Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Novel therapies with precision mechanisms for type 2 diabetes mellitus

Abstract

Type 2 diabetes mellitus (T2DM) is one of the greatest health crises of our time and its prevalence is projected to increase by >50% globally by 2045. Currently, 10 classes of drugs are approved by the US Food and Drug Administration for the treatment of T2DM. Drugs in development for T2DM must show meaningful reductions in glycaemic parameters as well as cardiovascular safety. Results from an increasing number of cardiovascular outcome trials using modern T2DM therapeutics have shown a reduced risk of atherosclerotic cardiovascular disease, congestive heart failure and chronic kidney disease. Hence, guidelines have become increasingly evidence based and more patient centred, focusing on reaching individualized glycaemic goals while optimizing safety, non-glycaemic benefits and the prevention of complications. The bar has been raised for novel therapies under development for T2DM as they are now expected to achieve these aims and possibly even treat concurrent comorbidities. Indeed, the pharmaceutical pipeline for T2DM is fertile. Drugs that augment insulin sensitivity, stimulate insulin secretion or the incretin axis, or suppress hepatic glucose production are active in more than 7,000 global trials using new mechanisms of action. Our collective goal of being able to truly personalize medicine for T2DM has never been closer at hand.

Key points

  • Type 2 diabetes mellitus (T2DM) is one of the greatest health crises of our time, and the number of people with T2DM is projected to increase by >50% globally by 2045.

  • Despite our extensive armamentarium of current drug treatments for T2DM, >7,000 trials are registered around the world, many looking at ‘novel’ drug targets.

  • Mechanisms of action for novel drugs in the pipeline for T2DM include directly targeting β-cells, targeting the incretin axis, directly or indirectly affecting glucose metabolism in the liver, and increasing insulin sensitivity.

  • In our judgement, compounds with the most promise include dual-acting and triple-acting incretin mimetics owing to their glucose-lowering capacity, non-glycaemic benefits and safety.

  • The bar has been raised for novel therapies under development for T2DM; new therapies are now expected to prevent cardiovascular and renal complications independent of and in addition to their ability to decrease the plasma concentrations of glucose.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Drugs that stimulate insulin secretion.
Fig. 2: Drugs that decrease hepatic glucose production or increase hepatic glucose uptake.
Fig. 3: Drugs that improve insulin sensitivity.

Similar content being viewed by others

References

  1. National Diabetes Data Group. Classification and diagnosis of diabetes mellitus and other categories of glucose intolerance. Diabetes 28, 1039–1057 (1979).

    Article  Google Scholar 

  2. World Health Organization. Report of the Expert Committee on Diabetes. WHO https://apps.who.int/iris/handle/10665/41399 (1980).

  3. The Diabetes Control and Complications Trial Research Group et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 329, 977–986 (1993).

    Article  Google Scholar 

  4. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352, 837–853 (1998).

    Article  Google Scholar 

  5. Action to Control Cardiovascular Risk in Diabetes Study Group et al. Effects of intensive glucose lowering in type 2 diabetes. N. Engl. J. Med. 358, 2545–2559 (2008).

    Article  Google Scholar 

  6. Duckworth, W. et al. Glucose control and vascular complications in veterans with type 2 diabetes. N. Engl. J. Med. 360, 129–139 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. The ADVANCE Collaborative Group et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 358, 2560–2572 (2008).

    Article  Google Scholar 

  8. American Diabetes Association. Glycemic targets: standards of medical care in diabetes-2020. Diabetes Care 43 (Suppl. 1), S66–S76 (2020).

    Article  Google Scholar 

  9. Garber, A. J. et al. Consensus statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the comprehensive type 2 diabetes management algorithm - 2019 executive summary. Endocr. Pract. 25, 69–100 (2019).

    Article  PubMed  Google Scholar 

  10. Nissen, S. E. & Wolski, K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N. Engl. J. Med. 356, 2457–2471 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Gerstein, H. C. et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet 394, 121–130 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Hernandez, A. F. et al. Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial. Lancet 392, 1519–1529 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Marso, S. P. et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 375, 1834–1844 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Marso, S. P. et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 375, 311–322 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Neal, B. et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N. Engl. J. Med. 377, 644–657 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Wiviott, S. D. et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 380, 347–357 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Zinman, B. et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med. 373, 2117–2128 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. McMurray, J. J. V. et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N. Engl. J. Med. 381, 1995–2008 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Packer, M. et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N. Engl. J. Med. 383, 1413–1424 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Davies, M. J. et al. Management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 41, 2669–2701 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Rosenstock, J. et al. Efficacy and safety of ITCA 650, a novel drug-device GLP-1 receptor agonist, in type 2 diabetes uncontrolled with oral antidiabetes drugs: the FREEDOM-1 trial. Diabetes Care 41, 333–340 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. American Diabetes Association. Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes-2019. Diabetes Care 42, S90–S102 (2019).

    Article  Google Scholar 

  23. Mahajan, A. et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat. Genet. 50, 1505–1513 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zelent, D. et al. Glucokinase and glucose homeostasis: proven concepts and new ideas. Biochem. Soc. Trans. 33, 306–310 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Matschinsky, F. M. Assessing the potential of glucokinase activators in diabetes therapy. Nat. Rev. Drug Discov. 8, 399–416 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Matschinsky, F. M. & Wilson, D. F. The central role of glucokinase in glucose homeostasis: a perspective 50 years after demonstrating the presence of the enzyme in islets of Langerhans. Front. Physiol. 10, 148 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bonadonna, R. C. et al. Piragliatin (RO4389620), a novel glucokinase activator, lowers plasma glucose both in the postabsorptive state and after a glucose challenge in patients with type 2 diabetes mellitus: a mechanistic study. J. Clin. Endocrinol. Metab. 95, 5028–5036 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Katz, L. et al. AMG 151 (ARRY-403), a novel glucokinase activator, decreases fasting and postprandial glycaemia in patients with type 2 diabetes. Diabetes Obes. Metab. 18, 191–195 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Meininger, G. E. et al. Effects of MK-0941, a novel glucokinase activator, on glycemic control in insulin-treated patients with type 2 diabetes. Diabetes Care 34, 2560–2566 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wilding, J. P., Leonsson-Zachrisson, M., Wessman, C. & Johnsson, E. Dose-ranging study with the glucokinase activator AZD1656 in patients with type 2 diabetes mellitus on metformin. Diabetes Obes. Metab. 15, 750–759 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Zhu, X. X. et al. Dorzagliatin (HMS5552), a novel dual-acting glucokinase activator, improves glycaemic control and pancreatic beta-cell function in patients with type 2 diabetes: a 28-day treatment study using biomarker-guided patient selection. Diabetes Obes. Metab. 20, 2113–2120 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Amin, N. B. et al. Two dose-ranging studies with PF-04937319, a systemic partial activator of glucokinase, as add-on therapy to metformin in adults with type 2 diabetes. Diabetes Obes. Metab. 17, 751–759 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Krug, A. W. et al. Leveraging a clinical phase Ib proof-of-concept study for the GPR40 agonist MK-8666 in patients with type 2 diabetes for model-informed phase II dose selection. Clin. Transl Sci. 10, 404–411 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yabuki, C. et al. A novel antidiabetic drug, fasiglifam/TAK-875, acts as an ago-allosteric modulator of FFAR1. PLoS ONE 8, e76280 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Menon, V. et al. Fasiglifam-induced liver injury in patients with type 2 diabetes: results of a randomized controlled cardiovascular outcomes safety trial. Diabetes Care 41, 2603–2609 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Peter, A. et al. Hepatic glucokinase expression is associated with lipogenesis and fatty liver in humans. J. Clin. Endocrinol. Metab. 96, E1126–E1130 (2011).

    Article  PubMed  Google Scholar 

  37. Beer, N. L. et al. The P446L variant in GCKR associated with fasting plasma glucose and triglyceride levels exerts its effect through increased glucokinase activity in liver. Hum. Mol. Genet. 18, 4081–4088 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kozian, D. H. et al. Glucokinase-activating GCKR polymorphisms increase plasma levels of triglycerides and free fatty acids, but do not elevate cardiovascular risk in the Ludwigshafen risk and cardiovascular health study. Horm. Metab. Res. 42, 502–506 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Sparso, T. et al. The GCKR rs780094 polymorphism is associated with elevated fasting serum triacylglycerol, reduced fasting and OGTT-related insulinaemia, and reduced risk of type 2 diabetes. Diabetologia 51, 70–75 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Li, X., Zhong, K., Guo, Z., Zhong, D. & Chen, X. Fasiglifam (TAK-875) inhibits hepatobiliary transporters: a possible factor contributing to Fasiglifam-induced liver injury. Drug Metab. Dispos. 43, 1751–1759 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Wolenski, F. S. et al. Fasiglifam (TAK-875) alters bile acid homeostasis in rats and dogs: a potential cause of drug induced liver injury. Toxicol. Sci. 157, 50–61 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Campbell, J. E. & Drucker, D. J. Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab. 17, 819–837 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Christou, G. A., Katsiki, N., Blundell, J., Fruhbeck, G. & Kiortsis, D. N. Semaglutide as a promising antiobesity drug. Obes. Rev. 20, 805–815 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Frias, J. P. et al. Efficacy and safety of LY3298176, a novel dual GIP and GLP-1 receptor agonist, in patients with type 2 diabetes: a randomised, placebo-controlled and active comparator-controlled phase 2 trial. Lancet 392, 2180–2193 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Ambery, P. et al. MEDI0382, a GLP-1 and glucagon receptor dual agonist, in obese or overweight patients with type 2 diabetes: a randomised, controlled, double-blind, ascending dose and phase 2a study. Lancet 391, 2607–2618 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Tillner, J. et al. A novel dual glucagon-like peptide and glucagon receptor agonist SAR425899: results of randomized, placebo-controlled first-in-human and first-in-patient trials. Diabetes Obes. Metab. 21, 120–128 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Inagaki, N. et al. Glucose-lowering effects and safety of DS-8500a, a G protein-coupled receptor 119 agonist, in Japanese patients with type 2 diabetes: results of a randomized, double-blind, placebo-controlled, parallel-group, multicenter, phase II study. BMJ Open Diabetes Res. Care 5, e000424 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Yamada, Y. et al. Efficacy and safety of GPR119 agonist DS-8500a in Japanese patients with type 2 diabetes: a randomized, double-blind, placebo-controlled, 12-week study. Adv. Ther. 35, 367–381 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tschop, M. H. et al. Unimolecular polypharmacy for treatment of diabetes and obesity. Cell Metab. 24, 51–62 (2016).

    Article  PubMed  Google Scholar 

  50. Shankar, S. S. et al. Native oxyntomodulin has significant glucoregulatory effects independent of weight loss in obese humans with and without type 2 diabetes. Diabetes 67, 1105–1112 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Hartman, M. L. et al. Effects of novel dual GIP and GLP-1 receptor agonist tirzepatide on biomarkers of nonalcoholic steatohepatitis in patients with type 2 diabetes. Diabetes Care 43, 1352–1355 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kannt, A. et al. Incretin combination therapy for the treatment of non-alcoholic steatohepatitis. Diabetes Obes. Metab. 22, 1328–1338 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. Gribble, F. M. & Reimann, F. Function and mechanisms of enteroendocrine cells and gut hormones in metabolism. Nat. Rev. Endocrinol. 15, 226–237 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Vajda, E. G. et al. Pharmacokinetics and pharmacodynamics of single and multiple doses of the glucagon receptor antagonist LGD-6972 in healthy subjects and subjects with type 2 diabetes mellitus. Diabetes Obes. Metab. 19, 24–32 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. Morgan, E. S. et al. Antisense inhibition of glucagon receptor by IONIS-GCGRRx improves type 2 diabetes without increase in hepatic glycogen content in patients with type 2 diabetes on stable metformin therapy. Diabetes Care 42, 585–593 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. Kong, M. F. et al. Infusion of pramlintide, a human amylin analogue, delays gastric emptying in men with IDDM. Diabetologia 40, 82–88 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Levetan, C. et al. Impact of pramlintide on glucose fluctuations and postprandial glucose, glucagon, and triglyceride excursions among patients with type 1 diabetes intensively treated with insulin pumps. Diabetes Care 26, 1–8 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Guzman, C. B. et al. Treatment with LY2409021, a glucagon receptor antagonist, increases liver fat in patients with type 2 diabetes. Diabetes Obes. Metab. 19, 1521–1528 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Kelly, R. P. et al. Short-term administration of the glucagon receptor antagonist LY2409021 lowers blood glucose in healthy people and in those with type 2 diabetes. Diabetes Obes. Metab. 17, 414–422 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Lin, X., Liu, Y. B. & Hu, H. Metabolic role of fibroblast growth factor 21 in liver, adipose and nervous system tissues. Biomed. Rep. 6, 495–502 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fisher, F. M. & Maratos-Flier, E. Understanding the physiology of FGF21. Annu. Rev. Physiol. 78, 223–241 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Staiger, H., Keuper, M., Berti, L., Hrabe de Angelis, M. & Haring, H. U. Fibroblast growth factor 21-metabolic role in mice and men. Endocr. Rev. 38, 468–488 (2017).

    Article  PubMed  Google Scholar 

  63. Cheng, X., Zhu, B., Jiang, F. & Fan, H. Serum FGF-21 levels in type 2 diabetic patients. Endocr. Res. 36, 142–148 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Kralisch, S. & Fasshauer, M. Fibroblast growth factor 21: effects on carbohydrate and lipid metabolism in health and disease. Curr. Opin. Clin. Nutr. Metab. Care 14, 354–359 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Tezze, C., Romanello, V. & Sandri, M. FGF21 as modulator of metabolism in health and disease. Front. Physiol. 10, 419 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Gaich, G. et al. The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab. 18, 333–340 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Au, W. S., Kung, H. F. & Lin, M. C. Regulation of microsomal triglyceride transfer protein gene by insulin in HepG2 cells: roles of MAPKerk and MAPKp38. Diabetes 52, 1073–1080 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Hong, D. J. et al. Synthesis and biological evaluation of novel thienopyrimidine derivatives as diacylglycerol acyltransferase 1 (DGAT-1) inhibitors. J. Enzyme Inhib. Med. Chem. 35, 227–234 (2020).

    Article  CAS  PubMed  Google Scholar 

  69. Bergman, B. C., Hunerdosse, D. M., Kerege, A., Playdon, M. C. & Perreault, L. Localisation and composition of skeletal muscle diacylglycerol predicts insulin resistance in humans. Diabetologia 55, 1140–1150 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Perreault, L. et al. Intracellular localization of diacylglycerols and sphingolipids influences insulin sensitivity and mitochondrial function in human skeletal muscle. JCI Insight 3, e96805 (2018).

    Article  PubMed Central  Google Scholar 

  71. Cuchel, M. et al. Efficacy and safety of a microsomal triglyceride transfer protein inhibitor in patients with homozygous familial hypercholesterolaemia: a single-arm, open-label, phase 3 study. Lancet 381, 40–46 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Sacks, F. M., Stanesa, M. & Hegele, R. A. Severe hypertriglyceridemia with pancreatitis: thirteen years’ treatment with lomitapide. JAMA Intern. Med. 174, 443–447 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Perreault, L., Bergman, B. C., Hunerdosse, D. M., Howard, D. J. & Eckel, R. H. Fenofibrate administration does not affect muscle triglyceride concentration or insulin sensitivity in humans. Metabolism 60, 1107–1114 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Clemmons, D. R., Miller, S. & Mamputu, J. C. Safety and metabolic effects of tesamorelin, a growth hormone-releasing factor analogue, in patients with type 2 diabetes: a randomized, placebo-controlled trial. PLoS ONE 12, e0179538 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Allas, S. et al. Safety, tolerability, pharmacokinetics and pharmacodynamics of AZP-531, a first-in-class analogue of unacylated ghrelin, in healthy and overweight/obese subjects and subjects with type 2 diabetes. Diabetes Obes. Metab. 18, 868–874 (2016).

    Article  CAS  PubMed  Google Scholar 

  76. Nass, R. et al. Effects of an oral ghrelin mimetic on body composition and clinical outcomes in healthy older adults: a randomized trial. Ann. Intern. Med. 149, 601–611 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Ravussin, E., Tschop, M., Morales, S., Bouchard, C. & Heiman, M. L. Plasma ghrelin concentration and energy balance: overfeeding and negative energy balance studies in twins. J. Clin. Endocrinol. Metab. 86, 4547–4551 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Tong, J. et al. Ghrelin suppresses glucose-stimulated insulin secretion and deteriorates glucose tolerance in healthy humans. Diabetes 59, 2145–2151 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rooks, D. S. et al. Effect of bimagrumab on thigh muscle volume and composition in men with casting-induced atrophy. J. Cachexia Sarcopenia Muscle 8, 727–734 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Heymsfield, S. B. et al. Effect of bimagrumab vs placebo on body fat mass among adults with type 2 diabetes and obesity: a phase 2 randomized clinical trial. JAMA Netw. Open 4, e2033457 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Goldfine, A. B. et al. The effects of salsalate on glycemic control in patients with type 2 diabetes: a randomized trial. Ann. Intern. Med. 152, 346–357 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Salastekar, N. et al. Salsalate improves glycaemia in overweight persons with diabetes risk factors of stable statin-treated cardiovascular disease: a 30-month randomized placebo-controlled trial. Diabetes Obes. Metab. 19, 1458–1462 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Digenio, A. et al. Antisense inhibition of protein tyrosine phosphatase 1B with IONIS-PTP-1BRx improves insulin sensitivity and reduces weight in overweight patients with type 2 diabetes. Diabetes Care 41, 807–814 (2018).

    Article  CAS  PubMed  Google Scholar 

  84. Anderwald, C. et al. Short-term leptin-dependent inhibition of hepatic gluconeogenesis is mediated by insulin receptor substrate-2. Mol. Endocrinol. 16, 1612–1628 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Muller, G. The molecular mechanism of the insulin-mimetic/sensitizing activity of the antidiabetic sulfonylurea drug Amaryl. Mol. Med. 6, 907–933 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ji, L. et al. Efficacy and safety of chiglitazar, a novel PPARα/γ/δ pan-agonist, in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled phase 3 superiority trial (CMAP). American Diabetes Association 79th Scientific Sessions (2019).

  87. Gelman, L., Feige, J. N. & Desvergne, B. Molecular basis of selective PPARγ modulation for the treatment of type 2 diabetes. Biochim. Biophys. Acta 1771, 1094–1107 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Kernan, W. N. et al. Pioglitazone after ischemic stroke or transient ischemic attack. N. Engl. J. Med. 374, 1321–1331 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lincoff, A. M. et al. Effect of aleglitazar on cardiovascular outcomes after acute coronary syndrome in patients with type 2 diabetes mellitus: the AleCardio randomized clinical trial. JAMA 311, 1515–1525 (2014).

    Article  PubMed  Google Scholar 

  90. Nissen, S. E., Wolski, K. & Topol, E. J. Effect of muraglitazar on death and major adverse cardiovascular events in patients with type 2 diabetes mellitus. JAMA 294, 2581–2586 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Ratner, R. E., Parikh, S. & Tou, C., GALLANT 9 Study Group. Efficacy, safety and tolerability of tesaglitazar when added to the therapeutic regimen of poorly controlled insulin-treated patients with type 2 diabetes. Diab Vasc. Dis. Res. 4, 214–221 (2007).

    Article  PubMed  Google Scholar 

  92. DeFronzo, R. A. Lilly lecture 1987. The triumvirate: beta-cell, muscle, liver. A collusion responsible for NIDDM. Diabetes 37, 667–687 (1988).

    Article  CAS  PubMed  Google Scholar 

  93. Fouqueray, P. et al. The efficacy and safety of imeglimin as add-on therapy in patients with type 2 diabetes inadequately controlled with sitagliptin monotherapy. Diabetes Care 37, 1924–1930 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Fouqueray, P. et al. The efficacy and safety of imeglimin as add-on therapy in patients with type 2 diabetes inadequately controlled with metformin monotherapy. Diabetes Care 36, 565–568 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Pacini, G., Mari, A., Fouqueray, P., Bolze, S. & Roden, M. Imeglimin increases glucose-dependent insulin secretion and improves beta-cell function in patients with type 2 diabetes. Diabetes Obes. Metab. 17, 541–545 (2015).

    Article  CAS  PubMed  Google Scholar 

  96. Pirags, V., Lebovitz, H. & Fouqueray, P. Imeglimin, a novel glimin oral antidiabetic, exhibits a good efficacy and safety profile in type 2 diabetic patients. Diabetes Obes. Metab. 14, 852–858 (2012).

    Article  CAS  PubMed  Google Scholar 

  97. Ahlqvist, E. et al. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 6, 361–369 (2018).

    Article  PubMed  Google Scholar 

  98. Sipeky, C. et al. 4th ESPT conference: pharmacogenomics and personalized medicine - research progress and clinical implementation. Pharmacogenomics 20, 1063–1069 (2019).

    Article  CAS  PubMed  Google Scholar 

  99. Dujic, T. et al. Interaction between variants in the CYP2C9 and POR genes and the risk of sulfonylurea-induced hypoglycaemia: a GoDARTS study. Diabetes Obes. Metab. 20, 211–214 (2018).

    Article  CAS  PubMed  Google Scholar 

  100. Zhou, K. et al. Variation in the glucose transporter gene SLC2A2 is associated with glycemic response to metformin. Nat. Genet. 48, 1055–1059 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Dawed, A. Y. et al. CYP2C8 and SLCO1B1 variants and therapeutic response to thiazolidinediones in patients with type 2 diabetes. Diabetes Care 39, 1902–1908 (2016).

    Article  CAS  PubMed  Google Scholar 

  102. Dennis, J. M. et al. Evaluating associations between the benefits and risks of drug therapy in type 2 diabetes: a joint modeling approach. Clin. Epidemiol. 10, 1869–1877 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Zhu, D. et al. Dorzagliatin monotherapy in Chinese patients with type 2 diabetes: a dose-ranging, randomised, double-blind, placebo-controlled, phase 2 study. Lancet Diabetes Endocrinol. 6, 627–636 (2018).

    Article  CAS  PubMed  Google Scholar 

  104. Morrow, L. A. et al. Safety, pharmacokinetics and pharmacodynamics of multiple-ascending doses of the novel glucokinase activator AZD1656 in patients with type 2 diabetes mellitus. Diabetes Obes. Metab. 14, 1114–1122 (2012).

    Article  CAS  PubMed  Google Scholar 

  105. Zhi, J. & Zhai, S. Effects of piragliatin, a glucokinase activator, on fasting and postprandial plasma glucose in patients with type 2 diabetes mellitus. J. Clin. Pharmacol. 56, 231–238 (2016).

    Article  CAS  PubMed  Google Scholar 

  106. Tahrani, A., Barnett, A. & Bailey, C. Pharmacology and therapeutic implications of current drugs for type 2 diabetes mellitus. Nat. Rev. Endocrinol. 12, 566–592 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Leigh Perreault.

Ethics declarations

Competing interests

L.P. has received personal fees for speaking and/or consulting from Novo Nordisk, Sanofi, Boehringer-Ingelheim, AstraZeneca, Janssen, Merck and UpToDate. J.S.S. has been an advisor to Abvance Therapeutics, Adocia, Avotres, Boehringer-Ingelheim, Dance Biopharm/Aerami Therapeutics, Immunomolecular Therapeutics, Intrexon/ActoBiotics, Novo-Nordisk, Oramed, Orgenesis, Sanofi, Tolerion and Viacyte. J.S.S. is a member of the Board of Directors of Dexcom, Intarcia and Applied Therapeutics. J.R. has consulted for Applied Therapeutics, Boehringer Ingelheim, Eli Lilly, Intarcia, Janssen, Lexicon, Novo Nordisk, Sanofi, and Oramed and has received grant/research support from AstraZeneca, Boehringer Ingelheim, Eli Lilly, Genentech, GlaxoSmithKline, Intarcia, Janssen, Lexicon, Merck, Novo Nordisk, Pfizer, Sanofi and Oramed.

Additional information

Peer review information

Nature Reviews Endocrinology thanks the anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

PubMed: https://pubmed.ncbi.nlm.nih.gov/

US National Institute of Health Clinical Trials Database: www.clinicaltrials.gov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perreault, L., Skyler, J.S. & Rosenstock, J. Novel therapies with precision mechanisms for type 2 diabetes mellitus. Nat Rev Endocrinol 17, 364–377 (2021). https://doi.org/10.1038/s41574-021-00489-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-021-00489-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing