Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neurostimulation for treatment of post-stroke impairments

Abstract

Neurostimulation, the use of electrical stimulation to modulate the activity of the nervous system, is now commonly used for the treatment of chronic pain, movement disorders and epilepsy. Many neurostimulation techniques have now shown promise for the treatment of physical impairments in people with stroke. In 2021, vagus nerve stimulation was approved by the FDA as an adjunct to intensive rehabilitation therapy for the treatment of chronic upper extremity deficits after ischaemic stroke. In 2024, pharyngeal electrical stimulation was conditionally approved by the UK National Institute for Health and Care Excellence for neurogenic dysphagia in people with stroke who have a tracheostomy. Many other approaches have also been tested in pivotal device trials and a number of approaches are in early-phase study. Typically, neurostimulation techniques aim to increase neuroplasticity in response to training and rehabilitation, although the putative mechanisms of action differ and are not fully understood. Neurostimulation techniques offer a number of practical advantages for use after stroke, such as precise dosing and timing, but can be invasive and costly to implement. This Review focuses on neurostimulation techniques that are now in clinical use or that have reached the stage of pivotal trials and show considerable promise for the treatment of post-stroke impairments.

Key points

  • Neurostimulation techniques are ideally suited for use during stroke recovery owing to their ability to target anatomical structures or neuronal networks, alongside precise timing and dosing.

  • Paired invasive vagus nerve stimulation has been shown to increase the number of people who achieve clinically important improvements in upper extremity impairment and performance of functional tasks following stroke. The treatment is now in clinical use in the USA.

  • Several other neurostimulation techniques show promise for post-stroke impairments but definitive data from adequately powered trials are lacking.

  • Pharyngeal electrical stimulation increases the odds of decannulation following tracheostomy and is under investigation as a treatment for post-stroke dysphagia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Neurostimulation techniques for stroke-related impairments.

Similar content being viewed by others

References

  1. Goyal, M. et al. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet 387, 1723–1731 (2016).

    Article  PubMed  Google Scholar 

  2. Pinho, J., Costa, A. S., Araújo, J. M., Amorim, J. M. & Ferreira, C. Intracerebral hemorrhage outcome: a comprehensive update. J. Neurol. Sci. 398, 54–66 (2019).

    Article  PubMed  Google Scholar 

  3. The National Institute for Health and Care Excellence. Stroke Rehabilitation in Adults. NICE Guideline NG236 https://www.nice.org.uk/guidance/ng236 (2023).

  4. Dawson, J. et al. Vagus nerve stimulation paired with rehabilitation for upper limb motor function after ischaemic stroke (VNS-REHAB): a randomised, blinded, pivotal, device trial. Lancet 397, 1545–1553 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bornstein, N. M. et al. An injectable implant to stimulate the sphenopalatine ganglion for treatment of acute ischaemic stroke up to 24 h from onset (ImpACT-24B): an international, randomised, double-blind, sham-controlled, pivotal trial. Lancet 394, 219–229 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Levi, H. et al. Stimulation of the sphenopalatine ganglion induces reperfusion and blood-brain barrier protection in the photothrombotic stroke model. PLoS One 7, e39636 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Seylaz, J. et al. Effect of stimulation of the sphenopalatine ganglion on cortical blood flow in the rat. J. Cereb. Blood Flow. Metab. 8, 875–878 (1988).

    Article  CAS  PubMed  Google Scholar 

  8. Jackson, A. & Zimmermann, J. B. Neural interfaces for the brain and spinal cord — restoring motor function. Nat. Rev. Neurol. 8, 690–699 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Denison, T. & Morrell, M. J. Neuromodulation in 2035: the neurology future forecasting series. Neurology 98, 65–72 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Biasiucci, A. et al. Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke. Nat. Commun. 9, 2421 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wade, D. T., Langton-Hewer, R., Wood, V. A., Skilbeck, C. E. & Ismail, H. M. The hemiplegic arm after stroke: measurement and recovery. J. Neurol. Neurosurg. Psychiatry 46, 521–524 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Baker, K. B. et al. Cerebellar deep brain stimulation for chronic post-stroke motor rehabilitation: a phase I trial. Nat. Med. 29, 2366–2374 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ward, N. S. Restoring brain function after stroke — bridging the gap between animals and humans. Nat. Rev. Neurol. 13, 244–255 (2017).

    Article  PubMed  Google Scholar 

  14. Townsley, R. B. & Hilmi, O. J. The use of nerve monitoring in the placement of vagal nerve stimulators. Clin. Otolaryngol. 42, 959–961 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. U.S. Food and Drug Administration. FDA News Release: FDA Approves First-of-Its-Kind Stroke Rehabilitation System https://www.fda.gov/news-events/press-announcements/fda-approves-first-its-kind-stroke-rehabilitation-system (2021).

  16. Hulsey, D. R. et al. Parametric characterization of neural activity in the locus coeruleus in response to vagus nerve stimulation. Exp. Neurol. 289, 21–30 (2017).

    Article  PubMed  Google Scholar 

  17. Manta, S., Dong, J., Debonnel, G. & Blier, P. Enhancement of the function of rat serotonin and norepinephrine neurons by sustained vagus nerve stimulation. J. Psychiatry Neurosci. 34, 272–280 (2009).

    PubMed  PubMed Central  Google Scholar 

  18. Engineer, N. D. et al. Reversing pathological neural activity using targeted plasticity. Nature 470, 101–104 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Khodaparast, N. et al. Vagus nerve stimulation during rehabilitative training improves forelimb strength following ischemic stroke. Neurobiol. Dis. 60, 80–88 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Khodaparast, N. et al. Vagus nerve stimulation during rehabilitative training improves forelimb recovery after chronic ischemic stroke in rats. Neurorehabil. Neural Repair 30, 676–684 (2016).

    Article  PubMed  Google Scholar 

  21. Hays, S. A. et al. Vagus nerve stimulation during rehabilitative training enhances recovery of forelimb function after ischemic stroke in aged rats. Neurobiol. Aging 43, 111–118 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hays, S. A. et al. Vagus nerve stimulation during rehabilitative training improves functional recovery after intracerebral hemorrhage. Stroke 45, 3097–3100 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Meyers, E. C. et al. Vagus nerve stimulation enhances stable plasticity and generalization of stroke recovery. Stroke 49, 710–717 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bowles, S. et al. Vagus nerve stimulation drives selective circuit modulation through cholinergic reinforcement. Neuron https://doi.org/10.1016/j.neuron.2022.06.017 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Dawson, J. et al. Safety, feasibility, and efficacy of vagus nerve stimulation paired with upper-limb rehabilitation after ischemic stroke. Stroke 47, 143–150 (2016).

    Article  PubMed  Google Scholar 

  26. Kimberley, T. J. et al. Vagus nerve stimulation paired with upper limb rehabilitation after chronic stroke. Stroke 49, 2789–2792 (2018).

    Article  PubMed  Google Scholar 

  27. Dawson, J. et al. Vagus nerve stimulation paired with upper-limb rehabilitation after stroke: one-year follow-up. Neurorehabil. Neural Repair 34, 609–615 (2020).

    Article  PubMed  Google Scholar 

  28. Francisco, G. E. et al. Vagus nerve stimulation paired with upper-limb rehabilitation after stroke: 2- and 3-year follow-up from the pilot study. Arch. Phys. Med. Rehabil. 104, 1180–1187 (2023).

    Article  PubMed  Google Scholar 

  29. Dawson, J. et al. Vagus nerve stimulation paired with rehabilitation for upper limb motor impairment and function after chronic ischemic stroke: subgroup analysis of the randomized, blinded, pivotal, VNS-REHAB device trial. Neurorehabil. Neural Repair 37, 367–373 (2023).

    Article  PubMed  Google Scholar 

  30. Kimberley, T. J. et al. Abstract 150: Vagus nerve stimulation (VNS) paired with upper extremity rehabilitation in chronic stroke: improvements in wrist and hand impairment and function. Stroke 54, A150 (2023).

    Article  Google Scholar 

  31. Kilgard, M. P., Rennaker, R. L., Alexander, J. & Dawson, J. Vagus nerve stimulation paired with tactile training improved sensory function in a chronic stroke patient. NeuroRehabilitation 42, 159–165 (2018).

    Article  PubMed  Google Scholar 

  32. Kimberley, T. J. et al. Vagus nerve stimulation paired with mobility training in chronic ischemic stroke: a case report. Phys. Ther. 103, pzad097 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  33. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04534556 (2020).

  34. Martino, R. et al. Dysphagia after stroke: incidence, diagnosis, and pulmonary complications. Stroke 36, 2756–2763 (2005).

    Article  PubMed  Google Scholar 

  35. Hamdy, S., Rothwell, J. C., Aziz, Q., Singh, K. D. & Thompson, D. G. Long-term reorganization of human motor cortex driven by short-term sensory stimulation. Nat. Neurosci. 1, 64–68 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Hamdy, S. et al. Recovery of swallowing after dysphagic stroke relates to functional reorganization in the intact motor cortex. Gastroenterology 115, 1104–1112 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Fraser, C. et al. Driving plasticity in human adult motor cortex is associated with improved motor function after brain injury. Neuron 34, 831–840 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Fraser, C. et al. Differential changes in human pharyngoesophageal motor excitability induced by swallowing, pharyngeal stimulation, and anesthesia. Am. J. Physiol. Gastrointest. Liver Physiol. 285, G137–144 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Teismann, I. K. et al. Functional oropharyngeal sensory disruption interferes with the cortical control of swallowing. BMC Neurosci. 8, 62 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  40. The National Institute for Health and Care Excellence (NICE). Pharyngeal Electrical Stimulation for Neurogenic Dysphagia. Interventional Procedures Guidance [IPG781]. https://www.nice.org.uk/guidance/ipg781 (2024).

  41. Jayasekeran, V. et al. Adjunctive functional pharyngeal electrical stimulation reverses swallowing disability after brain lesions. Gastroenterology 138, 1737–1746.e32 (2010).

    Article  PubMed  Google Scholar 

  42. Vasant, D. H. et al. Pharyngeal electrical stimulation in dysphagia poststroke: a prospective, randomized single-blinded interventional study. Neurorehabil. Neural Repair 30, 866–875 (2016).

    Article  PubMed  Google Scholar 

  43. Scutt, P., Lee, H. S., Hamdy, S. & Bath, P. M. Pharyngeal electrical stimulation for treatment of poststroke dysphagia: individual patient data meta-analysis of randomised controlled trials. Stroke Res. Treat. 2015, 429053 (2015).

    PubMed  PubMed Central  Google Scholar 

  44. Bath, P. M. et al. Pharyngeal electrical stimulation for treatment of dysphagia in subacute stroke. Stroke 47, 1562–1570 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Suntrup, S. et al. Electrical pharyngeal stimulation for dysphagia treatment in tracheotomized stroke patients: a randomized controlled trial. Intensive Care Med. 41, 1629–1637 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Dziewas, R. et al. Pharyngeal electrical stimulation for early decannulation in tracheotomised patients with neurogenic dysphagia after stroke (PHAST-TRAC): a prospective, single-blinded, randomised trial. Lancet Neurol. 17, 849–859 (2018).

    Article  PubMed  Google Scholar 

  47. Dennis, M. Pharyngeal stimulation after stroke: more evidence is needed. Lancet Neurol. 17, 830–831 (2018).

    Article  PubMed  Google Scholar 

  48. Bath, P. Electrical stimulation of the throat for swallowing difficulties after stroke. ISRCTN https://doi.org/10.1186/ISRCTN98886991 (2022).

    Article  Google Scholar 

  49. Baig, S. S. et al. Transcutaneous auricular vagus nerve stimulation with upper limb repetitive task practice may improve sensory recovery in chronic stroke. J. Stroke Cerebrovasc. Dis. 28, 104348 (2019).

    Article  PubMed  Google Scholar 

  50. Badran, B. W. et al. Neurophysiologic effects of transcutaneous auricular vagus nerve stimulation (taVNS) via electrical stimulation of the tragus: a concurrent taVNS/fMRI study and review. Brain Stimul. 11, 492–500 (2018).

    Article  PubMed  Google Scholar 

  51. de Melo, P. S. et al. Understanding the neuroplastic effects of auricular vagus nerve stimulation in animal models of stroke: a systematic review and meta-analysis. Neurorehabil. Neural Repair 37, 564–576 (2023).

    Article  PubMed  Google Scholar 

  52. Redgrave, J. N. et al. Transcutaneous auricular vagus nerve stimulation with concurrent upper limb repetitive task practice for poststroke motor recovery: a pilot study. J. Stroke Cerebrovasc. Dis. 27, 1998–2005 (2018).

    Article  PubMed  Google Scholar 

  53. Wu, D. et al. Effect and safety of transcutaneous auricular vagus nerve stimulation on recovery of upper limb motor function in subacute ischemic stroke patients: a randomized pilot study. Neural Plast. 2020, 8841752 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Capone, F. et al. Transcutaneous vagus nerve stimulation combined with robotic rehabilitation improves upper limb function after stroke. Neural Plast. 2017, 7876507 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Li, J. N. et al. Efficacy and safety of transcutaneous auricular vagus nerve stimulation combined with conventional rehabilitation training in acute stroke patients: a randomized controlled trial conducted for 1 year involving 60 patients. Neural Regen. Res. 17, 1809–1813 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Chang, J. L. et al. Transcutaneous auricular vagus nerve stimulation (tAVNS) delivered during upper limb interactive robotic training demonstrates novel antagonist control for reaching movements following stroke. Front. Neurosci. 15, 767302 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Subrahmanyamc, S. Effectiveness of transcutaneous electrical stimulation of vagus nerve among post stroke urinary incontinence. Eur. J. Mol. Clin. Med. 7, 3895–3913 (2020).

    Google Scholar 

  58. Wang, Y. et al. Effect of transcutaneous auricular vagus nerve stimulation on post-stroke dysphagia. J. Neurol. 270, 995–1003 (2023).

    Article  PubMed  Google Scholar 

  59. Arsava, E. M. et al. Assessment of safety and feasibility of non-invasive vagus nerve stimulation for treatment of acute stroke. Brain Stimul. 15, 1467–1474 (2022).

    Article  PubMed  Google Scholar 

  60. Fitzgerald, P. B., Fountain, S. & Daskalakis, Z. J. A comprehensive review of the effects of rTMS on motor cortical excitability and inhibition. Clin. Neurophysiol. 117, 2584–2596 (2006).

    Article  PubMed  Google Scholar 

  61. Maeda, F., Keenan, J. P., Tormos, J. M., Topka, H. & Pascual-Leone, A. Interindividual variability of the modulatory effects of repetitive transcranial magnetic stimulation on cortical excitability. Exp. Brain Res. 133, 425–430 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Krogh, S., Jønsson, A. B., Aagaard, P. & Kasch, H. Efficacy of repetitive transcranial magnetic stimulation for improving lower limb function in individuals with neurological disorders: a systematic review and meta-analysis of randomized sham-controlled trials. J. Rehabil. Med. 54, jrm00256 (2022).

    Article  PubMed  Google Scholar 

  63. Li, L. et al. Systematic review and network meta-analysis of noninvasive brain stimulation on dysphagia after stroke. Neural Plast. 2021, 3831472 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Arheix-Parras, S. et al. A systematic review of repetitive transcranial magnetic stimulation in aphasia rehabilitation: leads for future studies. Neurosci. Biobehav. Rev. 127, 212–241 (2021).

    Article  PubMed  Google Scholar 

  65. Liampas, A. et al. Prevalence and management challenges in central post-stroke neuropathic pain: a systematic review and meta-analysis. Adv. Ther. 37, 3278–3291 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Liu, M., Bao, G., Bai, L. & Yu, E. The role of repetitive transcranial magnetic stimulation in the treatment of cognitive impairment in stroke patients: a systematic review and meta-analysis. Sci. Prog. 104, 368504211004266 (2021).

    Article  PubMed  Google Scholar 

  67. Klomjai, W., Katz, R. & Lackmy-Vallée, A. Basic principles of transcranial magnetic stimulation (TMS) and repetitive TMS (rTMS). Ann. Phys. Rehabil. Med. 58, 208–213 (2015).

    Article  PubMed  Google Scholar 

  68. Ikeda, T., Kobayashi, S. & Morimoto, C. Gene expression microarray data from mouse CBS treated with rTMS for 30 days, mouse cerebrum and CBS treated with rTMS for 40 days. Data Brief. 17, 1078–1081 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Chen, Q. M. et al. Combining inhibitory and facilitatory repetitive transcranial magnetic stimulation (rTMS) treatment improves motor function by modulating GABA in acute ischemic stroke patients. Restor. Neurol. Neurosci. 39, 419–434 (2021).

    CAS  PubMed  Google Scholar 

  70. Cha, B. et al. Therapeutic effect of repetitive transcranial magnetic stimulation for post-stroke vascular cognitive impairment: a prospective pilot study. Front. Neurol. 13, 813597 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Hong, Y. et al. High-frequency repetitive transcranial magnetic stimulation improves functional recovery by inhibiting neurotoxic polarization of astrocytes in ischemic rats. J. Neuroinflammation 17, 150 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hoogendam, J. M., Ramakers, G. M. & Di Lazzaro, V. Physiology of repetitive transcranial magnetic stimulation of the human brain. Brain Stimul. 3, 95–118 (2010).

    Article  PubMed  Google Scholar 

  73. Hsu, W. Y., Cheng, C. H., Liao, K. K., Lee, I. H. & Lin, Y. Y. Effects of repetitive transcranial magnetic stimulation on motor functions in patients with stroke: a meta-analysis. Stroke 43, 1849–1857 (2012).

    Article  PubMed  Google Scholar 

  74. Zhang, L. et al. Short- and long-term effects of repetitive transcranial magnetic stimulation on upper limb motor function after stroke: a systematic review and meta-analysis. Clin. Rehabil. 31, 1137–1153 (2017).

    Article  PubMed  Google Scholar 

  75. Harvey, R. L. et al. Randomized sham-controlled trial of navigated repetitive transcranial magnetic stimulation for motor recovery in stroke. Stroke 49, 2138–2146 (2018).

    Article  PubMed  Google Scholar 

  76. Kim, W. S., Kwon, B. S., Seo, H. G., Park, J. & Paik, N. J. Low-frequency repetitive transcranial magnetic stimulation over contralesional motor cortex for motor recovery in subacute ischemic stroke: a randomized sham-controlled trial. Neurorehabil. Neural Repair 34, 856–867 (2020).

    Article  PubMed  Google Scholar 

  77. Ille, S. et al. Navigated repetitive transcranial magnetic stimulation improves the outcome of postsurgical paresis in glioma patients — a randomized, double-blinded trial. Brain Stimul. 14, 780–787 (2021).

    Article  PubMed  Google Scholar 

  78. Chiu, D. et al. Multifocal transcranial stimulation in chronic ischemic stroke: a phase 1/2a randomized trial. J. Stroke Cerebrovasc. Dis. 29, 104816 (2020).

    Article  PubMed  Google Scholar 

  79. Wischnewski, M. & Schutter, D. J. Efficacy and time course of theta burst stimulation in healthy humans. Brain Stimul. 8, 685–692 (2015).

    Article  PubMed  Google Scholar 

  80. Vink, J. J. T. et al. Continuous theta-burst stimulation of the contralesional primary motor cortex for promotion of upper limb recovery after stroke: a randomized controlled trial. Stroke 54, 1962–1971 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Edwards, J. D. et al. Canadian platform for trials in noninvasive brain stimulation (CanStim) consensus recommendations for repetitive transcranial magnetic stimulation in upper extremity motor stroke rehabilitation trials. Neurorehabil. Neural Repair 35, 103–116 (2021).

    Article  PubMed  Google Scholar 

  82. Rossi, S. et al. Safety and recommendations for TMS use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: expert guidelines. Clin. Neurophysiol. 132, 269–306 (2021).

    Article  PubMed  Google Scholar 

  83. Rossi, S., Hallett, M., Rossini, P. M. & Pascual-Leone, A. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin. Neurophysiol. 120, 2008–2039 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Singh, H. & Neil, L. A. Incidence of side effects in patients receiving repetitive transcranial magnetic stimulation (rTMS). Brain Stimul. 13, 1847–1848 (2020).

    Article  Google Scholar 

  85. Bikson, M. et al. Safety of transcranial direct current stimulation: evidence based update 2016. Brain Stimul. 9, 641–661 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Schlaug, G., Renga, V. & Nair, D. Transcranial direct current stimulation in stroke recovery. Arch. Neurol. 65, 1571–1576 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Yamada, Y. & Sumiyoshi, T. Neurobiological mechanisms of transcranial direct current stimulation for psychiatric disorders; neurophysiological, chemical, and anatomical considerations. Front. Hum. Neurosci. 15, 631838 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Longo, V. et al. Transcranial direct current stimulation enhances neuroplasticity and accelerates motor recovery in a stroke mouse model. Stroke 53, 1746–1758 (2022).

    Article  CAS  PubMed  Google Scholar 

  89. Elsner, B., Kwakkel, G., Kugler, J. & Mehrholz, J. Transcranial direct current stimulation (tDCS) for improving capacity in activities and arm function after stroke: a network meta-analysis of randomised controlled trials. J. Neuroeng. Rehabil. 14, 95 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Van Hoornweder, S. et al. The effects of transcranial direct current stimulation on upper-limb function post-stroke: a meta-analysis of multiple-session studies. Clin. Neurophysiol. 132, 1897–1918 (2021).

    Article  PubMed  Google Scholar 

  91. Edwards, D. J. et al. Clinical improvement with intensive robot-assisted arm training in chronic stroke is unchanged by supplementary tDCS. Restor. Neurol. Neurosci. 37, 167–180 (2019).

    PubMed  Google Scholar 

  92. Chhatbar, P. Y. et al. Transcranial direct current stimulation post-stroke upper extremity motor recovery studies exhibit a dose-response relationship. Brain Stimul. 9, 16–26 (2016).

    Article  PubMed  Google Scholar 

  93. Cordes, D. et al. Efficacy and safety of transcranial direct current stimulation to the ipsilesional motor cortex in subacute stroke (NETS): a multicenter, randomized, double-blind, placebo-controlled trial. Lancet Reg. Health Europe 38, 100825 (2024).

    Article  Google Scholar 

  94. Elsner, B., Kugler, J., Pohl, M. & Mehrholz, J. Transcranial direct current stimulation (tDCS) for improving aphasia in adults with aphasia after stroke. Cochrane Database Syst. Rev. 5, CD009760 (2019).

    PubMed  Google Scholar 

  95. Cherney, L. R., Erickson, R. K. & Small, S. L. Epidural cortical stimulation as adjunctive treatment for non-fluent aphasia: preliminary findings. J. Neurol. Neurosurg. Psychiatry 81, 1014–1021 (2010).

    Article  PubMed  Google Scholar 

  96. Adkins-Muir, D. L. & Jones, T. A. Cortical electrical stimulation combined with rehabilitative training: enhanced functional recovery and dendritic plasticity following focal cortical ischemia in rats. Neurol. Res. 25, 780–788 (2003).

    Article  PubMed  Google Scholar 

  97. Plautz, E. J. et al. Post-infarct cortical plasticity and behavioral recovery using concurrent cortical stimulation and rehabilitative training: a feasibility study in primates. Neurol. Res. 25, 801–810 (2003).

    Article  PubMed  Google Scholar 

  98. Brown, J. A., Lutsep, H. L., Weinand, M. & Cramer, S. C. Motor cortex stimulation for the enhancement of recovery from stroke: a prospective, multicenter safety study. Neurosurgery 58, 464–473 (2006).

    Article  PubMed  Google Scholar 

  99. Levy, R. et al. Cortical stimulation for the rehabilitation of patients with hemiparetic stroke: a multicenter feasibility study of safety and efficacy. J. Neurosurg. 108, 707–714 (2008).

    Article  PubMed  Google Scholar 

  100. Levy, R. M. et al. Epidural electrical stimulation for stroke rehabilitation: results of the prospective, multicenter, randomized, single-blinded Everest trial. Neurorehabil. Neural Repair 30, 107–119 (2016).

    Article  PubMed  Google Scholar 

  101. Powell, M. P. et al. Epidural stimulation of the cervical spinal cord for post-stroke upper-limb paresis. Nat. Med. 29, 689–699 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Angeli, C. A., Edgerton, V. R., Gerasimenko, Y. P. & Harkema, S. J. Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans. Brain 137, 1394–1409 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Kumar, P., Kathuria, P., Nair, P. & Prasad, K. Prediction of upper limb motor recovery after subacute ischemic stroke using diffusion tensor imaging: a systematic review and meta-analysis. J. Stroke 18, 50–59 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Stinear, C. M. et al. PREP2: a biomarker-based algorithm for predicting upper limb function after stroke. Ann. Clin. Transl. Neurol. 4, 811–820 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Macklin, R. The ethical problems with sham surgery in clinical research. N. Engl. J. Med. 341, 992–996 (1999).

    Article  CAS  PubMed  Google Scholar 

  106. Sterne, J. A., Egger, M. & Smith, G. D. Systematic reviews in health care: investigating and dealing with publication and other biases in meta-analysis. BMJ 323, 101–105 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

J.D. and A.H.A.-R. researched data for the article. All authors contributed substantially to discussion of the content and wrote the article. J.D. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Jesse Dawson.

Ethics declarations

Competing interests

J.D. and T.J.K. have received reimbursement for travel expenses from MicroTransponder Inc. for attendance at conferences to present vagus nerve stimulation trial data. A.H.A.-R. declares no conflict of interests. There was no external funding for this Review.

Peer review

Peer review information

Nature Reviews Neurology thanks Winston Byblow, Seth Hays and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dawson, J., Abdul-Rahim, A.H. & Kimberley, T.J. Neurostimulation for treatment of post-stroke impairments. Nat Rev Neurol (2024). https://doi.org/10.1038/s41582-024-00953-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41582-024-00953-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing