Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Materials consideration for the design, fabrication and operation of microscale robots

Abstract

Microscale robots have been the focus of extensive research efforts resulting in various innovative developments that broaden their capabilities and applications. The rational design of materials has been the cornerstone for developing and innovating microscale robots, and breakthroughs in materials science are expected to further push the boundaries of this field. This Review provides an overview of the design principles and material selection for the propulsion and operation of microrobots. The fundamental mechanisms governing the motion of microrobots are first introduced, followed by the material design strategies enabling efficient and controllable propulsion. We highlight the use of diverse reactive and responsive materials in realizing the advanced functionalities and capabilities of microrobots, cover representative biomedical and environmental applications and discuss how future material innovations will impact the development of next-generation microscale robots.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematics showing the basic design principles of microrobots/nanorobots.
Fig. 2: Motion-control strategies for microrobots/nanorobots.
Fig. 3: Other materials considerations.
Fig. 4: The typical fabrication process of microrobots/nanorobots.
Fig. 5: Representative applications of microscale robots.

Similar content being viewed by others

References

  1. Wang, J. Will future microbots be task-specific customized machines or multi-purpose ‘all in one’ vehicles? Nat. Commun. 12, 7125 (2021).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  2. Urso, M., Ussia, M. & Pumera, M. Smart micro- and nanorobots for water purification. Nat. Rev. Bioeng. 1, 236–251 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Li, J., Esteban-Fernández de Ávila, B., Gao, W., Zhang, L. & Wang, J. Micro/nanorobots for biomedicine: delivery, surgery, sensing, and detoxification. Sci. Robot. 2, eaam6431 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Yoo, J., Tang, S. & Gao, W. Micro- and nanorobots for biomedical applications in the brain. Nat. Rev. Bioeng. 1, 308–310 (2023).

    Article  Google Scholar 

  5. Guix, M., Mayorga-Martinez, C. C. & Merkoçi, A. Nano/micromotors in (bio)chemical science applications. Chem. Rev. 114, 6285–6322 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Karshalev, E., Esteban-Fernández de Ávila, B. & Wang, J. Micromotors for ‘chemistry-on-the-fly’. J. Am. Chem. Soc. 140, 3810–3820 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Soto, F. et al. Smart materials for microrobots. Chem. Rev. 122, 5365–5403 (2022).

    Article  CAS  PubMed  Google Scholar 

  8. Wang, H. & Pumera, M. Emerging materials for the fabrication of micro/nanomotors. Nanoscale 9, 2109–2116 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Purcell, E. M. Life at low Reynolds number. Am. J. Phys. 45, 3–11 (1977).

    Article  ADS  Google Scholar 

  10. Wang, J. Nanomachines: Fundamentals and Applications (Wiley, 2013).

  11. Kumar, M. S. & Philominathan, P. The physics of flagellar motion of E. coli during chemotaxis. Biophys. Rev. 2, 13–20 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Wang, J., Xiong, Z., Zheng, J., Zhan, X. & Tang, J. Light-driven micro/nanomotor for promising biomedical tools: principle, challenge, and prospect. Acc. Chem. Res. 51, 1957–1965 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Zhou, Y. et al. Stimuli-responsive functional micro-/nanorobots: a review. ACS Nano 17, 15254–15276 (2023).

    Article  CAS  PubMed  Google Scholar 

  14. Šípová-Jungová, H., Andrén, D., Jones, S. & Käll, M. Nanoscale inorganic motors driven by light: principles, realizations, and opportunities. Chem. Rev. 120, 269–287 (2020).

    Article  PubMed  Google Scholar 

  15. Liu, T. et al. Controlled propulsion of micro/nanomotors: operational mechanisms, motion manipulation and potential biomedical applications. Chem. Soc. Rev. 51, 10083–10119 (2022).

    Article  CAS  PubMed  Google Scholar 

  16. Peng, F., Tu, Y. & Wilson, D. A. Micro/nanomotors towards in vivo application: cell, tissue and biofluid. Chem. Soc. Rev. 46, 5289–5310 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, B., Zhu, L., Pan, H. & Cai, L. Biocompatible smart micro/nanorobots for active gastrointestinal tract drug delivery. Expert Opin. Drug Deliv. 20, 1427–1441 (2023).

    Article  CAS  PubMed  Google Scholar 

  18. Dong, Y. et al. Magnetic helical micro-/nanomachines: recent progress and perspective. Matter 5, 77–109 (2022).

    Article  CAS  Google Scholar 

  19. Chen, G. et al. Towards the next generation nanorobots. Nanotechnology 2, 100019 (2023).

    Google Scholar 

  20. Sánchez, S., Soler, L. & Katuri, J. Chemically powered micro- and nanomotors. Angew. Chem. Int. Ed. 54, 1414–1444 (2015).

    Article  Google Scholar 

  21. Mathesh, M., Sun, J. & Wilson, D. A. Enzyme catalysis powered micro/nanomotors for biomedical applications. J. Mater. Chem. B 8, 7319–7334 (2020).

    Article  PubMed  Google Scholar 

  22. Paxton, W. F. et al. Catalytic nanomotors: autonomous movement of striped nanorods. J. Am. Chem. Soc. 126, 13424–13431 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Paxton, W. F. et al. Catalytically induced electrokinetics for motors and micropumps. J. Am. Chem. Soc. 128, 14881–14888 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Fournier-Bidoz, S., Arsenault, A. C., Manners, I. & Ozin, G. A. Synthetic self-propelled nanorotors. Chem. Commun. 41, 441–443 (2005).

    Article  Google Scholar 

  25. Kuron, M., Kreissl, P. & Holm, C. Toward understanding of self-electrophoretic propulsion under realistic conditions: from bulk reactions to confinement effects. Acc. Chem. Res. 51, 2998–3005 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Demirok, U. K., Laocharoensuk, R., Manesh, K. M. & Wang, J. Ultrafast catalytic alloy nanomotors. Angew. Chem. Int. Ed. 47, 9349–9351 (2008).

    Article  CAS  Google Scholar 

  27. Laocharoensuk, R., Burdick, J. & Wang, J. Carbon-nanotube-induced acceleration of catalytic nanomotors. ACS Nano 2, 1069–1075 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Pourrahimi, A. M. & Pumera, M. Multifunctional and self-propelled spherical Janus nano/micromotors: recent advances. Nanoscale 10, 16398–16415 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Howse, J. R. et al. Self-motile colloidal particles: from directed propulsion to random walk. Phys. Rev. Lett. 99, 048102 (2007).

    Article  ADS  PubMed  Google Scholar 

  30. Valadares, L. F. et al. Catalytic nanomotors: self-propelled sphere dimers. Small 6, 565–572 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Ebel, J., Anderson, J. L. & Prieve, D. Diffusiophoresis of latex particles in electrolyte gradients. Langmuir 4, 396–406 (1988).

    Article  CAS  Google Scholar 

  32. Wang, W., Duan, W., Ahmed, S., Mallouk, T. E. & Sen, A. Small power: autonomous nano- and micromotors propelled by self-generated gradients. Nano Today 8, 531–554 (2013).

    Article  CAS  Google Scholar 

  33. Ibele, M., Mallouk, T. E. & Sen, A. Schooling behavior of light‐powered autonomous micromotors in water. Angew. Chem. Int. Ed. 121, 3358–3362 (2009).

    Article  ADS  Google Scholar 

  34. Hong, Y., Diaz, M., Córdova-Figueroa, U. M. & Sen, A. Light-driven titanium-dioxide-based reversible microfireworks and micromotor/micropump systems. Adv. Funct. Mater. 20, 1568–1576 (2010).

    Article  CAS  Google Scholar 

  35. Moran, J. L. & Posner, J. D. Phoretic self-propulsion. Annu. Rev. Fluid Mech. 49, 511–540 (2017).

    Article  MathSciNet  ADS  Google Scholar 

  36. Gao, W., Sattayasamitsathit, S., Orozco, J. & Wang, J. Highly efficient catalytic microengines: template electrosynthesis of polyaniline/platinum microtubes. J. Am. Chem. Soc. 133, 11862–11864 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Li, J. et al. Dry-released nanotubes and nanoengines by particle-assisted rolling. Adv. Mater. 25, 3715–3721 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Gao, W. et al. Seawater-driven magnesium based Janus micromotors for environmental remediation. Nanoscale 5, 4696–4700 (2013).

    Article  CAS  ADS  PubMed  Google Scholar 

  39. Mou, F. et al. Self-propelled micromotors driven by the magnesium–water reaction and their hemolytic properties. Angew. Chem. Int. Ed. 52, 7208–7212 (2013).

    Article  CAS  Google Scholar 

  40. Li, J. et al. Enteric micromotor can selectively position and spontaneously propel in the gastrointestinal tract. ACS Nano 10, 9536–9542 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gao, W. et al. Artificial micromotors in the mouse’s stomach: a step toward in vivo use of synthetic motors. ACS Nano 9, 117–123 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Hortelao, A. C. et al. Swarming behavior and in vivo monitoring of enzymatic nanomotors within the bladder. Sci. Robot. 6, eabd2823 (2021).

    Article  PubMed  Google Scholar 

  43. Hortelão, A. C., Carrascosa, R., Murillo-Cremaes, N., Patiño, T. & Sánchez, S. Targeting 3D bladder cancer spheroids with urease-powered nanomotors. ACS Nano 13, 429–439 (2019).

    Article  PubMed  Google Scholar 

  44. Zhou, H., Mayorga-Martinez, C. C., Pané, S., Zhang, L. & Pumera, M. Magnetically driven micro and nanorobots. Chem. Rev. 121, 4999–5041 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Peyer, K. E., Tottori, S., Qiu, F., Zhang, L. & Nelson, B. J. Magnetic helical micromachines. Chem. Eur. J. 19, 28–38 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Tottori, S. et al. Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport. Adv. Mater. 24, 811–816 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Dong, Y. et al. Endoscope-assisted magnetic helical micromachine delivery for biofilm eradication in tympanostomy tube. Sci. Adv. 8, eabq8573 (2022).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  48. Gao, W. et al. Bioinspired helical microswimmers based on vascular plants. Nano Lett. 14, 305–310 (2014).

    Article  CAS  ADS  PubMed  Google Scholar 

  49. Schwarz, L. et al. A rotating spiral micromotor for noninvasive zygote transfer. Adv. Sci. 7, 2000843 (2020).

    Article  CAS  Google Scholar 

  50. You, M., Mou, F., Wang, K. & Guan, J. Tadpole-like flexible microswimmers with the head and tail both magnetic. ACS Appl. Mater. Interfaces 15, 40855–40863 (2023).

    Article  CAS  PubMed  Google Scholar 

  51. Baraban, L. et al. Fuel-free locomotion of Janus motors: magnetically induced thermophoresis. ACS Nano 7, 1360–1367 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Xu, T. et al. Dynamic morphology and swimming properties of rotating miniature swimmers with soft tails. IEEE ASME Trans. Mechatron. 24, 924–934 (2019).

    Article  Google Scholar 

  53. Villa, K. Exploring innovative designs and heterojunctions in photocatalytic micromotors. Chem. Commun. 59, 8375–8383 (2023).

    Article  CAS  Google Scholar 

  54. Maric, T., Nasir, M. Z. M., Webster, R. D. & Pumera, M. Tailoring metal/TiO2 interface to influence motion of light-activated Janus micromotors. Adv. Funct. Mater. 30, 1908614 (2020).

    Article  CAS  Google Scholar 

  55. Ibele, M., Mallouk, T. E. & Sen, A. Schooling behavior of light-powered autonomous micromotors in water. Angew. Chem. Int. Ed. 48, 3308–3312 (2009).

    Article  CAS  Google Scholar 

  56. Dong, R., Zhang, Q., Gao, W., Pei, A. & Ren, B. Highly efficient light-driven TiO2-Au Janus micromotors. ACS Nano 10, 839–844 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Villa, K. et al. Visible-light-driven single-component BiVO4 micromotors with the autonomous ability for capturing microorganisms. ACS Nano 13, 8135–8145 (2019).

    Article  CAS  PubMed  Google Scholar 

  58. Chen, C. et al. Light-steered isotropic semiconductor micromotors. Adv. Mater. 29, 1603374 (2017).

    Article  ADS  Google Scholar 

  59. Jang, B. et al. Multiwavelength light-responsive Au/B-TiO2 Janus micromotors. ACS Nano 11, 6146–6154 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. Dai, B. et al. Programmable artificial phototactic microswimmer. Nat. Nanotechnol. 11, 1087–1092 (2016).

    Article  CAS  ADS  PubMed  Google Scholar 

  61. Tong, J. et al. Bioinspired micro/nanomotor with visible light energy-dependent forward, reverse, reciprocating, and spinning schooling motion. Proc. Natl Acad. Sci. USA 118, e2104481118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang, H. et al. Light-driven biomimetic nanomotors for enhanced photothermal therapy. Small 20, 2306208 (2024).

  63. Shao, J., Cao, S., Williams, D. S., Abdelmohsen, L. K. E. A. & van Hest, J. C. M. Photoactivated polymersome nanomotors: traversing biological barriers. Angew. Chem. Int. Ed. 59, 16918–16925 (2020).

    Article  CAS  Google Scholar 

  64. Zhang, Y. et al. Highly penetrable drug-loaded nanomotors for photothermal-enhanced ferroptosis treatment of tumor. ACS Appl. Mater. Interfaces 15, 14099–14110 (2023).

    CAS  Google Scholar 

  65. Wang, W., Castro, L. A., Hoyos, M. & Mallouk, T. E. Autonomous motion of metallic microrods propelled by ultrasound. ACS Nano 6, 6122–6132 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Ahmed, S. et al. Density and shape effects in the acoustic propulsion of bimetallic nanorod motors. ACS Nano 10, 4763–4769 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Loget, G. & Kuhn, A. Electric field-induced chemical locomotion of conducting objects. Nat. Commun. 2, 535 (2011).

    Article  ADS  PubMed  Google Scholar 

  68. Diwakar, N. M., Kunti, G., Miloh, T., Yossifon, G. & Velev, O. D. AC electrohydrodynamic propulsion and rotation of active particles of engineered shape and asymmetry. Curr. Opin. Colloid Interface Sci. 59, 101586 (2022).

    Article  CAS  Google Scholar 

  69. Li, H. et al. Precise electrokinetic position and three-dimensional orientation control of a nanowire bioprobe in solution. Nat. Nanotechnol. 18, 1213–1221 (2023).

  70. Gangwal, S., Cayre, O. J., Bazant, M. Z. & Velev, O. D. Induced-charge electrophoresis of metallodielectric particles. Phys. Rev. Lett. 100, 058302 (2008).

    Article  ADS  PubMed  Google Scholar 

  71. Calvo-Marzal, P. et al. Propulsion of nanowire diodes. Chem. Commun. 46, 1623–1624 (2010).

    Article  CAS  Google Scholar 

  72. Chang, S. T., Paunov, V. N., Petsev, D. N. & Velev, O. D. Remotely powered self-propelling particles and micropumps based on miniature diodes. Nat. Mater. 6, 235–240 (2007).

    Article  CAS  ADS  PubMed  Google Scholar 

  73. Chen, C., Soto, F., Karshalev, E., Li, J. & Wang, J. Hybrid nanovehicles: one machine, two engines. Adv. Funct. Mater. 29, 1806290 (2019).

    Article  Google Scholar 

  74. Gao, W., Manesh, K. M., Hua, J., Sattayasamitsathit, S. & Wang, J. Hybrid nanomotor: a catalytically/magnetically powered adaptive nanowire swimmer. Small 7, 2047–2051 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Palagi, S. & Fischer, P. Bioinspired microrobots. Nat. Rev. Mater. 3, 113–124 (2018).

    Article  CAS  ADS  Google Scholar 

  76. Felfoul, O. et al. Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nat. Nanotechnol. 11, 941–947 (2016).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  77. Zhang, F. et al. Biohybrid microalgae robots: design, fabrication, materials and applications. Adv. Mater. 36, 2303714 (2024).

  78. Ricotti, L. et al. Biohybrid actuators for robotics: a review of devices actuated by living cells. Sci. Robot. 2, eaaq0495 (2017).

    Article  PubMed  Google Scholar 

  79. Magdanz, V., Sanchez, S. & Schmidt, O. G. Development of a sperm-flagella driven micro-bio-robot. Adv. Mater. 25, 6581–6588 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Weibel, D. B. et al. Microoxen: microorganisms to move microscale loads. Proc. Natl Acad. Sci. USA 102, 11963–11967 (2005).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  81. Yu, S., Cai, Y., Wu, Z. & He, Q. Recent progress on motion control of swimming micro/nanorobots. VIEW 2, 20200113 (2021).

    Article  Google Scholar 

  82. Fusi, A. D. et al. Achieving control in micro/nanomotor mobility. Angew. Chem. Int. Ed. 135, e202214754 (2023).

    Article  Google Scholar 

  83. Wang, J. & Manesh, K. M. Motion control at the nanoscale. Small 6, 338–345 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Teo, W. Z. & Pumera, M. Motion control of micro-/nanomotors. Chem. Eur. J. 22, 14796–14804 (2016).

    Article  CAS  PubMed  Google Scholar 

  85. Kline, T. R., Paxton, W. F., Mallouk, T. E. & Sen, A. Catalytic nanomotors: remote-controlled autonomous movement of striped metallic nanorods. Angew. Chem. Int. Ed. 44, 744–746 (2005).

    Article  CAS  Google Scholar 

  86. Karshalev, E. et al. Utilizing iron’s attractive chemical and magnetic properties in microrocket design, extended motion, and unique performance. Small 13, 1700035 (2017).

    Article  Google Scholar 

  87. Balasubramanian, S. et al. Thermal modulation of nanomotor movement. Small 5, 1569–1574 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Ma, X., Wang, X., Hahn, K. & Sánchez, S. Motion control of urea-powered biocompatible hollow microcapsules. ACS Nano 10, 3597–3605 (2016).

    Article  CAS  PubMed  Google Scholar 

  89. Xu, T. et al. Ultrasound-modulated bubble propulsion of chemically powered microengines. J. Am. Chem. Soc. 136, 8552–8555 (2014).

    Article  CAS  PubMed  Google Scholar 

  90. Palagi, S., Singh, D. P. & Fischer, P. Light-controlled micromotors and soft microrobots. Adv. Opt. Mater. 7, 1900370 (2019).

    Article  Google Scholar 

  91. Chen, C. et al. Chemical/light-powered hybrid micromotors with ‘on-the-fly’ optical brakes. Angew. Chem. Int. Ed. 57, 8110–8114 (2018).

    Article  CAS  ADS  Google Scholar 

  92. Guo, J., Gallegos, J. J., Tom, A. R. & Fan, D. Electric-field-guided precision manipulation of catalytic nanomotors for cargo delivery and powering nanoelectromechanical devices. ACS Nano 12, 1179–1187 (2018).

    Article  CAS  PubMed  Google Scholar 

  93. Magdanz, V., Stoychev, G., Ionov, L., Sanchez, S. & Schmidt, O. G. Stimuli-responsive microjets with reconfigurable shape. Angew. Chem. Int. Ed. 53, 2673–2677 (2014).

    Article  CAS  Google Scholar 

  94. Chen, C. et al. Bioinspired chemical communication between synthetic nanomotors. Angew. Chem. Int. Ed. 57, 241–245 (2018).

    Article  CAS  ADS  Google Scholar 

  95. Wu, Z. et al. Cell-membrane-coated synthetic nanomotors for effective biodetoxification. Adv. Funct. Mater. 25, 3881–3887 (2015).

    Article  CAS  Google Scholar 

  96. Tang, S. et al. Enzyme-powered Janus platelet cell robots for active and targeted drug delivery. Sci. Robot. 5, eaba6137 (2020).

    Article  PubMed  Google Scholar 

  97. Zhang, H. et al. Dual-responsive biohybrid neutrobots for active target delivery. Sci. Robot. 6, eaaz9519 (2021).

    Article  PubMed  Google Scholar 

  98. Go, G. et al. Human adipose-derived mesenchymal stem cell-based medical microrobot system for knee cartilage regeneration in vivo. Sci. Robot. 5, eaay6626 (2020).

    Article  PubMed  Google Scholar 

  99. Zhang, F. et al. Biomembrane-functionalized micromotors: biocompatible active devices for diverse biomedical applications. Adv. Mater. 34, 2107177 (2022).

    Article  CAS  Google Scholar 

  100. Chen, C. et al. Transient micromotors that disappear when no longer needed. ACS Nano 10, 10389–10396 (2016).

    Article  CAS  PubMed  Google Scholar 

  101. Solovev, A. A., Sanchez, S. & Schmidt, O. G. Collective behaviour of self-propelled catalytic micromotors. Nanoscale 5, 1284–1293 (2013).

    Article  CAS  ADS  PubMed  Google Scholar 

  102. Liu, J. et al. Swarming multifunctional heater–thermometer nanorobots for precise feedback hyperthermia delivery. ACS Nano 17, 16731–16742 (2023).

    Article  CAS  PubMed  Google Scholar 

  103. Law, J. et al. Microrobotic swarms for selective embolization. Sci. Adv. 8, eabm5752 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Wang, B. et al. Spatiotemporally actuated hydrogel by magnetic swarm nanorobotics. ACS Nano 16, 20985–21001 (2022).

    Article  CAS  PubMed  Google Scholar 

  105. Ceron, S., Gardi, G., Petersen, K. & Sitti, M. Programmable self-organization of heterogeneous microrobot collectives. Proc. Natl Acad. Sci. USA 120, e2221913120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Del Campo Fonseca, A. et al. Ultrasound trapping and navigation of microrobots in the mouse brain vasculature. Nat. Commun. 14, 5889 (2023).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  107. Wang, X. et al. Colloidal tubular microrobots for cargo transport and compression. Proc. Natl Acad. Sci. USA 120, e2304685120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Jin, D., Yu, J., Yuan, K. & Zhang, L. Mimicking the structure and function of ant bridges in a reconfigurable microswarm for electronic applications. ACS Nano 13, 5999–6007 (2019).

    Article  CAS  PubMed  Google Scholar 

  109. Ahmed, S., Gentekos, D. T., Fink, C. A. & Mallouk, T. E. Self-assembly of nanorod motors into geometrically regular multimers and their propulsion by ultrasound. ACS Nano 8, 11053–11060 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. Ahmed, D. et al. Neutrophil-inspired propulsion in a combined acoustic and magnetic field. Nat. Commun. 8, 770 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  111. Yang, H., Wang, L. & Huang, X. MOF-based micro/nanomotors (MOFtors): recent progress and challenges. Coord. Chem. Rev. 495, 215372 (2023).

    Article  CAS  Google Scholar 

  112. Feng, J. et al. Covalent organic framework-based nanomotor for multimodal cancer photo-theranostics. Adv. Healthc. Mater. 495, e202301645 (2023).

    Google Scholar 

  113. Peng, X. et al. Autonomous metal–organic framework nanorobots for active mitochondria-targeted cancer therapy. Sci. Adv. 9, eadh1736 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sridhar, V. et al. Designing covalent organic framework-based light-driven microswimmers toward therapeutic applications. Adv. Mater. 35, 2301126 (2023).

    Article  CAS  Google Scholar 

  115. Wang, H. & Pumera, M. Fabrication of micro/nanoscale motors. Chem. Rev. 115, 8704–8735 (2015).

    Article  CAS  PubMed  Google Scholar 

  116. Wang, J. Template electrodeposition of catalytic nanomotors. Faraday Discuss. 164, 9–18 (2013).

    Article  CAS  ADS  PubMed  Google Scholar 

  117. Manesh, K. M. et al. Template-assisted fabrication of salt-independent catalytic tubular microengines. ACS Nano 4, 1799–1804 (2010).

    Article  CAS  PubMed  Google Scholar 

  118. Gao, W. et al. Polymer-based tubular microbots: role of composition and preparation. Nanoscale 4, 2447–2453 (2012).

    Article  CAS  ADS  PubMed  Google Scholar 

  119. Mei, Y. et al. Versatile approach for integrative and functionalized tubes by strain engineering of nanomembranes on polymers. Adv. Mater. 20, 4085–4090 (2008).

    Article  CAS  Google Scholar 

  120. Baraban, L. et al. Catalytic Janus motors on microfluidic chip: deterministic motion for targeted cargo delivery. ACS Nano 6, 3383–3389 (2012).

    Article  CAS  PubMed  Google Scholar 

  121. Schamel, D. et al. Chiral colloidal molecules and observation of the propeller effect. J. Am. Chem. Soc. 135, 12353–12359 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Gibbs, J. & Zhao, Y. P. Design and characterization of rotational multicomponent catalytic nanomotors. Small 5, 2304–2308 (2009).

    Article  CAS  PubMed  Google Scholar 

  123. Li, J. & Pumera, M. 3D printing of functional microrobots. Chem. Soc. Rev. 50, 2794–2838 (2021).

    Article  CAS  PubMed  Google Scholar 

  124. Dabbagh, S. R. et al. 3D-printed microrobots from design to translation. Nat. Commun. 13, 5875 (2022).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  125. Ceylan, H. et al. 3D-printed biodegradable microswimmer for theranostic cargo delivery and release. ACS Nano 13, 3353–3362 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wu, Z. et al. Near-infrared light-triggered ‘on/off’ motion of polymer multilayer rockets. ACS Nano 8, 6097–6105 (2014).

    Article  CAS  PubMed  Google Scholar 

  127. Xie, L. et al. Kinetics-controlled super-assembly of asymmetric porous and hollow carbon nanoparticles as light-sensitive smart nanovehicles. J. Am. Chem. Soc. 144, 1634–1646 (2022).

    Article  CAS  PubMed  Google Scholar 

  128. Alapan, Y. et al. Soft erythrocyte-based bacterial microswimmers for cargo delivery. Sci. Robot. 3, eaar4423 (2018).

    Article  PubMed  Google Scholar 

  129. Bao, T. et al. Drug-loaded zwitterion-based nanomotors for the treatment of spinal cord injury. ACS Appl. Mater. Interfaces 15, 32762–32771 (2023).

    Article  CAS  PubMed  Google Scholar 

  130. Chen, H. et al. A nitric-oxide driven chemotactic nanomotor for enhanced immunotherapy of glioblastoma. Nat. Commun. 14, 941 (2023).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  131. Yang, Q. et al. Pollen typhae-based magnetic-powered microrobots toward acute gastric bleeding treatment. ACS Appl. Bio Mater. 5, 4425–4434 (2022).

    Article  CAS  Google Scholar 

  132. Esteban-Fernández de Ávila, B. et al. Micromotor-enabled active drug delivery for in vivo treatment of stomach infection. Nat. Commun. 8, 272 (2017).

    Article  ADS  Google Scholar 

  133. Zhang, F. et al. Nanoparticle-modified microrobots for in vivo antibiotic delivery to treat acute bacterial pneumonia. Nat. Mater. 21, 1324–1332 (2022).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  134. Choi, H., Cho, S. H. & Hahn, S. K. Urease-powered polydopamine nanomotors for intravesical therapy of bladder diseases. ACS Nano 14, 6683–6692 (2020).

    Article  CAS  PubMed  Google Scholar 

  135. Wei, X. et al. Biomimetic micromotor enables active delivery of antigens for oral vaccination. Nano Lett. 19, 1914–1921 (2019).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  136. Nelson, B. J., Kaliakatsos, I. K. & Abbott, J. J. Microrobots for minimally invasive medicine. Annu. Rev. Biomed. Eng. 12, 55–85 (2010).

    Article  CAS  PubMed  Google Scholar 

  137. Pokki, J. et al. Protective coatings for intraocular wirelessly controlled microrobots for implantation: corrosion, cell culture, and in vivo animal tests. J. Biomed. Mater. Res. B 105, 836–845 (2017).

    Article  CAS  Google Scholar 

  138. Wu, Z. et al. A swarm of slippery micropropellers penetrates the vitreous body of the eye. Sci. Adv. 4, eaat4388 (2018).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  139. Wang, J. Self-propelled affinity biosensors: moving the receptor around the sample. Biosens. Bioelectron. 76, 234–242 (2016).

    Article  CAS  PubMed  Google Scholar 

  140. Pacheco, M., López, M. Á., Jurado-Sánchez, B. & Escarpa, A. Self-propelled micromachines for analytical sensing: a critical review. Anal. Bioanal. Chem. 411, 6561–6573 (2019).

    Article  CAS  PubMed  Google Scholar 

  141. Balasubramanian, S. et al. Micromachine-enabled capture and isolation of cancer cells in complex media. Angew. Chem. Int. Ed. 50, 4161–4164 (2011).

    Article  CAS  Google Scholar 

  142. Venugopalan, P. L., Esteban-Fernández de Ávila, B., Pal, M., Ghosh, A. & Wang, J. Fantastic voyage of nanomotors into the cell. ACS Nano 14, 9423–9439 (2020).

    Article  CAS  PubMed  Google Scholar 

  143. Esteban-Fernández de Ávila, B. et al. Acoustically propelled nanomotors for intracellular siRNA delivery. ACS Nano 10, 4997–5005 (2016).

    Article  PubMed  Google Scholar 

  144. Uygun, D. A., Jurado-Sánchez, B., Uygun, M. & Wang, J. Self-propelled chelation platforms for efficient removal of toxic metals. Environ. Sci. Nano 3, 559–566 (2016).

    Article  CAS  Google Scholar 

  145. Orozco, J. et al. Micromotor-based high-yielding fast oxidative detoxification of chemical threats. Angew. Chem. Int. Ed. 52, 13276–13279 (2013).

    Article  CAS  Google Scholar 

  146. Orozco, J. et al. Bubble-propelled micromotors for enhanced transport of passive tracers. Langmuir 30, 5082–5087 (2014).

    Article  CAS  PubMed  Google Scholar 

  147. Singh, V. V. & Wang, J. Nano/micromotors for security/defense applications: a review. Nanoscale 7, 19377–19389 (2015).

    Article  CAS  ADS  PubMed  Google Scholar 

  148. Parmar, J., Vilela, D., Villa, K., Wang, J. & Sánchez, S. Micro- and nanomotors as active environmental microcleaners and sensors. J. Am. Chem. Soc. 140, 9317–9331 (2018).

    Article  CAS  PubMed  Google Scholar 

  149. Jurado-Sánchez, B. & Wang, J. Micromotors for environmental applications: a review. Environ. Sci. Nano 5, 1530–1544 (2018).

    Article  Google Scholar 

  150. Wang, H., Khezri, B. & Pumera, M. Catalytic DNA-functionalized self-propelled micromachines for environmental remediation. Chem 1, 473–481 (2016).

    Article  CAS  Google Scholar 

  151. Soler, L., Magdanz, V., Fomin, V. M., Sanchez, S. & Schmidt, O. G. Self-propelled micromotors for cleaning polluted water. ACS Nano 7, 9611–9620 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Li, J. et al. Water-driven micromotors for rapid photocatalytic degradation of biological and chemical warfare agents. ACS Nano 8, 11118–11125 (2014).

    Article  CAS  PubMed  Google Scholar 

  153. Guix, M. et al. Superhydrophobic alkanethiol-coated microsubmarines for effective removal of oil. ACS Nano 6, 4445–4451 (2012).

    Article  CAS  PubMed  Google Scholar 

  154. Li, J. et al. Swimming microrobot optical nanoscopy. Nano Lett. 16, 6604–6609 (2016).

    Article  CAS  ADS  PubMed  Google Scholar 

  155. Li, J. et al. Self-propelled nanomotors autonomously seek and repair cracks. Nano Lett. 15, 7077–7085 (2015).

    Article  CAS  ADS  PubMed  Google Scholar 

  156. Wang, W., Chiang, T.-Y., Velegol, D. & Mallouk, T. E. Understanding the efficiency of autonomous nano- and microscale motors. J. Am. Chem. Soc. 135, 10557–10565 (2013).

    Article  CAS  PubMed  Google Scholar 

  157. Purcell, E. M. The efficiency of propulsion by a rotating flagellum. Proc. Natl Acad. Sci. USA 94, 11307–11311 (1997).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  158. Chattopadhyay, S., Moldovan, R., Yeung, C. & Wu, X. L. Swimming efficiency of bacterium Escherichia coli. Proc. Natl Acad. Sci. USA 103, 13712–13717 (2006).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  159. Iwatani, S., Iwane, A. H., Higuchi, H., Ishii, Y. & Yanagida, T. Mechanical and chemical properties of cysteine-modified kinesin molecules. Biochemistry 38, 10318–10323 (1999).

    Article  CAS  PubMed  Google Scholar 

  160. Huang, W., Manjare, M. & Zhao, Y. Catalytic nanoshell micromotors. J. Phys. Chem. C 117, 21590–21596 (2013).

    Article  CAS  Google Scholar 

  161. Manjare, M., Yang, B. & Zhao, Y. P. Bubble driven quasioscillatory translational motion of catalytic micromotors. Phys. Rev. Lett. 109, 128305 (2012).

    Article  ADS  PubMed  Google Scholar 

  162. Cichos, F., Landin, S. M. & Pradip, R. in Intelligent Nanotechnology Ch. 5 (eds Zheng, Y. & Wu, Z.) 113–144 (Elsevier, 2023).

  163. Mou, T. et al. Bridging the complexity gap in computational heterogeneous catalysis with machine learning. Nat. Catal. 6, 122–136 (2023).

    Article  Google Scholar 

  164. Esterhuizen, J. A., Goldsmith, B. R. & Linic, S. Interpretable machine learning for knowledge generation in heterogeneous catalysis. Nat. Catal. 5, 175–184 (2022).

    Article  Google Scholar 

  165. Mai, H., Le, T. C., Chen, D., Winkler, D. A. & Caruso, R. A. Machine learning for electrocatalyst and photocatalyst design and discovery. Chem. Rev. 122, 13478–13515 (2022).

    Article  CAS  PubMed  Google Scholar 

  166. Wang, Y. et al. Bipolar electrochemical mechanism for the propulsion of catalytic nanomotors in hydrogen peroxide solutions. Langmuir 22, 10451–10456 (2006).

    Article  CAS  PubMed  Google Scholar 

  167. Gao, W., Pei, A., Dong, R. & Wang, J. Catalytic iridium-based Janus micromotors powered by ultralow levels of chemical fuels. J. Am. Chem. Soc. 136, 2276–2279 (2014).

    Article  CAS  PubMed  Google Scholar 

  168. Li, T. et al. Magnetically propelled fish-like nanoswimmers. Small 12, 6098–6105 (2016).

    Article  CAS  PubMed  Google Scholar 

  169. Ghosh, A. & Fischer, P. Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett. 9, 2243–2245 (2009).

    Article  CAS  ADS  PubMed  Google Scholar 

Download references

Acknowledgements

Support from the UCSD Contextual Robotics Institute is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Joseph Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Bubble propulsion

Movement generated by the recoil force from bubbles released from the surface of micromotors.

Janus structure

An asymmetric structure with two distinct domains with different chemical or physical properties.

Micromotor

A microscale device capable of converting energy into movement and forces.

Microrobots

A microscale device that performs a task. It consists of a micromotor and additional functions, according to the task performed.

Microrockets

Self-propelled microscale open tubular micromotors.

Motion control

Control of the speed and directionality of the microrobot.

Phoretic self-propulsion

Movement of microrobots in response to self-built gradients, including diffusiophoresis and self-electrophoresis.

Propulsion force

A force causing movement.

Reynolds number

The ratio of inertial forces to viscous forces.

Taxis

Movement towards or away from the source of a stimulus.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Ding, S. & Wang, J. Materials consideration for the design, fabrication and operation of microscale robots. Nat Rev Mater 9, 159–172 (2024). https://doi.org/10.1038/s41578-023-00641-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-023-00641-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing