    Article  CAS  PubMed  Google Scholar 

  265. Yost, S. et al. Biallelic TRIP13 mutations predispose to Wilms tumor and chromosome missegregation. Nat. Genet. 49, 1148–1151 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Hanks, S. et al. Comparative genomic hybridization and BUB1B mutation analyses in childhood cancers associated with mosaic variegated aneuploidy syndrome. Cancer Lett. 239, 234–238 (2006).

    Article  CAS  PubMed  Google Scholar 

  267. García-Castillo, H., Vásquez-Velásquez, A. I., Rivera, H. & Barros-Núñez, P. Clinical and genetic heterogeneity in patients with mosaic variegated aneuploidy: delineation of clinical subtypes. Am. J. Med. Genet. A 146A, 1687–1695 (2008).

    Article  PubMed  Google Scholar 

  268. Schultz, K. A. P. et al. DICER1 and associated conditions: identification of at-risk individuals and recommended surveillance strategies. Clin. Cancer Res. 24, 2251–2261 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Shlien, A. et al. Combined hereditary and somatic mutations of replication error repair genes result in rapid onset of ultra-hypermutated cancers. Nat. Genet. 47, 257–262 (2015).

    Article  CAS  PubMed  Google Scholar 

  270. Carey, J. C. & Barnes, A. M. Wilms tumor and trisomy 18: is there an association?. Am. J. Med. Genet. C. Semin. Med. Genet. 172, 307–308 (2016).

    Article  PubMed  Google Scholar 

  271. Garavelli, L. et al. Multiple tumor types including leiomyoma and Wilms tumor in a patient with Gorlin syndrome due to 9q22.3 microdeletion encompassing the PTCH1 and FANC-C loci. Am. J. Med. Genet. A 161A, 2894–2901 (2013).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Daniela Perotti.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks Arnauld Verschuur, Jonathan Routh and Rafael Tua-Caraccia for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perotti, D., Williams, R.D., Wegert, J. et al. Hallmark discoveries in the biology of Wilms tumour. Nat Rev Urol 21, 158–180 (2024). https://doi.org/10.1038/s41585-023-00824-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-023-00824-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing