Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular and cellular mechanisms of selective vulnerability in neurodegenerative diseases

Abstract

The selective vulnerability of specific neuronal subtypes is a hallmark of neurodegenerative diseases. In this Review, I summarize our current understanding of the brain regions and cell types that are selectively vulnerable in different neurodegenerative diseases and describe the proposed underlying cell-autonomous and non-cell-autonomous mechanisms. I highlight how recent methodological innovations — including single-cell transcriptomics, CRISPR-based screens and human cell-based models of disease — are enabling new breakthroughs in our understanding of selective vulnerability. An understanding of the molecular mechanisms that determine selective vulnerability and resilience would shed light on the key processes that drive neurodegeneration and point to potential therapeutic strategies to protect vulnerable cell populations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of brain regions and cell populations that are selectively vulnerable in neurodegenerative diseases.
Fig. 2: From differentially expressed genes to mechanisms of selective vulnerability.
Fig. 3: Cell-autonomous mechanisms of selective vulnerability.
Fig. 4: Non-cell-autonomous mechanisms of selective vulnerability.

Similar content being viewed by others

References

  1. Erkkinen, M. G., Kim, M. O. & Geschwind, M. D. Clinical neurology and epidemiology of the major neurodegenerative diseases. Cold Spring Harb. Perspect. Biol. 10, a033118 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ossenkoppele, R. et al. Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer’s disease. Brain 139, 1551–1567 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Braak, H. & Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82, 239–259 (1991).

    Article  CAS  PubMed  Google Scholar 

  4. Whitehouse, P. J. et al. Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science 215, 1237–1239 (1982).

    Article  CAS  PubMed  Google Scholar 

  5. Tomlinson, B. E., Irving, D. & Blessed, G. Cell loss in the locus coeruleus in senile dementia of Alzheimer type. J. Neurol. Sci. 49, 419–428 (1981).

    Article  CAS  PubMed  Google Scholar 

  6. Bondareff, W., Mountjoy, C. Q. & Roth, M. Selective loss of neurones of origin of adrenergic projection to cerebral cortex (nucleus locus coeruleus) in senile dementia. Lancet 1, 783–784 (1981).

    Article  CAS  PubMed  Google Scholar 

  7. Davies, P. & Maloney, A. J. Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet 2, 1403 (1976).

    Article  CAS  PubMed  Google Scholar 

  8. Adolfsson, R., Gottfries, C. G., Roos, B. E. & Winblad, B. Changes in the brain catecholamines in patients with dementia of Alzheimer type. Br. J. Psychiatry 135, 216–223 (1979).

    Article  CAS  PubMed  Google Scholar 

  9. Hyman, B. T., Van Hoesen, G. W., Damasio, A. R. & Barnes, C. L. Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation. Science 225, 1168–1170 (1984).

    Article  CAS  PubMed  Google Scholar 

  10. Gomez-Isla, T. et al. Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. J. Neurosci. 16, 4491–4500 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Morrison, J. H. et al. A monoclonal antibody to non-phosphorylated neurofilament protein marks the vulnerable cortical neurons in Alzheimer’s disease. Brain Res. 416, 331–336 (1987).

    Article  CAS  PubMed  Google Scholar 

  12. Chin, J. et al. Reelin depletion in the entorhinal cortex of human amyloid precursor protein transgenic mice and humans with Alzheimer’s disease. J. Neurosci. 27, 2727–2733 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Iwamoto, N. & Emson, P. C. Demonstration of neurofibrillary tangles in parvalbumin-immunoreactive interneurones in the cerebral cortex of Alzheimer-type dementia brain. Neurosci. Lett. 128, 81–84 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. Hof, P. R. et al. Parvalbumin-immunoreactive neurons in the neocortex are resistant to degeneration in Alzheimer’s disease. J. Neuropathol. Exp. Neurol. 50, 451–462 (1991).

    Article  CAS  PubMed  Google Scholar 

  15. Hof, P. R., Nimchinsky, E. A., Celio, M. R., Bouras, C. & Morrison, J. H. Calretinin-immunoreactive neocortical interneurons are unaffected in Alzheimer’s disease. Neurosci. Lett. 152, 145–148 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Sampson, V. L., Morrison, J. H. & Vickers, J. C. The cellular basis for the relative resistance of parvalbumin and calretinin immunoreactive neocortical neurons to the pathology of Alzheimer’s disease. Exp. Neurol. 145, 295–302 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Hof, P. R. & Morrison, J. H. Neocortical neuronal subpopulations labeled by a monoclonal antibody to calbindin exhibit differential vulnerability in Alzheimer’s disease. Exp. Neurol. 111, 293–301 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Mikkonen, M., Alafuzoff, I., Tapiola, T., Soininen, H. & Miettinen, R. Subfield- and layer-specific changes in parvalbumin, calretinin and calbindin-D28K immunoreactivity in the entorhinal cortex in Alzheimer’s disease. Neuroscience 92, 515–532 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Brion, J. P. & Résibois, A. A subset of calretinin-positive neurons are abnormal in Alzheimer’s disease. Acta Neuropathol. 88, 33–43 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Davies, P., Katzman, R. & Terry, R. D. Reduced somatostatin-like immunoreactivity in cerebral cortex from cases of Alzheimer disease and Alzheimer senile dementa. Nature 288, 279–280 (1980).

    Article  CAS  PubMed  Google Scholar 

  21. Morrison, J. H., Rogers, J., Scherr, S., Benoit, R. & Bloom, F. E. Somatostatin immunoreactivity in neuritic plaques of Alzheimer’s patients. Nature 314, 90–92 (1985).

    Article  CAS  PubMed  Google Scholar 

  22. Leng, K. et al. Molecular characterization of selectively vulnerable neurons in Alzheimer’s disease. Nat. Neurosci. 24, 276–287 (2021). A paper that shows the application of snRNA-seq in human tissue to define the transcriptomes of selectively vulnerable neurons in a neurodegenerative disease, specifically in entorhinal cortex in AD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mathys, H. et al. Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 570, 332–337 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gazestani, V. et al. Early Alzheimer’s disease pathology in human cortex involves transient cell states. Cell 186, 4438–4453.e23 (2023). A paper that demonstrates that snRNA-seq from human brain biopsies defines early vulnerable cell types and transcriptomic changes in AD.

    Article  CAS  PubMed  Google Scholar 

  25. Jorstad, N. L. et al. Transcriptomic cytoarchitecture reveals principles of human neocortex organization. Science 382, eadf6812 (2023).

    Article  CAS  PubMed  Google Scholar 

  26. Gabitto, M. et al. Integrated multimodal cell atlas of Alzheimer’s disease. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-2921860/v1 (2023).

  27. Cain, A. et al. Multicellular communities are perturbed in the aging human brain and Alzheimer’s disease. Nat. Neurosci. 26, 1267–1280 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Consens, M. E. et al. Bulk and single-nucleus transcriptomics highlight intra-telencephalic and somatostatin neurons in Alzheimer’s disease. Front. Mol. Neurosci. 15, 903175 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mathys, H. et al. Single-cell atlas reveals correlates of high cognitive function, dementia, and resilience to Alzheimer’s disease pathology. Cell 186, 4365–4385.e27 (2023).

    Article  CAS  PubMed  Google Scholar 

  30. Marinaro, F. et al. Molecular and cellular pathology of monogenic Alzheimer’s disease at single cell resolution. Preprint at bioRxiv https://doi.org/10.1101/2020.07.14.202317 (2020).

  31. Vöglein, J. et al. Seizures as an early symptom of autosomal dominant Alzheimer’s disease. Neurobiol. Aging 76, 18–23 (2019).

    Article  PubMed  Google Scholar 

  32. Zarea, A. et al. Seizures in dominantly inherited Alzheimer disease. Neurology 87, 912–919 (2016).

    Article  PubMed  Google Scholar 

  33. Otero-Garcia, M. et al. Molecular signatures underlying neurofibrillary tangle susceptibility in Alzheimer’s disease. Neuron 110, 2929–2948.e8 (2022). A paper showing that the transcriptomic characterization of single neuronal cell bodies with and without tau pathology from human AD brains defines neuronal subtypes vulnerable to neurofibrillary tangle accumulation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lewy, F. H. in Handbuch der Neurologie, 3 Band: Spez Neurologie II (ed. Lewandowsky, M.) 920–933 (Springer, 1912).

  35. Spillantini, M. G. et al. α-Synuclein in Lewy bodies. Nature 388, 839–840 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Dijkstra, A. A. et al. Stage-dependent nigral neuronal loss in incidental Lewy body and Parkinson’s disease. Mov. Disord. 29, 1244–1251 (2014).

    Article  PubMed  Google Scholar 

  37. Tretiakoff, C. Contribution a l’Etude de l’Anatomie Pathologique du Locus Niger de Soemmering avec Quelques Deduction Relatives a la Pathogenie des Troubles du Tonus Musculaire et de la Maladie de Parkinson (Jouve, 1919).

  38. Hirsch, E., Graybiel, A. M. & Agid, Y. A. Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease. Nature 334, 345–348 (1988).

    Article  CAS  PubMed  Google Scholar 

  39. Damier, P., Hirsch, E. C., Agid, Y. & Graybiel, A. M. The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain 122, 1437–1448 (1999).

    Article  PubMed  Google Scholar 

  40. Fearnley, J. M. & Lees, A. J. Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 114, 2283–2301 (1991).

    Article  PubMed  Google Scholar 

  41. Hassler, R. Zur pathologie der paralysis agitans und des postenzephalitischen parkinsonismus. J. Physiol. Neurol. 48, 387–476 (1938).

    Google Scholar 

  42. Yamada, T., McGeer, P. L., Baimbridge, K. G. & McGeer, E. G. Relative sparing in Parkinson’s disease of substantia nigra dopamine neurons containing calbindin-D28K. Brain Res. 526, 303–307 (1990).

    Article  CAS  PubMed  Google Scholar 

  43. Kamath, T. et al. Single-cell genomic profiling of human dopamine neurons identifies a population that selectively degenerates in Parkinson’s disease. Nat. Neurosci. 25, 588–595 (2022). A paper that uses the application of snRNA-seq and spatial transcriptomics in human tissue to define the transcriptomes of vulnerable and resilient neurons in the midbrain in PD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jellinger, K. A. Pathology of Parkinson’s disease. Changes other than the nigrostriatal pathway. Mol. Chem. Neuropathol. 14, 153–197 (1991).

    Article  CAS  PubMed  Google Scholar 

  45. Harding, A. J., Stimson, E., Henderson, J. M. & Halliday, G. M. Clinical correlates of selective pathology in the amygdala of patients with Parkinson’s disease. Brain 125, 2431–2445 (2002).

    Article  PubMed  Google Scholar 

  46. Henderson, J. M., Carpenter, K., Cartwright, H. & Halliday, G. M. Degeneration of the centré median-parafascicular complex in Parkinson’s disease. Ann. Neurol. 47, 345–352 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Braak, H. et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 24, 197–211 (2003).

    Article  PubMed  Google Scholar 

  48. Jellinger, K. A. A critical reappraisal of current staging of Lewy-related pathology in human brain. Acta Neuropathol. 116, 1–16 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Kalaitzakis, M. E., Graeber, M. B., Gentleman, S. M. & Pearce, R. K. The dorsal motor nucleus of the vagus is not an obligatory trigger site of Parkinson’s disease: a critical analysis of α-synuclein staging. Neuropathol. Appl. Neurobiol. 34, 284–295 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Wakabayashi, K., Takahashi, H., Ohama, E. & Ikuta, F. Parkinson’s disease: an immunohistochemical study of Lewy body-containing neurons in the enteric nervous system. Acta Neuropathol. 79, 581–583 (1990).

    Article  CAS  PubMed  Google Scholar 

  51. Alegre-Abarrategui, J. et al. Selective vulnerability in α-synucleinopathies. Acta Neuropathol. 138, 681–704 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Neumann, M. et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130–133 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Vance, C. et al. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323, 1208–1211 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kwiatkowski, T. J. et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323, 1205–1208 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Watanabe, M. et al. Histological evidence of protein aggregation in mutant SOD1 transgenic mice and in amyotrophic lateral sclerosis neural tissues. Neurobiol. Dis. 8, 933–941 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Lawyer, T. Jr. & Netsky, M. G. Amyotrophic lateral sclerosis: a clinicoanatomic study of fifty-three cases. AMA Arch. Neurol. Psychiatry 69, 171–192 (1953).

    Article  PubMed  Google Scholar 

  57. Piccione, E. A., Sletten, D. M., Staff, N. P. & Low, P. A. Autonomic system and amyotrophic lateral sclerosis. Muscle Nerve 51, 676–679 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Dengler, R. et al. Amyotrophic lateral sclerosis: macro-EMG and twitch forces of single motor units. Muscle Nerve 13, 545–550 (1990).

    Article  CAS  PubMed  Google Scholar 

  59. Okamoto, K. et al. Oculomotor nuclear pathology in amyotrophic lateral sclerosis. Acta Neuropathol. 85, 458–462 (1993).

    Article  CAS  PubMed  Google Scholar 

  60. Mannen, T., Iwata, M., Toyokura, Y. & Nagashima, K. Preservation of a certain motoneurone group of the sacral cord in amyotrophic lateral sclerosis: its clinical significance. J. Neurol. Neurosurg. Psychiatry 40, 464–469 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ince, P. et al. Parvalbumin and calbindin D-28k in the human motor system and in motor neuron disease. Neuropathol. Appl. Neurobiol. 19, 291–299 (1993).

    Article  CAS  PubMed  Google Scholar 

  62. Stephens, B. et al. Widespread loss of neuronal populations in the spinal ventral horn in sporadic motor neuron disease. A morphometric study. J. Neurol. Sci. 244, 41–58 (2006).

    Article  PubMed  Google Scholar 

  63. Pineda, S. S. et al. Single-cell dissection of the human motor and prefrontal cortices in ALS and FTLD. Cell https://doi.org/10.1016/j.cell.2024.02.031 (2024).

  64. Mackenzie, I. R. et al. Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathol. 119, 1–4 (2010).

    Article  PubMed  Google Scholar 

  65. DeJesus-Hernandez, M. et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72, 245–256 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gijselinck, I. et al. A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study. Lancet Neurol. 11, 54–65 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Renton, A. E. et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72, 257–268 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Seeley, W. W., Crawford, R. K., Zhou, J., Miller, B. L. & Greicius, M. D. Neurodegenerative diseases target large-scale human brain networks. Neuron 62, 42–52 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Seeley, W. W. et al. Frontal paralimbic network atrophy in very mild behavioral variant frontotemporal dementia. Arch. Neurol. 65, 249–255 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Seeley, W. W. et al. Early frontotemporal dementia targets neurons unique to apes and humans. Ann. Neurol. 60, 660–667 (2006). A study that identifies von Economo neurons as selectively vulnerable in FTD.

    Article  PubMed  Google Scholar 

  71. Kim, E. J. et al. Selective frontoinsular von Economo neuron and fork cell loss in early behavioral variant frontotemporal dementia. Cereb. Cortex 22, 251–259 (2012).

    Article  PubMed  Google Scholar 

  72. Lin, L. C. et al. Preferential tau aggregation in von Economo neurons and fork cells in frontotemporal lobar degeneration with specific MAPT variants. Acta Neuropathol. Commun. 7, 159 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Nana, A. L. et al. Neurons selectively targeted in frontotemporal dementia reveal early stage TDP-43 pathobiology. Acta Neuropathol. 137, 27–46 (2019).

    Article  PubMed  Google Scholar 

  74. Santillo, A. F. & Englund, E. Greater loss of von Economo neurons than loss of layer II and III neurons in behavioral variant frontotemporal dementia. Am. J. Neurodegener. Dis. 3, 64–71 (2014).

    PubMed  PubMed Central  Google Scholar 

  75. Brun, A. Frontal lobe degeneration of non-Alzheimer type. I. Neuropathology. Arch. Gerontol. Geriatr. 6, 193–208 (1987).

    Article  CAS  PubMed  Google Scholar 

  76. Wang, H.-L. V. et al. Single nucleus multiome analysis of the prefrontal cortex from C9orf72 ALS/FTD patients illuminates pathways affected during disease progression. Preprint at bioRxiv https://doi.org/10.1101/2023.01.12.523820 (2023).

  77. Rexach, J. E. et al. Disease-specific selective vulnerability and neuroimmune pathways in dementia revealed by single cell genomics. Preprint at bioRxiv https://doi.org/10.1101/2023.09.29.560245 (2023).

  78. Chung, D. C., Roemer, S., Petrucelli, L. & Dickson, D. W. Cellular and pathological heterogeneity of primary tauopathies. Mol. Neurodegener. 16, 57 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Lange, H., Thörner, G., Hopf, A. & Schröder, K. F. Morphometric studies of the neuropathological changes in choreatic diseases. J. Neurol. Sci. 28, 401–425 (1976).

    Article  CAS  PubMed  Google Scholar 

  80. Reiner, A. et al. Differential loss of striatal projection neurons in Huntington disease. Proc. Natl Acad. Sci. USA 85, 5733–5737 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Richfield, E. K., Maguire-Zeiss, K. A., Vonkeman, H. E. & Voorn, P. Preferential loss of preproenkephalin versus preprotachykinin neurons from the striatum of Huntington’s disease patients. Ann. Neurol. 38, 852–861 (1995).

    Article  CAS  PubMed  Google Scholar 

  82. Klockgether, T., Mariotti, C. & Paulson, H. L. Spinocerebellar ataxia. Nat. Rev. Dis. Prim. 5, 24 (2019).

    Article  PubMed  Google Scholar 

  83. Younes, K. et al. Selective vulnerability to atrophy in sporadic Creutzfeldt-Jakob disease. Ann. Clin. Transl. Neurol. 8, 1183–1199 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Guentchev, M., Hainfellner, J. A., Trabattoni, G. R. & Budka, H. Distribution of parvalbumin-immunoreactive neurons in brain correlates with hippocampal and temporal cortical pathology in Creutzfeldt-Jakob disease. J. Neuropathol. Exp. Neurol. 56, 1119–1124 (1997).

    Article  CAS  PubMed  Google Scholar 

  85. Ferrer, I., Casas, R. & Rivera, R. Parvalbumin-immunoreactive cortical neurons in Creutzfeldt-Jakob disease. Ann. Neurol. 34, 864–866 (1993).

    Article  CAS  PubMed  Google Scholar 

  86. Guentchev, M., Wanschitz, J., Voigtländer, T., Flicker, H. & Budka, H. Selective neuronal vulnerability in human prion diseases. Fatal familial insomnia differs from other types of prion diseases. Am. J. Pathol. 155, 1453–1457 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Laurá, M., Pipis, M., Rossor, A. M. & Reilly, M. M. Charcot-Marie-Tooth disease and related disorders: an evolving landscape. Curr. Opin. Neurol. 32, 641–650 (2019).

    Article  PubMed  Google Scholar 

  88. Price, D. L. et al. Aged non-human primates: an animal model of age-associated neurodegenerative disease. Brain Pathol. 1, 287–296 (1991).

    Article  CAS  PubMed  Google Scholar 

  89. Emborg, M. E. et al. Age-related declines in nigral neuronal function correlate with motor impairments in rhesus monkeys. J. Comp. Neurol. 401, 253–265 (1998).

    Article  CAS  PubMed  Google Scholar 

  90. Greene, J. G., Dingledine, R. & Greenamyre, J. T. Gene expression profiling of rat midbrain dopamine neurons: implications for selective vulnerability in parkinsonism. Neurobiol. Dis. 18, 19–31 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Chung, C. Y. et al. Cell type-specific gene expression of midbrain dopaminergic neurons reveals molecules involved in their vulnerability and protection. Hum. Mol. Genet. 14, 1709–1725 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Alexianu, M. E. et al. The role of calcium-binding proteins in selective motoneuron vulnerability in amyotrophic lateral sclerosis. Ann. Neurol. 36, 846–858 (1994).

    Article  CAS  PubMed  Google Scholar 

  93. Morigaki, R. & Goto, S. Striatal vulnerability in Huntington’s disease: neuroprotection versus neurotoxicity. Brain Sci. 7, 63 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Beers, D. R. et al. Parvalbumin overexpression alters immune-mediated increases in intracellular calcium, and delays disease onset in a transgenic model of familial amyotrophic lateral sclerosis. J. Neurochem. 79, 499–509 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Van Den Bosch, L. et al. Protective effect of parvalbumin on excitotoxic motor neuron death. Exp. Neurol. 174, 150–161 (2002).

    Article  PubMed  Google Scholar 

  96. Ho, B. K. et al. Expression of calbindin-D28K in motoneuron hybrid cells after retroviral infection with calbindin-D28K cDNA prevents amyotrophic lateral sclerosis IgG-mediated cytotoxicity. Proc. Natl Acad. Sci. USA 93, 6796–6801 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Vig, P. J. et al. Suppression of calbindin-D28k expression exacerbates SCA1 phenotype in a disease mouse model. Cerebellum 11, 718–732 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. Dong, X. X., Wang, Y. & Qin, Z. H. Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol. Sin. 30, 379–387 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. von Lewinski, F. & Keller, B. U. Ca2+, mitochondria and selective motoneuron vulnerability: implications for ALS. Trends Neurosci. 28, 494–500 (2005).

    Article  Google Scholar 

  100. Foehring, R. C., Zhang, X. F., Lee, J. C. & Callaway, J. C. Endogenous calcium buffering capacity of substantia nigral dopamine neurons. J. Neurophysiol. 102, 2326–2333 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Airaksinen, M. S., Thoenen, H. & Meyer, M. Vulnerability of midbrain dopaminergic neurons in calbindin-D28k-deficient mice: lack of evidence for a neuroprotective role of endogenous calbindin in MPTP-treated and weaver mice. Eur. J. Neurosci. 9, 120–127 (1997).

    Article  CAS  PubMed  Google Scholar 

  102. Tomiyama, M. et al. Expression of metabotropic glutamate receptor mRNAs in the human spinal cord: implications for selective vulnerability of spinal motor neurons in amyotrophic lateral sclerosis. J. Neurol. Sci. 189, 65–69 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Anneser, J. M., Ince, P. G., Shaw, P. J. & Borasio, G. D. Differential expression of mGluR5 in human lumbosacral motoneurons. Neuroreport 15, 271–273 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Anneser, J. M., Horstmann, S., Weydt, P. & Borasio, G. D. Activation of metabotropic glutamate receptors delays apoptosis of chick embryonic motor neurons in vitro. Neuroreport 9, 2039–2043 (1998).

    Article  CAS  PubMed  Google Scholar 

  105. Pizzi, M. et al. Neuroprotection by metabotropic glutamate receptor agonists on kainate-induced degeneration of motor neurons in spinal cord slices from adult rat. Neuropharmacology 39, 903–910 (2000).

    Article  CAS  PubMed  Google Scholar 

  106. Lorenzo, L. E., Barbe, A., Portalier, P., Fritschy, J. M. & Bras, H. Differential expression of GABAA and glycine receptors in ALS-resistant vs. ALS-vulnerable motoneurons: possible implications for selective vulnerability of motoneurons. Eur. J. Neurosci. 23, 3161–3170 (2006).

    Article  PubMed  Google Scholar 

  107. Caramia, M. D. et al. Pharmacologic reversal of cortical hyperexcitability in patients with ALS. Neurology 54, 58–64 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Landwehrmeyer, G. B., Standaert, D. G., Testa, C. M., Penney, J. B. & Young, A. B. NMDA receptor subunit mRNA expression by projection neurons and interneurons in rat striatum. J. Neurosci. 15, 5297–5307 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Okamoto, S. et al. Balance between synaptic versus extrasynaptic NMDA receptor activity influences inclusions and neurotoxicity of mutant huntingtin. Nat. Med. 15, 1407–1413 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Dau, A., Gladding, C. M., Sepers, M. D. & Raymond, L. A. Chronic blockade of extrasynaptic NMDA receptors ameliorates synaptic dysfunction and pro-death signaling in Huntington disease transgenic mice. Neurobiol. Dis. 62, 533–542 (2014).

    Article  CAS  PubMed  Google Scholar 

  111. Prusiner, S. B. Novel proteinaceous infectious particles cause scrapie. Science 216, 136–144 (1982).

    Article  CAS  PubMed  Google Scholar 

  112. Kuemmerle, S. et al. Huntington aggregates may not predict neuronal death in Huntington’s disease. Ann. Neurol. 46, 842–849 (1999).

    Article  CAS  PubMed  Google Scholar 

  113. Geser, F. et al. Evidence of multisystem disorder in whole-brain map of pathological TDP-43 in amyotrophic lateral sclerosis. Arch. Neurol. 65, 636–641 (2008).

    Article  PubMed  Google Scholar 

  114. Arrasate, M., Mitra, S., Schweitzer, E. S., Segal, M. R. & Finkbeiner, S. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431, 805–810 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Fu, H. et al. A tau homeostasis signature is linked with the cellular and regional vulnerability of excitatory neurons to tau pathology. Nat. Neurosci. 22, 47–56 (2019).

    Article  CAS  PubMed  Google Scholar 

  116. Kampmann, M. CRISPR-based functional genomics for neurological disease. Nat. Rev. Neurol. 16, 465–480 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Samelson, A. J. et al. CRISPR screens in iPSC-derived neurons reveal principles of tau proteostasis. Preprint at bioRxiv https://doi.org/10.1101/2023.06.16.545386 (2023).

  118. Ciryam, P. et al. Spinal motor neuron protein supersaturation patterns are associated with inclusion body formation in ALS. Proc. Natl Acad. Sci. USA 114, E3935–E3943 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Fiore, A. P. Z. P. et al. Identification of molecular signatures defines the differential proteostasis response in induced spinal and cranial motor neurons. Cell Rep. 43, 113885 (2024).

    Article  CAS  PubMed  Google Scholar 

  120. Tsvetkov, A. S. et al. Proteostasis of polyglutamine varies among neurons and predicts neurodegeneration. Nat. Chem. Biol. 9, 586–592 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Subramaniam, S., Sixt, K. M., Barrow, R. & Snyder, S. H. Rhes, a striatal specific protein, mediates mutant-huntingtin cytotoxicity. Science 324, 1327–1330 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Scheres, S. H. W., Ryskeldi-Falcon, B. & Goedert, M. Molecular pathology of neurodegenerative diseases by cryo-EM of amyloids. Nature 621, 701–710 (2023). A study that shows that distinct tau fibril conformations are associated with different tau-related neurodegenerative diseases.

    Article  CAS  PubMed  Google Scholar 

  123. Segura-Aguilar, J. et al. Protective and toxic roles of dopamine in Parkinson’s disease. J. Neurochem. 129, 898–915 (2014).

    Article  CAS  PubMed  Google Scholar 

  124. Burbulla, L. F. et al. Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson’s disease. Science 357, 1255–1261 (2017). A study that shows that an iPSC model of PD supports the role of high concentrations of dopamine in driving selective vulnerability of dopaminergic neurons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Uhl, G. R., Walther, D., Mash, D., Faucheux, B. & Javoy-Agid, F. Dopamine transporter messenger RNA in Parkinson’s disease and control substantia nigra neurons. Ann. Neurol. 35, 494–498 (1994).

    Article  CAS  PubMed  Google Scholar 

  126. Zhai, D., Li, S., Zhao, Y. & Lin, Z. SLC6A3 is a risk factor for Parkinson’s disease: a meta-analysis of sixteen years’ studies. Neurosci. Lett. 564, 99–104 (2014).

    Article  CAS  PubMed  Google Scholar 

  127. Masoud, S. T. et al. Increased expression of the dopamine transporter leads to loss of dopamine neurons, oxidative stress and l-DOPA reversible motor deficits. Neurobiol. Dis. 74, 66–75 (2015).

    Article  CAS  PubMed  Google Scholar 

  128. Liang, C. L., Nelson, O., Yazdani, U., Pasbakhsh, P. & German, D. C. Inverse relationship between the contents of neuromelanin pigment and the vesicular monoamine transporter-2: human midbrain dopamine neurons. J. Comp. Neurol. 473, 97–106 (2004).

    Article  CAS  PubMed  Google Scholar 

  129. Lohr, K. M. et al. Increased vesicular monoamine transporter enhances dopamine release and opposes Parkinson disease-related neurodegeneration in vivo. Proc. Natl Acad. Sci. USA 111, 9977–9982 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Rilstone, J. J., Alkhater, R. A. & Minassian, B. A. Brain dopamine-serotonin vesicular transport disease and its treatment. N. Engl. J. Med. 368, 543–550 (2013).

    Article  CAS  PubMed  Google Scholar 

  131. Glatt, C. E., Wahner, A. D., White, D. J., Ruiz-Linares, A. & Ritz, B. Gain-of-function haplotypes in the vesicular monoamine transporter promoter are protective for Parkinson disease in women. Hum. Mol. Genet. 15, 299–305 (2006).

    Article  CAS  PubMed  Google Scholar 

  132. Brighina, L. et al. Analysis of vesicular monoamine transporter 2 polymorphisms in Parkinson’s disease. Neurobiol. Aging 34, 1712.e9–1712.e13 (2013).

    Article  CAS  PubMed  Google Scholar 

  133. Buck, S. A. et al. Roles of VGLUT2 and dopamine/glutamate co-transmission in selective vulnerability to dopamine neurodegeneration. ACS Chem. Neurosci. 13, 187–193 (2022).

    Article  CAS  PubMed  Google Scholar 

  134. Shen, H. et al. Genetic deletion of vesicular glutamate transporter in dopamine neurons increases vulnerability to MPTP-induced neurotoxicity in mice. Proc. Natl Acad. Sci. USA 115, E11532–E11541 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Hnasko, T. S. et al. Vesicular glutamate transport promotes dopamine storage and glutamate corelease in vivo. Neuron 65, 643–656 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Liu, G. et al. Aldehyde dehydrogenase 1 defines and protects a nigrostriatal dopaminergic neuron subpopulation. J. Clin. Invest. 124, 3032–3046 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Marchitti, S. A., Deitrich, R. A. & Vasiliou, V. Neurotoxicity and metabolism of the catecholamine-derived 3,4-dihydroxyphenylacetaldehyde and 3,4-dihydroxyphenylglycolaldehyde: the role of aldehyde dehydrogenase. Pharmacol. Rev. 59, 125–150 (2007).

    Article  CAS  PubMed  Google Scholar 

  138. Burke, W. J., Li, S. W., Williams, E. A., Nonneman, R. & Zahm, D. S. 3,4-Dihydroxyphenylacetaldehyde is the toxic dopamine metabolite in vivo: implications for Parkinson’s disease pathogenesis. Brain Res. 989, 205–213 (2003).

    Article  CAS  PubMed  Google Scholar 

  139. Fitzmaurice, A. G. et al. Aldehyde dehydrogenase inhibition as a pathogenic mechanism in Parkinson disease. Proc. Natl Acad. Sci. USA 110, 636–641 (2013).

    Article  CAS  PubMed  Google Scholar 

  140. Smeyne, M. & Smeyne, R. J. Glutathione metabolism and Parkinson’s disease. Free Radic. Biol. Med. 62, 13–25 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Wüllner, U. et al. Glutathione depletion potentiates MPTP and MPP+ toxicity in nigral dopaminergic neurones. Neuroreport 7, 921–923 (1996).

    Article  PubMed  Google Scholar 

  142. Kim, J. J. et al. Multi-ancestry genome-wide association meta-analysis of Parkinson’s disease. Nat. Genet. 56, 27–36 (2024).

    Article  CAS  PubMed  Google Scholar 

  143. van Rheenen, W. et al. Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology. Nat. Genet. 53, 1636–1648 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Bellenguez, C. et al. New insights into the genetic etiology of Alzheimer’s disease and related dementias. Nat. Genet. 54, 412–436 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Hardy, J. Catastrophic cliffs: a partial suggestion for selective vulnerability in neurodegenerative diseases. Biochem. Soc. Trans. 44, 659–661 (2016).

    Article  CAS  PubMed  Google Scholar 

  146. Luna, E. et al. Differential α-synuclein expression contributes to selective vulnerability of hippocampal neuron subpopulations to fibril-induced toxicity. Acta Neuropathol. 135, 855–875 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Limone, F. et al. Single-nucleus sequencing reveals enriched expression of genetic risk factors in extratelencephalic neurons sensitive to degeneration in ALS. Preprint at bioRxiv https://doi.org/10.1101/2021.07.12.452054 (2023).

  148. Yadav, A. et al. A cellular taxonomy of the adult human spinal cord. Neuron 111, 328–344.e7 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Arboleda-Velasquez, J. F. et al. Resistance to autosomal dominant Alzheimer’s disease in an APOE3 Christchurch homozygote: a case report. Nat. Med. 25, 1680–1683 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Lopera, F. et al. Resilience to autosomal dominant Alzheimer’s disease in a Reelin-COLBOS heterozygous man. Nat. Med. 29, 1243–1252 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Chung, C. Y., Koprich, J. B., Endo, S. & Isacson, O. An endogenous serine/threonine protein phosphatase inhibitor, G-substrate, reduces vulnerability in models of Parkinson’s disease. J. Neurosci. 27, 8314–8323 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Chung, C. Y., Koprich, J. B., Hallett, P. J. & Isacson, O. Functional enhancement and protection of dopaminergic terminals by RAB3B overexpression. Proc. Natl Acad. Sci. USA 106, 22474–22479 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Allodi, I. et al. Differential neuronal vulnerability identifies IGF-2 as a protective factor in ALS. Sci. Rep. 6, 25960 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Hedlund, E., Karlsson, M., Osborn, T., Ludwig, W. & Isacson, O. Global gene expression profiling of somatic motor neuron populations with different vulnerability identify molecules and pathways of degeneration and protection. Brain 133, 2313–2330 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Kaspar, B. K., Lladó, J., Sherkat, N., Rothstein, J. D. & Gage, F. H. Retrograde viral delivery of IGF-1 prolongs survival in a mouse ALS model. Science 301, 839–842 (2003).

    Article  CAS  PubMed  Google Scholar 

  156. Kaplan, A. et al. Neuronal matrix metalloproteinase-9 is a determinant of selective neurodegeneration. Neuron 81, 333–348 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Van Hoecke, A. et al. EPHA4 is a disease modifier of amyotrophic lateral sclerosis in animal models and in humans. Nat. Med. 18, 1418–1422 (2012).

    Article  PubMed  Google Scholar 

  158. Lehrer, S. & Rheinstein, P. H. RORB, an Alzheimer’s disease susceptibility gene, is associated with viral encephalitis, an Alzheimer’s disease risk factor. Clin. Neurol. Neurosurg. 233, 107984 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Lipovsek, M. et al. Patch-seq: past, present, and future. J. Neurosci. 41, 937–946 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Pacelli, C. et al. Elevated mitochondrial bioenergetics and axonal arborization size are key contributors to the vulnerability of dopamine neurons. Curr. Biol. 25, 2349–2360 (2015).

    Article  CAS  PubMed  Google Scholar 

  161. Betarbet, R. et al. Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat. Neurosci. 3, 1301–1306 (2000).

    Article  CAS  PubMed  Google Scholar 

  162. Chan, C. S. et al. ‘Rejuvenation’ protects neurons in mouse models of Parkinson’s disease. Nature 447, 1081–1086 (2007).

    Article  CAS  PubMed  Google Scholar 

  163. Guzman, J. N. et al. Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1. Nature 468, 696–700 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Follett, J., Darlow, B., Wong, M. B., Goodwin, J. & Pountney, D. L. Potassium depolarization and raised calcium induces α-synuclein aggregates. Neurotox. Res. 23, 378–392 (2013).

    Article  CAS  PubMed  Google Scholar 

  165. Nath, S., Goodwin, J., Engelborghs, Y. & Pountney, D. L. Raised calcium promotes α-synuclein aggregate formation. Mol. Cell Neurosci. 46, 516–526 (2011).

    Article  CAS  PubMed  Google Scholar 

  166. Bolam, J. P. & Pissadaki, E. K. Living on the edge with too many mouths to feed: why dopamine neurons die. Mov. Disord. 27, 1478–1483 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Giguère, N. et al. Increased vulnerability of nigral dopamine neurons after expansion of their axonal arborization size through D2 dopamine receptor conditional knockout. PLoS Genet. 15, e1008352 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Brockington, A. et al. Unravelling the enigma of selective vulnerability in neurodegeneration: motor neurons resistant to degeneration in ALS show distinct gene expression characteristics and decreased susceptibility to excitotoxicity. Acta Neuropathol. 125, 95–109 (2013).

    Article  CAS  PubMed  Google Scholar 

  169. Bensimon, G., Lacomblez, L., Meininger, V. & the ALS/Riluzole Study Group. A controlled trial of riluzole in amyotrophic lateral sclerosis. N. Engl. J. Med. 330, 585–591 (1994).

    Article  CAS  PubMed  Google Scholar 

  170. Amyotrophic Lateral Sclerosis/Riluzole Study Group II et al. Dose-ranging study of riluzole in amyotrophic lateral sclerosis. Lancet 347, 1425–1431 (1996).

    Google Scholar 

  171. Le Masson, G., Przedborski, S. & Abbott, L. F. A computational model of motor neuron degeneration. Neuron 83, 975–988 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Verret, L. et al. Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell 149, 708–721 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Dhekne, H. S. et al. A pathway for Parkinson’s disease LRRK2 kinase to block primary cilia and Sonic hedgehog signaling in the brain. eLife 7, e40202 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Gonzalez-Reyes, L. E. et al. Sonic hedgehog maintains cellular and neurochemical homeostasis in the adult nigrostriatal circuit. Neuron 75, 306–319 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Ferrer, I., Goutan, E., Marín, C., Rey, M. J. & Ribalta, T. Brain-derived neurotrophic factor in Huntington disease. Brain Res. 866, 257–261 (2000).

    Article  CAS  PubMed  Google Scholar 

  176. Zuccato, C. et al. Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science 293, 493–498 (2001).

    Article  CAS  PubMed  Google Scholar 

  177. Gauthier, L. R. et al. Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell 118, 127–138 (2004).

    Article  CAS  PubMed  Google Scholar 

  178. Jucker, M. & Walker, L. C. Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 501, 45–51 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Brettschneider, J., Del Tredici, K., Lee, V. M. & Trojanowski, J. Q. Spreading of pathology in neurodegenerative diseases: a focus on human studies. Nat. Rev. Neurosci. 16, 109–120 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Vogel, J. W. et al. Connectome-based modelling of neurodegenerative diseases: towards precision medicine and mechanistic insight. Nat. Rev. Neurosci. 24, 620–639 (2023).

    Article  CAS  PubMed  Google Scholar 

  181. de Calignon, A. et al. Propagation of tau pathology in a model of early Alzheimer’s disease. Neuron 73, 685–697 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Klingelhoefer, L. & Reichmann, H. Pathogenesis of Parkinson disease — the gut-brain axis and environmental factors. Nat. Rev. Neurol. 11, 625–636 (2015).

    Article  CAS  PubMed  Google Scholar 

  183. Hawkes, C. H., Del Tredici, K. & Braak, H. Parkinson’s disease: a dual-hit hypothesis. Neuropathol. Appl. Neurobiol. 33, 599–614 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Ben Haim, L. & Rowitch, D. H. Functional diversity of astrocytes in neural circuit regulation. Nat. Rev. Neurosci. 18, 31–41 (2017).

    Article  CAS  PubMed  Google Scholar 

  185. Floriddia, E. M. et al. Distinct oligodendrocyte populations have spatial preference and different responses to spinal cord injury. Nat. Commun. 11, 5860 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Masuda, T., Sankowski, R., Staszewski, O. & Prinz, M. Microglia heterogeneity in the single-cell era. Cell Rep. 30, 1271–1281 (2020).

    Article  CAS  PubMed  Google Scholar 

  187. Bartzokis, G. Age-related myelin breakdown: a developmental model of cognitive decline and Alzheimer’s disease. Neurobiol. Aging 25, 5–18 (2004).

    Article  CAS  PubMed  Google Scholar 

  188. Braak, H. & Braak, E. Development of Alzheimer-related neurofibrillary changes in the neocortex inversely recapitulates cortical myelogenesis. Acta Neuropathol. 92, 197–201 (1996).

    Article  CAS  PubMed  Google Scholar 

  189. Braak, H. & Del Tredici, K. Poor and protracted myelination as a contributory factor to neurodegenerative disorders. Neurobiol. Aging 25, 19–23 (2004).

    Article  CAS  PubMed  Google Scholar 

  190. Sofroniew, M. V. Astrocyte reactivity: subtypes, states, and functions in CNS innate immunity. Trends Immunol. 41, 758–770 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Paolicelli, R. C. et al. Microglia states and nomenclature: a field at its crossroads. Neuron 110, 3458–3483 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. BRAIN Initiative Cell Census Network (BICCN). A multimodal cell census and atlas of the mammalian primary motor cortex. Nature 598, 86–102 (2021).

    Article  PubMed Central  Google Scholar 

  193. Fang, R. et al. Conservation and divergence of cortical cell organization in human and mouse revealed by MERFISH. Science 377, 56–62 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Siletti, K. et al. Transcriptomic diversity of cell types across the adult human brain. Science 382, eadd7046 (2023).

    Article  CAS  PubMed  Google Scholar 

  195. Zhang, M. et al. Molecularly defined and spatially resolved cell atlas of the whole mouse brain. Nature 624, 343–354 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Langlieb, J. et al. The molecular cytoarchitecture of the adult mouse brain. Nature 624, 333–342 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Shi, H. et al. Spatial atlas of the mouse central nervous system at molecular resolution. Nature 622, 552–561 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Yao, Z. et al. A high-resolution transcriptomic and spatial atlas of cell types in the whole mouse brain. Nature 624, 317–332 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Lee, B. R. et al. Signature morphoelectric properties of diverse GABAergic interneurons in the human neocortex. Science 382, eadf6484 (2023).

    Article  CAS  PubMed  Google Scholar 

  200. Berg, J. et al. Human neocortical expansion involves glutamatergic neuron diversification. Nature 598, 151–158 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Kalmbach, B. E. et al. Signature morpho-electric, transcriptomic, and dendritic properties of human layer 5 neocortical pyramidal neurons. Neuron 109, 2914–2927.e5 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Tian, R. et al. CRISPR interference-based platform for multimodal genetic screens in human iPSC-derived neurons. Neuron 104, 239–255.e12 (2019). A paper that shows a CRISPR-based screening platform in human iPSC-derived neurons that enables the large-scale identification of genes controlling neuronal vulnerability.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Tian, R. et al. Genome-wide CRISPRi/a screens in human neurons link lysosomal failure to ferroptosis. Nat. Neurosci. 24, 1020–1034 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Wertz, M. H. et al. Genome-wide in vivo CNS screening identifies genes that modify CNS neuronal survival and mHTT toxicity. Neuron 106, 76–89.e8 (2020). A paper that shows that an in vivo CRISPR-based screening platform uncovers factors controlling neuronal vulnerability in a mouse model of HD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Ramani, B. et al. Scalable, cell type-selective, AAV-based in vivo CRISPR screening in the mouse brain. Preprint at bioRxiv https://doi.org/10.1101/2023.06.13.544831 (2023).

  206. Brichta, L., Greengard, P. & Flajolet, M. Advances in the pharmacological treatment of Parkinson’s disease: targeting neurotransmitter systems. Trends Neurosci. 36, 543–554 (2013).

    Article  CAS  PubMed  Google Scholar 

  207. Hampel, H. et al. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain 141, 1917–1933 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Kim, T. W., Koo, S. Y. & Studer, L. Pluripotent stem cell therapies for Parkinson disease: present challenges and future opportunities. Front. Cell Dev. Biol. 8, 729 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Tong, L. M., Fong, H. & Huang, Y. Stem cell therapy for Alzheimer’s disease and related disorders: current status and future perspectives. Exp. Mol. Med. 47, e151 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Doble, A. The pharmacology and mechanism of action of riluzole. Neurology 47, S233–S241 (1996).

    Article  CAS  PubMed  Google Scholar 

  211. Lipton, S. A. Paradigm shift in neuroprotection by NMDA receptor blockade: memantine and beyond. Nat. Rev. Drug Discov. 5, 160–170 (2006).

    Article  CAS  PubMed  Google Scholar 

  212. Yoshino, H. & Kimura, A. Investigation of the therapeutic effects of edaravone, a free radical scavenger, on amyotrophic lateral sclerosis (phase II study). Amyotroph. Lateral Scler. 7, 241–245 (2006).

    Article  CAS  PubMed  Google Scholar 

  213. Freer, R. et al. A protein homeostasis signature in healthy brains recapitulates tissue vulnerability to Alzheimer’s disease. Sci. Adv. 2, e1600947 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Stahlberg, H. & Riek, R. Structural strains of misfolded tau protein define different diseases. Nature 598, 264–265 (2021).

    Article  CAS  PubMed  Google Scholar 

  215. Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Klein, A. M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187–1201 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Lake, B. B. et al. Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain. Science 352, 1586–1590 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016).

    Article  PubMed  Google Scholar 

  219. Eng, C. L. et al. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH. Nature 568, 235–239 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Xia, C., Babcock, H. P., Moffitt, J. R. & Zhuang, X. Multiplexed detection of RNA using MERFISH and branched DNA amplification. Sci. Rep. 9, 7721 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Rodriques, S. G. et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Merritt, C. R. et al. Multiplex digital spatial profiling of proteins and RNA in fixed tissue. Nat. Biotechnol. 38, 586–599 (2020).

    Article  CAS  PubMed  Google Scholar 

  223. Luo, C. et al. Single nucleus multi-omics identifies human cortical cell regulatory genome diversity. Cell Genom. 2, 100107 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Bakken, T. E. et al. Comparative cellular analysis of motor cortex in human, marmoset and mouse. Nature 598, 111–119 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Wu, J. W. et al. Neuronal activity enhances tau propagation and tau pathology in vivo. Nat. Neurosci. 19, 1085–1092 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Ye, Q. et al. Hippocampal neural circuit connectivity alterations in an Alzheimer’s disease mouse model revealed by monosynaptic rabies virus tracing. Neurobiol. Dis. 172, 105820 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Schwarz, C. G. Uses of human MR and PET imaging in research of neurodegenerative brain diseases. Neurotherapeutics 18, 661–672 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Yuan, P. & Grutzendler, J. Attenuation of β-amyloid deposition and neurotoxicity by chemogenetic modulation of neural activity. J. Neurosci. 36, 632–641 (2016).

    Article  PubMed  Google Scholar 

  230. Rodriguez, G. A., Barrett, G. M., Duff, K. E. & Hussaini, S. A. Chemogenetic attenuation of neuronal activity in the entorhinal cortex reduces Aβ and tau pathology in the hippocampus. PLoS Biol. 18, e3000851 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Götz, J., Schonrock, N., Vissel, B. & Ittner, L. M. Alzheimer’s disease selective vulnerability and modeling in transgenic mice. J. Alzheimers Dis. 18, 243–251 (2009).

    Article  PubMed  Google Scholar 

  232. Yoshiyama, Y. et al. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53, 337–351 (2007).

    Article  CAS  PubMed  Google Scholar 

  233. Liu, L. et al. Trans-synaptic spread of tau pathology in vivo. PLoS ONE 7, e31302 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Harris, J. A. et al. Human P301L-mutant tau expression in mouse entorhinal-hippocampal network causes tau aggregation and presynaptic pathology but no cognitive deficits. PLoS ONE 7, e45881 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Romito-DiGiacomo, R. R., Menegay, H., Cicero, S. A. & Herrup, K. Effects of Alzheimer’s disease on different cortical layers: the role of intrinsic differences in Aβ susceptibility. J. Neurosci. 27, 8496–8504 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Rappold, P. M. et al. Paraquat neurotoxicity is mediated by the dopamine transporter and organic cation transporter-3. Proc. Natl Acad. Sci. USA 108, 20766–20771 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Bezard, E. et al. Absence of MPTP-induced neuronal death in mice lacking the dopamine transporter. Exp. Neurol. 155, 268–273 (1999).

    Article  CAS  PubMed  Google Scholar 

  238. Ferrante, R. J., Schulz, J. B., Kowall, N. W. & Beal, M. F. Systemic administration of rotenone produces selective damage in the striatum and globus pallidus, but not in the substantia nigra. Brain Res. 753, 157–162 (1997).

    Article  CAS  PubMed  Google Scholar 

  239. Blesa, J. & Przedborski, S. Parkinson’s disease: animal models and dopaminergic cell vulnerability. Front. Neuroanat. 8, 155 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  240. Luk, K. C. et al. Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338, 949–953 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Rey, N. L. et al. Widespread transneuronal propagation of α-synucleinopathy triggered in olfactory bulb mimics prodromal Parkinson’s disease. J. Exp. Med. 213, 1759–1778 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Kim, S. et al. Transneuronal propagation of pathologic α-synuclein from the gut to the brain models Parkinson’s disease. Neuron 103, 627–641.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Uemura, N. et al. Inoculation of α-synuclein preformed fibrils into the mouse gastrointestinal tract induces Lewy body-like aggregates in the brainstem via the vagus nerve. Mol. Neurodegener. 13, 21 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  244. Ragagnin, A. M. G., Shadfar, S., Vidal, M., Jamali, M. S. & Atkin, J. D. Motor neuron susceptibility in ALS/FTD. Front. Neurosci. 13, 532 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  245. Pun, S., Santos, A. F., Saxena, S., Xu, L. & Caroni, P. Selective vulnerability and pruning of phasic motoneuron axons in motoneuron disease alleviated by CNTF. Nat. Neurosci. 9, 408–419 (2006).

    Article  CAS  PubMed  Google Scholar 

  246. Frey, D. et al. Early and selective loss of neuromuscular synapse subtypes with low sprouting competence in motoneuron diseases. J. Neurosci. 20, 2534–2542 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Chew, J. et al. Neurodegeneration. C9ORF72 repeat expansions in mice cause TDP-43 pathology, neuronal loss, and behavioral deficits. Science 348, 1151–1154 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Jiang, J. et al. Gain of toxicity from ALS/FTD-linked repeat expansions in C9ORF72 is alleviated by antisense oligonucleotides targeting GGGGCC-containing RNAs. Neuron 90, 535–550 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Liu, Y. et al. C9orf72 BAC mouse model with motor deficits and neurodegenerative features of ALS/FTD. Neuron 90, 521–534 (2016).

    Article  CAS  PubMed  Google Scholar 

  250. Cauda, F., Geminiani, G. C. & Vercelli, A. Evolutionary appearance of von Economo’s neurons in the mammalian cerebral cortex. Front. Hum. Neurosci. 8, 104 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  251. Muratore, C. R. et al. Cell-type dependent Alzheimer’s disease phenotypes: probing the biology of selective neuronal vulnerability. Stem Cell Rep. 9, 1868–1884 (2017).

    Article  CAS  Google Scholar 

  252. Benkler, C. et al. Aggregated SOD1 causes selective death of cultured human motor neurons. Sci. Rep. 8, 16393 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  253. Iannitelli, D. E. et al. ALS sensitive spinal motor neurons enter a degenerative downward spiral of impaired splicing and proteostasis. Preprint at bioRxiv https://doi.org/10.1101/2022.03.26.485939 (2022).

  254. An, D. et al. Stem cell-derived cranial and spinal motor neurons reveal proteostatic differences between ALS resistant and sensitive motor neurons. eLife 8, e44423 (2019). A study that shows that a stem cell-based model of motor neurons that are vulnerable or resilient to ALS provides a platform to test causal factors driving selective vulnerability.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Kanton, S. & Paşca, S. P. Human assembloids. Development 149, dev201120 (2022).

    Article  CAS  PubMed  Google Scholar 

  256. Cerneckis, J., Bu, G. & Shi, Y. Pushing the boundaries of brain organoids to study Alzheimer’s disease. Trends Mol. Med. 29, 659–672 (2023).

    Article  PubMed  Google Scholar 

  257. Balusu, S. et al. MEG3 activates necroptosis in human neuron xenografts modeling Alzheimer’s disease. Science 381, 1176–1182 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Espuny-Camacho, I. et al. Hallmarks of Alzheimer’s disease in stem-cell-derived human neurons transplanted into mouse brain. Neuron 93, 1066–1081.e8 (2017).

    Article  CAS  PubMed  Google Scholar 

  259. Miller, J. D. et al. Human iPSC-based modeling of late-onset disease via progerin-induced aging. Cell Stem Cell 13, 691–705 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Vera, E., Bosco, N. & Studer, L. Generating late-onset human iPSC-based disease models by inducing neuronal age-related phenotypes through telomerase manipulation. Cell Rep. 17, 1184–1192 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Mertens, J. et al. Directly reprogrammed human neurons retain aging-associated transcriptomic signatures and reveal age-related nucleocytoplasmic defects. Cell Stem Cell 17, 705–718 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Capano, L. S. et al. Recapitulation of endogenous 4R tau expression and formation of insoluble tau in directly reprogrammed human neurons. Cell Stem Cell 29, 918–932.e8 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Sun, Z. et al. Endogenous recapitulation of Alzheimer’s disease neuropathology through human 3D direct neuronal reprogramming. Preprint at bioRxiv https://doi.org/10.1101/2023.05.24.542155 (2023).

  264. Victor, M. B. et al. Striatal neurons directly converted from Huntington’s disease patient fibroblasts recapitulate age-associated disease phenotypes. Nat. Neurosci. 21, 341–352 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Oh, Y. M. et al. Age-related Huntington’s disease progression modeled in directly reprogrammed patient-derived striatal neurons highlights impaired autophagy. Nat. Neurosci. 25, 1420–1433 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author thanks S. Kaufman for the early discussions and S. Kaufman, B. Ramani and D. Mordes for feedback on parts of the manuscript. Research into selective vulnerability in neurodegenerative diseases in the Kampmann lab is supported by National Institutes of Health/National Institute on Aging grant R01 AG082141, a Ben Barres Early Career Acceleration Award from the Chan Zuckerberg Initiative, the Tau Consortium, the National Institute of Neurological Disorders and Stroke (NINDS) Center Without Walls (NIH/NINDS U54 NS123746), and the University of California, San Francisco/University of California, Berkeley Innovative Genomics Institute (IGI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Kampmann.

Ethics declarations

Competing interests

M.K. is a co-scientific founder of Montara Therapeutics and serves on the Scientific Advisory Boards of Engine Biosciences, Casma Therapeutics, Cajal Neuroscience, and Alector, and is an adviser to Modulo Bio and Recursion Therapeutics. M.K. is an inventor on US Patent 11,254,933 related to CRISPRi and CRISPRa screening, and on a US Patent application on in vivo screening methods.

Peer review

Peer review information

Nature Reviews Neuroscience thanks Tracy Young-Pearse, who co-reviewed with Sarah Heuer; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Autophagy

A process that targets cellular components, including protein aggregates and organelles, for lysosomal degradation.

Calcium-buffering proteins

Proteins that bind and, thereby, regulate levels of calcium ions within cells, preventing excessive calcium-induced cellular damage.

CRISPR

The CRISPR (clustered regularly interspaced short palindromic repeats)–Cas (CRISPR-associated proteins) system is a bacterial anti-viral defence mechanism that has been adapted for gene editing and gene regulation purposes in human cells and many other biological systems.

Cryo-electron microscopy

(Cryo-EM). A technique that allows the visualization of biological molecules and structures at near-atomic resolution after rapid freezing of samples without the need for chemical fixation or staining.

Excitotoxicity

A process that results from excessive activation of excitatory neurotransmitter receptors, particularly glutamate receptors, which increases intracellular calcium concentrations in neurons and leads to neuronal damage or death.

Genetic risk factors

Variants in the genome sequence of an individual that increase their likelihood of developing a particular disease.

Genome-wide association studies

(GWAS). Studies that analyse genetic variants across the entire genome to identify associations between specific genetic variants and traits such as disease risk.

Immunohistochemistry

A technique that uses antibodies against proteins of interest to visualize their levels and localization in fixed tissue samples.

Induced pluripotent stem cell

(iPSC). Cells that are derived from somatic cells, such as blood cells or skin fibroblasts, and reprogrammed by the expression of a combination of genes to regain the ability to differentiate into various cell types.

Molecular chaperones

Proteins that facilitate the proper folding and assembly of other proteins, thereby preventing protein misfolding and aggregation.

Oxidative stress

Stress experienced by cells when they are exposed to excessive levels of reactive oxygen species.

Patch sequencing

(Patch-seq). A technique that combines whole-cell patch clamp recording with single-cell RNA sequencing, allowing the simultaneous measurement of electrical activity and gene expression in individual neurons.

Proteostasis

Short for protein homoeostasis, describes the proper balance of protein synthesis, folding and degradation; its disruption can lead to protein misfolding, aggregation and toxic consequences.

Reactive oxygen species

(ROS). Highly reactive molecules containing oxygen atoms, which are generated as byproducts of normal cellular metabolism and can cause oxidative damage to biomolecules when present in excessive amounts.

Single-nucleus RNA sequencing

(snRNA-seq). A molecular technique used to analyse gene expression profiles at the single-cell level by sequencing RNA extracted from individual cell nuclei.

Spatial transcriptomics

A technique that quantifies large numbers of transcript levels within tissue sections while preserving spatial information, allowing for the mapping of gene expression profiles to specific regions and cells.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kampmann, M. Molecular and cellular mechanisms of selective vulnerability in neurodegenerative diseases. Nat. Rev. Neurosci. 25, 351–371 (2024). https://doi.org/10.1038/s41583-024-00806-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-024-00806-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing