Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Curiosity: primate neural circuits for novelty and information seeking

Subjects

An Author Correction to this article was published on 12 February 2024

This article has been updated

Abstract

For many years, neuroscientists have investigated the behavioural, computational and neurobiological mechanisms that support value-based decisions, revealing how humans and animals make choices to obtain rewards. However, many decisions are influenced by factors other than the value of physical rewards or second-order reinforcers (such as money). For instance, animals (including humans) frequently explore novel objects that have no intrinsic value solely because they are novel and they exhibit the desire to gain information to reduce their uncertainties about the future, even if this information cannot lead to reward or assist them in accomplishing upcoming tasks. In this Review, I discuss how circuits in the primate brain responsible for detecting, predicting and assessing novelty and uncertainty regulate behaviour and give rise to these behavioural components of curiosity. I also briefly discuss how curiosity-related behaviours arise during postnatal development and point out some important reasons for the persistence of curiosity across generations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Multiple interacting sources of curiosity-related behaviours.
Fig. 2: Object novelty sensitivity in the primate brain.
Fig. 3: Neural network for novelty seeking in the primate brain.
Fig. 4: Neural network for uncertainty reduction in the primate brain.
Fig. 5: Neural network for integrating the value of information with the value of physical reward in the primate brain.

Similar content being viewed by others

Change history

References

  1. Glimcher, P. W. & Fehr, E. (eds) Neuroeconomics: Decision Making and the Brain 2nd edn (Academic, 2013).

  2. Padoa-Schioppa, C. & Cai, X. The orbitofrontal cortex and the computation of subjective value: consolidated concepts and new perspectives. Ann. N. Y. Acad. Sci. 1239, 130–137 (2011).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  3. Costa, V. D., Mitz, A. R. & Averbeck, B. B. Subcortical substrates of explore-exploit decisions in primates. Neuron 103, 533–545 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bromberg-Martin, E. S. & Monosov, I. E. Neural circuitry of information seeking. Curr. Opin. Behav. Sci. 35, 62–70 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bennett, D., Bode, S., Brydevall, M., Warren, H. & Murawski, C. Intrinsic valuation of information in decision making under uncertainty. PLoS Comput. Biol. 12, e1005020 (2016).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  6. Gottlieb, J., Cohanpour, M., Li, Y., Singletary, N. & Zabeh, E. Curiosity, information demand and attentional priority. Curr. Opin. Behav. Sci. 35, 83–91 (2020).

    Article  Google Scholar 

  7. Eliaz, K. & Schotter, A. Experimental testing of intrinsic preferences for noninstrumental information. Am. Econ. Rev. 97, 166–169 (2007).

    Article  Google Scholar 

  8. Berlyne, D. E. Novelty and curiosity as determinants of exploratory behaviour. Br. J. Psychol. 41, 68–80 (1950).

    Google Scholar 

  9. Loewenstein, G. The psychology of curiosity: a review and reinterpretation. Psychol. Bull. 116, 75–98 (1994).

    Article  Google Scholar 

  10. Byrne, R. W. Animal curiosity. Curr. Biol. 23, R469–R470 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. van Lieshout, L. L., de Lange, F. P. & Cools, R. Why so curious? Quantifying mechanisms of information seeking. Curr. Opin. Behav. Sci. 35, 112–117 (2020).

    Article  Google Scholar 

  12. Gottlieb, J., Oudeyer, P.-Y., Lopes, M. & Baranes, A. Information-seeking, curiosity, and attention: computational and neural mechanisms. Trends Cogn. Sci. 17, 585–593 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gottlieb, J., Hayhoe, M., Hikosaka, O. & Rangel, A. Attention, reward, and information seeking. J. Neurosci. 34, 15497–15504 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bromberg-Martin, E. S. & Sharot, T. The value of beliefs. Neuron 106, 561–565 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Monosov, I. E. How outcome uncertainty mediates attention, learning, and decision-making. Trends Neurosci. 43, 795–809 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jezzini, A., Bromberg-Martin, E. S., Trambaiolli, L. R., Haber, S. N. & Monosov, I. E. A prefrontal network integrates preferences for advance information about uncertain rewards and punishments. Neuron 109, 2339–2352.e5 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gottlieb, J. Emerging principles of attention and information demand. Curr. Dir. Psychol. Sci. 32, 152–159 (2023).

    Article  Google Scholar 

  18. Ogasawara, T. et al. A primate temporal cortex–zona incerta pathway for novelty seeking. Nat. Neurosci. 25, 50–60 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Jaegle, A., Mehrpour, V. & Rust, N. Visual novelty, curiosity, and intrinsic reward in machine learning and the brain. Curr. Opin. Neurobiol. 58, 167–174 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, K., Chen, C. D. & Monosov, I. E. Novelty, salience, and surprise timing are signaled by neurons in the basal forebrain. Curr. Biol. 29, 134–142.e3 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Tiitinen, H., May, P., Reinikainen, K. & Näätänen, R. Attentive novelty detection in humans is governed by pre-attentive sensory memory. Nature 372, 90–92 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Tapper, A. R. & Molas, S. Midbrain circuits of novelty processing. Neurobiol. Learn. Mem. 176, 107323 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Anderson, B., Mruczek, R. E. B., Kawasaki, K. & Sheinberg, D. Effects of familiarity on neural activity in monkey inferior temporal lobe. Cereb. Cortex 18, 2540–2552 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Joshua, M., Adler, A. & Bergman, H. Novelty encoding by the output neurons of the basal ganglia. Front. Syst. Neurosci. 3, 20 (2010).

    PubMed  PubMed Central  Google Scholar 

  25. Xiang, J.-Z. & Brown, M. Differential neuronal encoding of novelty, familiarity and recency in regions of the anterior temporal lobe. Neuropharmacology 37, 657–676 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Bogacz, R., Brown, M. W. & Giraud-Carrier, C. Model of co-operation between recency, familiarity and novelty neurons in the perirhinal cortex. Neurocomputing 38, 1121–1126 (2001).

    Article  Google Scholar 

  27. Ghazizadeh, A., Griggs, W. & Hikosaka, O. Ecological origins of object salience: reward, uncertainty, aversiveness, and novelty. Front. Neurosci. 10, 378 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Barto, A., Mirolli, M. & Baldassarre, G. Novelty or surprise? Front. Psychol. 4, 907 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Butler, R. A. Discrimination learning by rhesus monkeys to visual-exploration motivation. J. Comp. Physiol. Psychol. 46, 95–98 (1953).

    Article  PubMed  Google Scholar 

  30. Wang, T. & Mitchell, C. J. Attention and relative novelty in human perceptual learning. J. Exp. Psychol. Anim. Behav. Process. 37, 436–445 (2011).

    Article  PubMed  Google Scholar 

  31. Akiti, K. et al. Striatal dopamine explains novelty-induced behavioral dynamics and individual variability in threat prediction. Neuron 110, 3789–3804.e9 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pai, J. & Monosov, I. E. Dopamine in the rodent tail of striatum regulates behavioral variability in response to threatening novel objects. Neuron 110, 3653–3655 (2022).

    Article  CAS  PubMed  Google Scholar 

  33. Kelley, A. E., Schochet, T. & Landry, C. F. Risk taking and novelty seeking in adolescence: introduction to part I. Ann. N. Y. Acad. Sci. 1021, 27–32 (2004).

    Article  ADS  PubMed  Google Scholar 

  34. Hartley, C. A. & Somerville, L. H. The neuroscience of adolescent decision-making. Curr. Opin. Behav. Sci. 5, 108–115 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Nussenbaum, K. et al. Novelty and uncertainty differentially drive exploration across development. eLife 12, e84260 (2022).

    Article  Google Scholar 

  36. Traner, M. R., Bromberg-Martin, E. S. & Monosov, I. E. How the value of the environment controls persistence in visual search. PLoS Comput. Biol. 17, e1009662 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kumaran, D. & Maguire, E. A. Which computational mechanisms operate in the hippocampus during novelty detection? Hippocampus 17, 735–748 (2007).

    Article  PubMed  Google Scholar 

  38. Djamshidian, A., O’Sullivan, S. S., Wittmann, B. C., Lees, A. J. & Averbeck, B. B. Novelty seeking behaviour in Parkinson’s disease. Neuropsychologia 49, 2483–2488 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Costa, V. D., Tran, V. L., Turchi, J. & Averbeck, B. B. Dopamine modulates novelty seeking behavior during decision making. Behav. Neurosci. 128, 556–566 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Monosov, I. E., Ogasawara, T., Haber, S. N., Heimel, J. A. & Ahmadlou, M. The zona incerta in control of novelty seeking and investigation across species. Curr. Opin. Neurobiol. 77, 102650 (2022).

    Article  CAS  PubMed  Google Scholar 

  41. Miljković, D. Review of novelty detection methods. In Proc. The 33rd International Convention MIPRO 593–598 (IEEE, New York, 2010).

  42. Nguyen, D., Kirsebom, O. S., Frazão, F., Fablet, R. & Matwin, S. Recurrent neural networks with stochastic layers for acoustic novelty detection. In Proc. ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 765–769 (IEEE, New York, 2019).

  43. Marchi, E., Vesperini, F., Squartini, S. & Schuller, B. Deep recurrent neural network-based autoencoders for acoustic novelty detection. Comput. Intell. Neurosci. 2017, 4694860 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Bogacz, R. & Brown, M. W. An anti-Hebbian model of familiarity discrimination in the perirhinal cortex. Neurocomputing https://doi.org/10.1016/S0925-2312(02)00738-5 (2003).

  45. Bogacz, R. & Brown, M. W. Comparison of computational models of familiarity discrimination in the perirhinal cortex. Hippocampus 13, 494–524 (2003).

    Article  PubMed  Google Scholar 

  46. Tyulmankov, D., Yang, G. R. & Abbott, L. Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110, 544–555 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Dasgupta, S., Sheehan, T. C., Stevens, C. F. & Navlakha, S. A neural data structure for novelty detection. Proc. Natl Acad. Sci. USA 115, 13093–13098 (2018).

    Article  ADS  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kording, K. P., Tenenbaum, J. B. & Shadmehr, R. The dynamics of memory as a consequence of optimal adaptation to a changing body. Nat. Neurosci. 10, 779–786 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang, K., Bromberg-Martin, E. S., Sogukpinar, F., Kocher, K. & Monosov, I. E. Surprise and recency in novelty detection in the primate brain. Curr. Biol. 32, 2160–2173.e6 (2022).

    Article  CAS  PubMed  Google Scholar 

  50. Hikosaka, O. et al. Multiple neuronal circuits for variable object–action choices based on short- and long-term memories. Proc. Natl Acad. Sci. USA 116, 26313–26320 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  51. Spitmaan, M., Seo, H., Lee, D. & Soltani, A. Multiple timescales of neural dynamics and integration of task-relevant signals across cortex. Proc. Natl Acad. Sci. USA 117, 22522–22531 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bromberg-Martin, E. S., Matsumoto, M., Nakahara, H. & Hikosaka, O. Multiple timescales of memory in lateral habenula and dopamine neurons. Neuron 67, 499–510 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Murray, J. D. et al. A hierarchy of intrinsic timescales across primate cortex. Nat. Neurosci. 17, 1661–1663 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cavanagh, S. E., Wallis, J. D., Kennerley, S. W. & Hunt, L. T. Autocorrelation structure at rest predicts value correlates of single neurons during reward-guided choice. eLife 5, e18937 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Manea, A. M., Zilverstand, A., Ugurbil, K., Heilbronner, S. R. & Zimmermann, J. Intrinsic timescales as an organizational principle of neural processing across the whole rhesus macaque brain. eLife 11, e75540 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ghazizadeh, A., Hong, S. & Hikosaka, O. Prefrontal cortex represents long-term memory of object values for months. Curr. Biol. 28, 2206–2217.e5 (2018).

    Article  CAS  PubMed  Google Scholar 

  57. Ghazizadeh, A., Griggs, W., Leopold, D. A. & Hikosaka, O. Temporal–prefrontal cortical network for discrimination of valuable objects in long-term memory. Proc. Natl Acad. Sci. USA 115, E2135–E2144 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kim, H. F. & Hikosaka, O. Distinct basal ganglia circuits controlling behaviors guided by flexible and stable values. Neuron 79, 1001–1010 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mehrpour, V., Meyer, T., Simoncelli, E. P. & Rust, N. C. Pinpointing the neural signatures of single-exposure visual recognition memory. Proc. Natl Acad. Sci. USA 118, e2021660118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hattori, D. et al. Representations of novelty and familiarity in a mushroom body compartment. Cell 169, 956–969.e17 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Smith, M. A., Ghazizadeh, A. & Shadmehr, R. Interacting adaptive processes with different timescales underlie short-term motor learning. PLoS Biol. 4, e179 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kakade, S. & Dayan, P. Dopamine: generalization and bonuses. Neural Netw. 15, 549–559 (2002).

    Article  PubMed  Google Scholar 

  63. Cohen, J. Y., Haesler, S., Vong, L., Lowell, B. B. & Uchida, N. Neuron-type-specific signals for reward and punishment in the ventral tegmental area. Nature 482, 85–88 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Matsumoto, M. & Hikosaka, O. Two types of dopamine neuron distinctly convey positive and negative motivational signals. Nature 459, 837–841 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bromberg-Martin, E. S., Matsumoto, M. & Hikosaka, O. Dopamine in motivational control: rewarding, aversive, and alerting. Neuron 68, 815–834 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Schultz, W., Dayan, P. & Montague, P. R. A neural substrate of prediction and reward. Science 275, 1593–1599 (1997).

    Article  CAS  PubMed  Google Scholar 

  67. Schultz, W. Multiple dopamine functions at different time courses. Annu. Rev. Neurosci. 30, 259–288 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Menegas, W., Babayan, B. M., Uchida, N. & Watabe-Uchida, M. Opposite initialization to novel cues in dopamine signaling in ventral and posterior striatum in mice. eLife 6, e21886 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Menegas, W., Akiti, K., Amo, R., Uchida, N. & Watabe-Uchida, M. Dopamine neurons projecting to the posterior striatum reinforce avoidance of threatening stimuli. Nat. Neurosci. 21, 1421–1430 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Monosov, I. E. Anterior cingulate is a source of valence-specific information about value and uncertainty. Nat. Commun. 8, 134 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  71. Oudeyer, P.-Y., Kaplan, F. & Hafner, V. V. Intrinsic motivation systems for autonomous mental development. IEEE Trans. Evolut. Comput. 11, 265–286 (2007).

    Article  Google Scholar 

  72. Gottlieb, J., Lopes, M. & Oudeyer, P.-Y. in Recent Developments in Neuroscience Research on Human Motivation Vol. 19 (eds Kim, S.-I. et al.) 149–172 (Emerald, 2016).

  73. Schwartenbeck, P., FitzGerald, T., Dolan, R. & Friston, K. Exploration, novelty, surprise, and free energy minimization. Front. Psychol. 4, 710 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Dayan, P. & Sejnowski, T. J. Exploration bonuses and dual control. Mach. Learn. 25, 5–22 (1996).

    Article  Google Scholar 

  75. May, P. J. & Basso, M. A. Connections between the zona incerta and superior colliculus in the monkey and squirrel. Brain Struct. Funct. 223, 371–390 (2018).

    Article  PubMed  Google Scholar 

  76. Krauzlis, R. J., Lovejoy, L. P. & Zénon, A. Superior colliculus and visual spatial attention. Annu. Rev. Neurosci. 36, 165–182 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Ahmadlou, M. et al. A cell type-specific cortico-subcortical brain circuit for investigatory and novelty-seeking behavior. Science 372, eabe9681 (2021).

    Article  CAS  PubMed  Google Scholar 

  78. Everitt, B. J. & Robbins, T. W. Central cholinergic systems and cognition. Annu. Rev. Psychol. 48, 649–684 (1997).

    Article  CAS  PubMed  Google Scholar 

  79. Houillon, A. et al. The effect of novelty on reinforcement learning. Prog. Brain Res. 202, 415–439 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Lak, A., Stauffer, W. R. & Schultz, W. Dopamine neurons learn relative chosen value from probabilistic rewards. eLife 5, e18044 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Matsumoto, M. & Hikosaka, O. Lateral habenula as a source of negative reward signals in dopamine neurons. Nature 447, 1111–1115 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  82. Watabe-Uchida, M., Zhu, L., Ogawa, S. K., Vamanrao, A. & Uchida, N. Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neuron 74, 858–873 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Suzuki, W. A. & Amaral, D. G. Perirhinal and parahippocampal cortices of the macaque monkey: cortical afferents. J. Comp. Neurol. 350, 497–533 (1994).

    Article  CAS  PubMed  Google Scholar 

  84. Murray, E. A. & Richmond, B. J. Role of perirhinal cortex in object perception, memory, and associations. Curr. Opin. Neurobiol. 11, 188–193 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Liu, Z., Murray, E. A. & Richmond, B. J. Learning motivational significance of visual cues for reward schedules requires rhinal cortex. Nat. Neurosci. 3, 1307–1315 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Bach, D. R. & Dolan, R. J. Knowing how much you don’t know: a neural organization of uncertainty estimates. Nat. Rev. Neurosci. 13, 572–586 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Pulcu, E. & Browning, M. The misestimation of uncertainty in affective disorders. Trends Cogn. Sci. 23, 865–875 (2019).

    Article  PubMed  Google Scholar 

  88. Ma, W. J. & Jazayeri, M. Neural coding of uncertainty and probability. Annu. Rev. Neurosci. 37, 205–220 (2014).

    Article  CAS  PubMed  Google Scholar 

  89. Gold, J. I. & Stocker, A. A. Visual decision-making in an uncertain and dynamic world. Annu. Rev. Vis. Sci. 3, 227–250 (2017).

    Article  PubMed  Google Scholar 

  90. Costa, V. D. & Averbeck, B. B. Primate orbitofrontal cortex codes information relevant for managing explore–exploit tradeoffs. J. Neurosci. 40, 2553–2561 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bromberg-Martin, E. S. et al. A neural mechanism for conserved value computations integrating information and rewards. Nat. Neurosci. 27,159–175 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. White, J. K. & Monosov, I. E. Neurons in the primate dorsal striatum signal the uncertainty of object–reward associations. Nat. Commun. 7, 12735 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  93. Monosov, I. E. & Hikosaka, O. Selective and graded coding of reward uncertainty by neurons in the primate anterodorsal septal region. Nat. Neurosci. 16, 756–762 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Piray, P. & Daw, N. D. A model for learning based on the joint estimation of stochasticity and volatility. Nat. Commun. 12, 6587 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  95. Abdar, M. et al. A review of uncertainty quantification in deep learning: techniques, applications and challenges. Inf. Fusion 76, 243–297 (2021).

    Article  Google Scholar 

  96. Behrens, T. E., Woolrich, M. W., Walton, M. E. & Rushworth, M. F. Learning the value of information in an uncertain world. Nat. Neurosci. 10, 1214–1221 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Mathys, C. D. et al. Uncertainty in perception and the Hierarchical Gaussian Filter. Front. Hum. Neurosci. 8, 825 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Kalman, R. E. A new approach to linear filtering and prediction problems. J. Basic Eng. 82, 35–45 (1960).

    Article  MathSciNet  Google Scholar 

  99. Hanson, S. J. & Burr, D. J. What connectionist models learn: learning and representation in connectionist networks. Behav. Brain Sci. 13, 471–489 (1990).

    Article  Google Scholar 

  100. Christensen, A. J., Ott, T. & Kepecs, A. Cognition and the single neuron: how cell types construct the dynamic computations of frontal cortex. Curr. Opin. Neurobiol. 77, 102630 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Dubreuil, A., Valente, A., Beiran, M., Mastrogiuseppe, F. & Ostojic, S. The role of population structure in computations through neural dynamics. Nat. Neurosci. 25, 783–794 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Flesch, T., Juechems, K., Dumbalska, T., Saxe, A. & Summerfield, C. Orthogonal representations for robust context-dependent task performance in brains and neural networks. Neuron 110, 1258–1270.e11 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Jazayeri, M. & Movshon, J. A. Optimal representation of sensory information by neural populations. Nat. Neurosci. 9, 690–696 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Pouget, A., Drugowitsch, J. & Kepecs, A. Confidence and certainty: distinct probabilistic quantities for different goals. Nat. Neurosci. 19, 366–374 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Schmolesky, M. T. et al. Signal timing across the macaque visual system. J. Neurophysiol. 79, 3272–3278 (1998).

    Article  CAS  PubMed  Google Scholar 

  106. Dekleva, B., Ramkumar, P., Wanda, P., Kording, K. & Miller, L. The neural representation of likelihood uncertainty in the motor system. eLife 5, e14316 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Khamassi, M., Quilodran, R., Enel, P., Dominey, P. F. & Procyk, E. Behavioral regulation and the modulation of information coding in the lateral prefrontal and cingulate cortex. Cereb. Cortex 25, 3197–3218 (2015).

    Article  PubMed  Google Scholar 

  108. Stoll, F. M., Fontanier, V. & Procyk, E. Specific frontal neural dynamics contribute to decisions to check. Nat. Commun. 7, 11990 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  109. White, J. K. et al. A neural network for information seeking. Nat. Commun. 10, 5168 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  110. Hong, H., Yamins, D. L., Majaj, N. J. & DiCarlo, J. J. Explicit information for category-orthogonal object properties increases along the ventral stream. Nat. Neurosci. 19, 613–622 (2016).

    Article  CAS  PubMed  Google Scholar 

  111. DiCarlo, J. J., Zoccolan, D. & Rust, N. C. How does the brain solve visual object recognition? Neuron 73, 415–434 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Cisek, P. Making decisions through a distributed consensus. Curr. Opin. Neurobiol. 22, 927–936 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. Thura, D. & Cisek, P. Deliberation and commitment in the premotor and primary motor cortex during dynamic decision making. Neuron 81, 1401–1416 (2014).

    Article  CAS  PubMed  Google Scholar 

  114. Russo, A. A. et al. Motor cortex embeds muscle-like commands in an untangled population response. Neuron 97, 953–966.e8 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Monosov, I. E. & Rushworth, M. F. Interactions between ventrolateral prefrontal and anterior cingulate cortex during learning and behavioural change. Neuropsychopharmacology 47, 196–210 (2022).

    Article  PubMed  Google Scholar 

  116. Sallet, J. et al. Expectations, gains, and losses in the anterior cingulate cortex. Cogn. Affect. Behav. Neurosci. 7, 327–336 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Quilodran, R., Rothe, M. & Procyk, E. Behavioral shifts and action valuation in the anterior cingulate cortex. Neuron 57, 314–325 (2008).

    Article  CAS  PubMed  Google Scholar 

  118. Taghizadeh, B. et al. Reward uncertainty asymmetrically affects information transmission within the monkey fronto-parietal network. Commun. Biol. 3, 594 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Horan, M., Daddaoua, N. & Gottlieb, J. Parietal neurons encode information sampling based on decision uncertainty. Nat. Neurosci. 22, 1327–1335 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Daddaoua, N., Lopes, M. & Gottlieb, J. Intrinsically motivated oculomotor exploration guided by uncertainty reduction and conditioned reinforcement in non-human primates. Sci. Rep. 6, 20202 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  121. Haber, S. N., Lehman, J., Maffei, C. & Yendiki, A. The rostral zona incerta: a subcortical integrative hub and potential DBS target for OCD. Biol. Psychiatry 93, 1010–1022 (2022).

    Article  Google Scholar 

  122. Bromberg-Martin, E. S. & Hikosaka, O. Midbrain dopamine neurons signal preference for advance information about upcoming rewards. Neuron 63, 119–126 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Gottlieb, J. Attention, learning, and the value of information. Neuron 76, 281–295 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Berlyne, D. E. Uncertainty and conflict: a point of contact between information-theory and behavior-theory concepts. Psychol. Rev. 64, 329–339 (1957).

    Article  Google Scholar 

  125. Hong, S. & Hikosaka, O. The globus pallidus sends reward-related signals to the lateral habenula. Neuron 60, 720–729 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Haber, S. N., Lynd-Balta, E. & Mitchell, S. J. The organization of the descending ventral pallidal projections in the monkey. J. Comp. Neurol. 329, 111–128 (1993).

    Article  CAS  PubMed  Google Scholar 

  127. Haber, S. N. & Knutson, B. The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology 35, 4–26 (2010).

    Article  PubMed  Google Scholar 

  128. Tooley, J. et al. Glutamatergic ventral pallidal neurons modulate activity of the habenula–tegmental circuitry and constrain reward seeking. Biol. Psychiatry 83, 1012–1023 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Wulff, A. B., Tooley, J., Marconi, L. J. & Creed, M. C. Ventral pallidal modulation of aversion processing. Brain Res. 1713, 62–69 (2019).

    Article  CAS  PubMed  Google Scholar 

  130. Blanchard, T. C., Hayden, B. Y. & Bromberg-Martin, E. S. Orbitofrontal cortex uses distinct codes for different choice attributes in decisions motivated by curiosity. Neuron 85, 602–614 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Bussell, J. J. et al. Representations of information value in mouse orbitofrontal cortex during information seeking. Preprint at bioRxiv https://doi.org/10.1101/2023.10.13.562291 (2023).

  132. Wallace, M. L. et al. Genetically distinct parallel pathways in the entopeduncular nucleus for limbic and sensorimotor output of the basal ganglia. Neuron 94, 138–152.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Feng, Y.-Y., Bromberg-Martin, E. S. & Monosov, I. E. Dorsal raphe neurons signal integrated value during multi-attribute decision-making. Preprint at bioRxiv https://doi.org/10.1101/2023.08.17.553745 (2023).

  134. Stuber, G. D., Hnasko, T. S., Britt, J. P., Edwards, R. H. & Bonci, A. Dopaminergic terminals in the nucleus accumbens but not the dorsal striatum corelease glutamate. J. Neurosci. 30, 8229–8233 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Chuhma, N. et al. Dopamine neurons mediate a fast excitatory signal via their glutamatergic synapses. J. Neurosci. 24, 972–981 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Varga, V. et al. Fast synaptic subcortical control of hippocampal circuits. Science 326, 449–453 (2009).

    Article  CAS  PubMed  Google Scholar 

  137. Yamamoto, S., Monosov, I. E., Yasuda, M. & Hikosaka, O. What and where information in the caudate tail guides saccades to visual objects. J. Neurosci. 32, 11005–11016 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Ogawa, S. K., Cohen, J. Y., Hwang, D., Uchida, N. & Watabe-Uchida, M. Organization of monosynaptic inputs to the serotonin and dopamine neuromodulatory systems. Cell Rep. 8, 1105–1118 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Menegas, W. et al. Dopamine neurons projecting to the posterior striatum form an anatomically distinct subclass. eLife 4, e10032 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Ghosh, S. & Zador, A. M. Corticostriatal plasticity established by initial learning persists after behavioral reversal. eNeuro https://doi.org/10.1523/ENEURO.0209-20.2021 (2021).

  141. Foley, N. C., Jangraw, D. C., Peck, C. & Gottlieb, J. Novelty enhances visual salience independently of reward in the parietal lobe. J. Neurosci. 34, 7947–7957 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Dunsmoor, J. E., Campese, V. D., Ceceli, A. O., LeDoux, J. E. & Phelps, E. A. Novelty-facilitated extinction: providing a novel outcome in place of an expected threat diminishes recovery of defensive responses. Biol. Psychiatry 78, 203–209 (2015).

    Article  PubMed  Google Scholar 

  143. Thakral, P. P., Sarah, S. Y. & Rugg, M. D. The hippocampus is sensitive to the mismatch in novelty between items and their contexts. Brain Res. 1602, 144–152 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Arriaga, M. & Han, E. B. Structured inhibitory activity dynamics in new virtual environments. eLife 8, e47611 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Burns, L. H., Annett, L., Kelly, A. E., Everitt, B. J. & Robbins, T. W. Effects of lesions to amygdala, ventral subiculum, medial prefrontal cortex, and nucleus accumbens on the reaction to novelty: implications for limbic–striatal interactions. Behav. Neurosci. 110, 60 (1996).

    Article  CAS  PubMed  Google Scholar 

  146. Knight, R. T. Contribution of human hippocampal region to novelty detection. Nature 383, 256–259 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  147. Park, A. J. et al. Reset of hippocampal–prefrontal circuitry facilitates learning. Nature 591, 615–619 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  148. Chen, S. et al. A hypothalamic novelty signal modulates hippocampal memory. Nature 586, 270–274 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  149. Samborska, V., Butler, J. L., Walton, M. E., Behrens, T. E. & Akam, T. Complementary task representations in hippocampus and prefrontal cortex for generalizing the structure of problems. Nat. Neurosci. 25, 1314–1326 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Boorman, E. D., Rajendran, V. G., O’Reilly, J. X. & Behrens, T. E. Two anatomically and computationally distinct learning signals predict changes to stimulus-outcome associations in hippocampus. Neuron 89, 1343–1354 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Leopold, D. A. & Averbeck, B. B. Self-tuition as an essential design feature of the brain. Philos. Trans. R. Soc. B 377, 20200530 (2022).

    Article  Google Scholar 

  152. Ten, A., Kaushik, P., Oudeyer, P.-Y. & Gottlieb, J. Humans monitor learning progress in curiosity-driven exploration. Nat. Commun. 12, 5972 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  153. Ballesta, S., Shi, W., Conen, K. E. & Padoa-Schioppa, C. Values encoded in orbitofrontal cortex are causally related to economic choices. Nature 588, 450–453 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  154. Hong, S., Jhou, T. C., Smith, M., Saleem, K. S. & Hikosaka, O. Negative reward signals from the lateral habenula to dopamine neurons are mediated by rostromedial tegmental nucleus in primates. J. Neurosci. 31, 11457–11471 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Pisula, W. Curiosity and Information Seeking in Animal and Human Behavior 2nd edn (BrownWalker, 2020).

  156. Greenberg, G., Partridge, T., Weiss, E. & Pisula, W. Comparative psychology, a new perspective for the 21st century: up the spiral staircase. Devel. Psychobiol. https://doi.org/10.1002/dev.10153 (2004).

    Article  Google Scholar 

  157. Nussenbaum, K. & Hartley, C. A. Reinforcement learning across development: what insights can we draw from a decade of research? Dev. Cogn. Neurosci. 40, 100733 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Gopnik, A. Childhood as a solution to explore–exploit tensions. Philos. Trans. R. Soc. B 375, 20190502 (2020).

    Article  Google Scholar 

  159. Somerville, L. H. et al. Charting the expansion of strategic exploratory behavior during adolescence. J. Exp. Psychol. Gen. 146, 155 (2017).

    Article  PubMed  Google Scholar 

  160. Meder, B., Wu, C. M., Schulz, E. & Ruggeri, A. Development of directed and random exploration in children. Dev. Sci. 24, e13095 (2021).

    Article  PubMed  Google Scholar 

  161. Chu, J. & Schulz, L. E. Play, curiosity, and cognition. Annu. Rev. Dev. Psychol. 2, 317–343 (2020).

    Article  Google Scholar 

  162. Neuringer, A. Operant variability: evidence, functions, and theory. Psychon. Bull. Rev. 9, 672–705 (2002).

    Article  PubMed  Google Scholar 

  163. Fee, M. S. & Goldberg, J. H. A hypothesis for basal ganglia-dependent reinforcement learning in the songbird. Neuroscience 198, 152–170 (2011).

    Article  CAS  PubMed  Google Scholar 

  164. Grill-Spector, K. & Weiner, K. S. The functional architecture of the ventral temporal cortex and its role in categorization. Nat. Rev. Neurosci. 15, 536–548 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Kourtzi, Z. & Connor, C. E. Neural representations for object perception: structure, category, and adaptive coding. Annu. Rev. Neurosci. 34, 45–67 (2011).

    Article  CAS  PubMed  Google Scholar 

  166. Miller, E. K., Freedman, D. J. & Wallis, J. D. The prefrontal cortex: categories, concepts and cognition. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 357, 1123–1136 (2002).

    Article  Google Scholar 

  167. Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annu. Rev. Vis. Sci. 1, 417–446 (2015).

    Article  PubMed  Google Scholar 

  168. Poli, F., Serino, G., Mars, R. & Hunnius, S. Infants tailor their attention to maximize learning. Sci. Adv. 6, eabb5053 (2020).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  169. Kidd, C., Piantadosi, S. T. & Aslin, R. N. The Goldilocks effect: human infants allocate attention to visual sequences that are neither too simple nor too complex. PLoS One 7, e36399 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  170. Perez, J. & Feigenson, L. Stable individual differences in infants’ responses to violations of intuitive physics. Proc. Natl Acad. Sci. 118, e2103805118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Smith‐Flores, A. S., Perez, J., Zhang, M. H. & Feigenson, L. Online measures of looking and learning in infancy. Infancy 27, 4–24 (2022).

    Article  PubMed  Google Scholar 

  172. Yu, C. & Smith, L. B. Embodied attention and word learning by toddlers. Cognition 125, 244–262 (2012).

    Article  PubMed  Google Scholar 

  173. Yu, C. & Smith, L. B. Joint attention without gaze following: human infants and their parents coordinate visual attention to objects through eye-hand coordination. PLoS One 8, e79659 (2013).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  174. Yu, C. & Smith, L. B. The social origins of sustained attention in one-year-old human infants. Curr. Biol. 26, 1235–1240 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Smith, L. B., Jayaraman, S., Clerkin, E. & Yu, C. The developing infant creates a curriculum for statistical learning. Trends Cogn. Sci. 22, 325–336 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Gibson, E. J. & Collins, W. in The Concept of Development: the Minnesota Symposia on Child Psychology 1st edn, Vol. 15 (ed. Collins, W. A.) 55–81 (Psychology Press, 1982).

  177. Hirsh, J. B., Mar, R. A. & Peterson, J. B. Psychological entropy: a framework for understanding uncertainty-related anxiety. Psychol. Rev. 119, 304–320 (2012).

    Article  PubMed  Google Scholar 

  178. Cheng, K.-H. & Tsai, C.-C. Affordances of augmented reality in science learning: suggestions for future research. J. Sci. Educ. Technol. 22, 449–462 (2013).

    Article  CAS  Google Scholar 

  179. Thill, S., Caligiore, D., Borghi, A. M., Ziemke, T. & Baldassarre, G. Theories and computational models of affordance and mirror systems: an integrative review. Neurosci. Biobehav. Rev. 37, 491–521 (2013).

    Article  PubMed  Google Scholar 

  180. Jamone, L. et al. Affordances in psychology, neuroscience, and robotics: a survey. IEEE Trans. Cogn. Dev. Syst. 10, 4–25 (2016).

    Article  Google Scholar 

  181. Bharadhwaj, H., Gupta, A. & Tulsiani, S. Visual affordance prediction for guiding robot exploration. Preprint at arXiv https://arxiv.org/abs/2305.17783 (2023).

  182. Rutler, O. et al. Mice require proprioception to establish long-term visuospatial memory. Preprint at bioRxiv, https://doi.org/10.1101/2023.10.03.560558 (2023).

  183. Hartley, C. A. How do natural environments shape adaptive cognition across the lifespan? Trends Cogn. Sci. 26, 1029–1030 (2022).

    Article  PubMed  Google Scholar 

  184. Henderson, B. & Moore, S. G. Children’s responses to objects differing in novelty in relation to level of curiosity and adult behavior. Child Dev. 51, 457–465 (1980).

    Article  Google Scholar 

  185. Blanco, N. J. & Sloutsky, V. M. Systematic exploration and uncertainty dominate young children’s choices. Dev. Sci. 24, e13026 (2021).

    Article  PubMed  Google Scholar 

  186. Gershman, S. J. Deconstructing the human algorithms for exploration. Cognition 173, 34–42 (2018).

    Article  PubMed  Google Scholar 

  187. Wang, J., Yang, Y., Macias, C. & Bonawitz, E. Children with more uncertainty in their intuitive theories seek domain-relevant information. Psychol. Sci. 32, 1147–1156 (2021).

    Article  PubMed  Google Scholar 

  188. Molinaro, G., Cogliati Dezza, I., Bühler, S. K., Moutsiana, C. & Sharot, T. Multifaceted information-seeking motives in children. Nat. Commun. 14, 5505 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This Review was written while on sabbatical at INSERM (Lyon, France) and in part supported by the Neurodis Foundation from July through December of 2022. The author thanks CNRS and INSERM, and particularly the team of E. Procyk, for the intellectual stimulation and hospitality during this time. Gratitude is also expressed to the Department of Neuroscience at Washington University School of Medicine that has supported me on the scientific journey that led to this research, particularly A. Bonni for his initial support and advice. This work was supported by the National Institute of Mental Health under award numbers R01MH128344, R01MH110594 and R01MH116937, by Conte Center on the Neurocircuitry of OCD MH10643 and by the McKnight Foundation. This Review is based on the brilliant and brave work of the past and current members of my laboratory, and in particular, I thank K. Kocher for providing fantastic and caring animal care, J. Kael White for discovering neural representations of uncertainty in the basal ganglia and linking them directly to the anticipation of information gain, E. S. Bromberg-Martin and Y.-Y. Feng for discovering the behavioural and neural algorithms that guide uncertainty reducing information gathering, T. Ogasawara for finding the neural circuit that regulates perceptual novelty seeking, K. Zhang for his efforts to assess the heterogenous nature of novelty detection in the primate brain, and E. S. Bromberg-Martin and F. Sogukpinar for the many interesting discussions of evolutionary models of curiosity. I am grateful to the current members of my laboratory and P. Dayan, C. Hartley, E. Procyk and G. Tavoni for the insightful, detailed and critical comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilya E. Monosov.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks Flores de Lange, who co-reviewed with Eva Berlot, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monosov, I.E. Curiosity: primate neural circuits for novelty and information seeking. Nat. Rev. Neurosci. 25, 195–208 (2024). https://doi.org/10.1038/s41583-023-00784-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-023-00784-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing