Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pathogenesis and treatment of primary aldosteronism

Abstract

Early diagnosis and appropriate treatment of primary aldosteronism, the most frequent cause of secondary hypertension, are crucial to prevent deleterious cardiovascular outcomes. In the past decade, the discovery of genetic abnormalities responsible for sporadic and familial forms of primary aldosteronism has improved the knowledge of the pathogenesis of this disorder. Mutations in genes encoding ion channels and pumps lead to increased cytosolic concentrations of calcium in zona glomerulosa cells, which triggers CYP11B2 expression and autonomous aldosterone production. Improved understanding of the mechanisms underlying the disease is key to improving diagnostics and to developing and implementing targeted treatments. This Review provides an update on the genetic abnormalities associated with sporadic and familial forms of primary aldosteronism, their frequency among different populations and the mechanisms explaining excessive aldosterone production and adrenal nodule development. The possible effects and uses of these findings for improving the diagnostics for primary aldosteronism are discussed. Furthermore, current treatment options of primary aldosteronism are reviewed, with particular attention to the latest studies on blood pressure and cardiovascular outcomes following medical or surgical treatment. The new perspectives regarding the use of targeted drug therapy for aldosterone-producing adenomas with specific somatic mutations are also addressed.

Key points

  • Primary aldosteronism is the most frequent form of secondary hypertension and is curable.

  • The condition is largely underdiagnosed, preventing patients from receiving targeted treatment and preventing cardiovascular complications.

  • Different genetic abnormalities have been identified in aldosterone-producing adenoma and familial forms of the disease.

  • Most genetic abnormalities increase intracellular calcium signalling in the adrenal zona glomerulosa, increasing aldosterone production.

  • New approaches are currently being developed to achieve more rapid and precise diagnosis of the condition and for more efficient targeted treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Genetic and pathogenic mechanisms of familial hyperaldosteronism and targeted treatment.
Fig. 2: Timeline of the major discoveries in the understanding of the genetic basis of primary aldosteronism.

Similar content being viewed by others

References

  1. Monticone, S. et al. Prevalence and clinical manifestations of primary aldosteronism encountered in primary care practice. J. Am. Coll. Cardiol. 69, 1811–1820 (2017).

    PubMed  Google Scholar 

  2. Hannemann, A. & Wallaschofski, H. Prevalence of primary aldosteronism in patient’s cohorts and in population-based studies — a review of the current literature. Horm. Metab. Res. 44, 157–162 (2012).

    CAS  PubMed  Google Scholar 

  3. Brown, J. M. et al. The unrecognized prevalence of primary aldosteronism: a cross-sectional study. Ann. Intern. Med. 173, 10–20 (2020).

    PubMed  PubMed Central  Google Scholar 

  4. Funder, J. W. et al. The management of primary aldosteronism: case detection, diagnosis, and treatment: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 101, 1889–1916 (2016).

    CAS  PubMed  Google Scholar 

  5. Mulatero, P. et al. Prevalence and characteristics of familial hyperaldosteronism: the PATOGEN study (Primary Aldosteronism in TOrino-GENetic forms). Hypertension 58, 797–803 (2011).

    CAS  PubMed  Google Scholar 

  6. Lifton, R. P. et al. A chimaeric 11beta-hydroxylase aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension. Nature 355, 262–265 (1992).

    CAS  PubMed  Google Scholar 

  7. Choi, M. et al. K+ channel mutations in adrenal aldosterone-producing adenomas and hereditary hypertension. Science 331, 768–772 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Scholl, U. I. et al. Recurrent gain of function mutation in calcium channel CACNA1H causes early-onset hypertension with primary aldosteronism. eLife 4, e06315 (2015).

    PubMed  PubMed Central  Google Scholar 

  9. Scholl, U. I. et al. CLCN2 chloride channel mutations in familial hyperaldosteronism type II. Nat. Genet. 50, 349–354 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Fernandes-Rosa, F. L. et al. A gain-of-function mutation in the CLCN2 chloride channel gene causes primary aldosteronism. Nat. Genet. 50, 355–361 (2018).

    CAS  PubMed  Google Scholar 

  11. Rossier, B. C., Baker, M. E. & Studer, R. A. Epithelial sodium transport and its control by aldosterone: the story of our internal environment revisited. Physiol. Rev. 95, 297–340 (2015).

    PubMed  Google Scholar 

  12. Savard, S., Amar, L., Plouin, P. F. & Steichen, O. Cardiovascular complications associated with primary aldosteronism: a controlled cross-sectional study. Hypertension 62, 331–336 (2013).

    CAS  PubMed  Google Scholar 

  13. Monticone, S. et al. Cardiovascular events and target organ damage in primary aldosteronism compared with essential hypertension: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 6, 41–50 (2018).

    CAS  PubMed  Google Scholar 

  14. Milliez, P. et al. Evidence for an increased rate of cardiovascular events in patients with primary aldosteronism. J. Am. Coll. Cardiol. 45, 1243–1248 (2005).

    CAS  PubMed  Google Scholar 

  15. Rossi, G. P. et al. Primary aldosteronism: cardiovascular, renal and metabolic implications. Trends Endocrinol. Metab. 19, 88–90 (2008).

    CAS  PubMed  Google Scholar 

  16. Rossi, G. P. et al. A prospective study of the prevalence of primary aldosteronism in 1,125 hypertensive patients. J. Am. Coll. Cardiol. 48, 2293–2300 (2006).

    CAS  PubMed  Google Scholar 

  17. Born-Frontsberg, E. et al. Cardiovascular and cerebrovascular comorbidities of hypokalemic and normokalemic primary aldosteronism: results of the German Conn’s Registry. J. Clin. Endocrinol. Metab. 94, 1125–1130 (2009).

    CAS  PubMed  Google Scholar 

  18. Rossi, G. P. et al. Remodeling of the left ventricle in primary aldosteronism due to Conn’s adenoma. Circulation 95, 1471–1478 (1997).

    CAS  PubMed  Google Scholar 

  19. Freel, E. M. et al. Demonstration of blood pressure-independent noninfarct myocardial fibrosis in primary aldosteronism: a cardiac magnetic resonance imaging study. Circ. Cardiovasc. Imaging 5, 740–747 (2012).

    PubMed  Google Scholar 

  20. Leopold, J. A. et al. Aldosterone impairs vascular reactivity by decreasing glucose-6-phosphate dehydrogenase activity. Nat. Med. 13, 189–197 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Brown, N. J. Aldosterone and end-organ damage. Curr. Opin. Nephrol. Hypertens. 14, 235–241 (2005).

    CAS  PubMed  Google Scholar 

  22. Calhoun, D. A. Hyperaldosteronism as a common cause of resistant hypertension. Annu. Rev. Med. 64, 233–247 (2013).

    CAS  PubMed  Google Scholar 

  23. Young, W. F. Jr. Diagnosis and treatment of primary aldosteronism: practical clinical perspectives. J. Intern. Med. 285, 126–148 (2019).

    PubMed  Google Scholar 

  24. Nishikawa, T. et al. Guidelines for the diagnosis and treatment of primary aldosteronism — the Japan Endocrine Society 2009. Endocr. J. 58, 711–721 (2011).

    CAS  PubMed  Google Scholar 

  25. Eisenhofer, G. et al. Mass spectrometry-based adrenal and peripheral venous steroid profiling for subtyping primary aldosteronism. Clin. Chem. 62, 514–524 (2016).

    PubMed  Google Scholar 

  26. Turcu, A. F. et al. Comprehensive analysis of steroid biomarkers for guiding primary aldosteronism subtyping. Hypertension 75, 183–192 (2020).

    CAS  PubMed  Google Scholar 

  27. Dekkers, T. et al. Adrenal vein sampling versus CT scan to determine treatment in primary aldosteronism: an outcome-based randomised diagnostic trial. Lancet Diabetes Endocrinol. 4, 739–746 (2016).

    PubMed  Google Scholar 

  28. Rossi, G. P. & Funder, J. W. Adrenal venous sampling versus computed tomographic scan to determine treatment in primary aldosteronism (the SPARTACUS trial): a critique. Hypertension 69, 396–397 (2017).

    CAS  PubMed  Google Scholar 

  29. Williams, T. A. et al. Computed tomography and adrenal venous sampling in the diagnosis of unilateral primary aldosteronism. Hypertension 72, 641–649 (2018).

    CAS  PubMed  Google Scholar 

  30. Rossi, G. P. et al. Clinical outcomes of 1625 patients with primary aldosteronism subtyped with adrenal vein sampling. Hypertension 74, 800–808 (2019).

    CAS  PubMed  Google Scholar 

  31. Stowasser, M. et al. Familial hyperaldosteronism type II: five families with a new variety of primary aldosteronism. Clin. Exp. Pharmacol. Physiol. 19, 319–322 (1992).

    CAS  PubMed  Google Scholar 

  32. Geller, D. S. et al. A novel form of human Mendelian hypertension featuring nonglucocorticoid-remediable aldosteronism. J. Clin. Endocrinol. Metab. 93, 3117–3123 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Sutherland, D. J., Ruse, J. L. & Laidlaw, J. C. Hypertension, increased aldosterone secretion and low plasma renin activity relieved by dexamethasone. Can. Med. Assoc. J. 95, 1109–1119 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Halperin, F. & Dluhy, R. G. Glucocorticoid-remediable aldosteronism. Endocrinol. Metab. Clin. North Am. 40, 333–341 (2011).

    CAS  PubMed  Google Scholar 

  35. Pascoe, L. et al. Glucocorticoid-suppressible hyperaldosteronism results from hybrid genes created by unequal crossovers between CYP11B1 and CYP11B2. Proc. Natl Acad. Sci. USA 89, 8327–8331 (1992).

    CAS  PubMed  Google Scholar 

  36. Pascoe, L. et al. Glucocorticoid-suppressible hyperaldosteronism and adrenal tumors occurring in a single French pedigree. J. Clin. Invest. 96, 2236–2246 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Stowasser, M. & Gordon, R. D. Primary aldosteronism: learning from the study of familial varieties. J. Hypertens. 18, 1165–1176 (2000).

    CAS  PubMed  Google Scholar 

  38. Mulatero, P. et al. Recombinant CYP11B genes encode enzymes that can catalyze conversion of 11-deoxycortisol to cortisol, 18-hydroxycortisol, and 18-oxocortisol. J. Clin. Endocrinol. Metab. 83, 3996–4001 (1998).

    CAS  PubMed  Google Scholar 

  39. Mulatero, P. et al. Diagnosis of glucocorticoid-remediable aldosteronism in primary aldosteronism: aldosterone response to dexamethasone and long polymerase chain reaction for chimeric gene. J. Clin. Endocrinol. Metab. 83, 2573–2575 (1998).

    CAS  PubMed  Google Scholar 

  40. Stowasser, M. & Gordon, R. D. Familial hyperaldosteronism. J. Steroid Biochem. Mol. Biol. 78, 215–229 (2001).

    CAS  PubMed  Google Scholar 

  41. Medeau, V. et al. Familial aspect of primary hyperaldosteronism: analysis of families compatible with primary hyperaldosteronism type 2. Ann. Endocrinol. 66, 240–246 (2005).

    CAS  Google Scholar 

  42. Pallauf, A. et al. The prevalence of familial hyperaldosteronism in apparently sporadic primary aldosteronism in Germany: a single center experience. Horm. Metab. Res. 44, 215–220 (2012).

    CAS  PubMed  Google Scholar 

  43. Mulatero, P. et al. KCNJ5 mutations in European families with nonglucocorticoid remediable familial hyperaldosteronism. Hypertension 59, 235–240 (2012).

    CAS  PubMed  Google Scholar 

  44. Daniil, G. et al. CACNA1H mutations are associated with different forms of primary aldosteronism. EBioMedicine 13, 225–236 (2016).

    PubMed  PubMed Central  Google Scholar 

  45. Perez-Rivas, L. G., Williams, T. A. & Reincke, M. Inherited forms of primary hyperaldosteronism: new genes, new phenotypes and proposition of a new classification. Exp. Clin. Endocrinol. Diabetes 127, 93–99 (2019).

    CAS  PubMed  Google Scholar 

  46. Mulatero, P., Monticone, S., Rainey, W. E., Veglio, F. & Williams, T. A. Role of KCNJ5 in familial and sporadic primary aldosteronism. Nat. Rev. Endocrinol. 9, 104–112 (2013).

    CAS  PubMed  Google Scholar 

  47. Scholl, U. I. et al. Hypertension with or without adrenal hyperplasia due to different inherited mutations in the potassium channel KCNJ5. Proc. Natl Acad. Sci. USA 109, 2533–2538 (2012).

    CAS  PubMed  Google Scholar 

  48. Monticone, S. et al. A novel Y152C KCNJ5 mutation responsible for familial hyperaldosteronism type III. J. Clin. Endocrinol. Metab. 98, E1861–E1865 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Adachi, M. et al. Discordant genotype–phenotype correlation in familial hyperaldosteronism type III with KCNJ5 gene mutation: a patient report and review of the literature. Horm. Res. Paediatr. 82, 138–142 (2014).

    CAS  PubMed  Google Scholar 

  50. Gomez-Sanchez, C. E. et al. Disordered zonal and cellular CYP11B2 enzyme expression in familial hyperaldosteronism type 3. Mol. Cell Endocrinol. 439, 74–80 (2017).

    CAS  PubMed  Google Scholar 

  51. Tong, A. et al. A novel phenotype of familial hyperaldosteronism type III: concurrence of aldosteronism and Cushing’s syndrome. J. Clin. Endocrinol. Metab. 101, 4290–4297 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Scholl, U. I. et al. Somatic and germline CACNA1D calcium channel mutations in aldosterone-producing adenomas and primary aldosteronism. Nat. Genet. 45, 1050–1054 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Semenova, N. A., Ryzhkova, O. R., Strokova, T. V. & Taran, N. N. The third case report a patient with primary aldosteronism, seizures, and neurologic abnormalities (PASNA) syndrome de novo variant mutations in the CACNA1D gene [Russian]. Zh Nevrol. Psikhiatr Im. S S Korsakova 118, 49–52 (2018).

    CAS  PubMed  Google Scholar 

  54. De Mingo Alemany, M. C., Mifsud Grau, L., Moreno Macian, F., Ferrer Lorente, B. & Leon Carinena, S. A de novo CACNA1D missense mutation in a patient with congenital hyperinsulinism, primary hyperaldosteronism and hypotonia. Channels 14, 175–180 (2020).

    PubMed  PubMed Central  Google Scholar 

  55. Flanagan, S. E. et al. A CACNA1D mutation in a patient with persistent hyperinsulinaemic hypoglycaemia, heart defects, and severe hypotonia. Pediatr. Diabetes 18, 320–323 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Dekkers, T. et al. Adrenal nodularity and somatic mutations in primary aldosteronism: one node is the culprit? J. Clin. Endocrinol. Metab. 99, E1341–E1351 (2014).

    CAS  PubMed  Google Scholar 

  57. Omura, M., Sasano, H., Fujiwara, T., Yamaguchi, K. & Nishikawa, T. Unique cases of unilateral hyperaldosteronemia due to multiple adrenocortical micronodules, which can only be detected by selective adrenal venous sampling. Metabolism 51, 350–355 (2002).

    CAS  PubMed  Google Scholar 

  58. Monticone, S. et al. Immunohistochemical, genetic and clinical characterization of sporadic aldosterone-producing adenomas. Mol. Cell Endocrinol. 411, 146–154 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Fernandes-Rosa, F. L. et al. Different somatic mutations in multinodular adrenals with aldosterone-producing adenoma. Hypertension 66, 1014–1022 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Yamazaki, Y. et al. Histopathological classification of cross-sectional image-negative hyperaldosteronism. J. Clin. Endocrinol. Metab. 102, 1182–1192 (2017).

    PubMed  Google Scholar 

  61. Azizan, E. A. et al. Somatic mutations in ATP1A1 and CACNA1D underlie a common subtype of adrenal hypertension. Nat. Genet. 45, 1055–1060 (2013).

    CAS  PubMed  Google Scholar 

  62. Beuschlein, F. et al. Somatic mutations in ATP1A1 and ATP2B3 lead to aldosterone-producing adenomas and secondary hypertension. Nat. Genet. 45, 440–444 (2013).

    CAS  PubMed  Google Scholar 

  63. Fernandes-Rosa, F. L. et al. Genetic spectrum and clinical correlates of somatic mutations in aldosterone-producing adenoma. Hypertension 64, 354–361 (2014).

    CAS  PubMed  Google Scholar 

  64. Lenzini, L. et al. A meta-analysis of somatic KCNJ5 K+ channel mutations in 1636 patients with an aldosterone-producing adenoma. J. Clin. Endocrinol. Metab. 100, E1089–E1095 (2015).

    PubMed  Google Scholar 

  65. Zennaro, M. C., Boulkroun, S. & Fernandes-Rosa, F. Genetic causes of functional adrenocortical adenomas. Endocr. Rev. 38, 516–537 (2017).

    PubMed  Google Scholar 

  66. Scholl, U. I. et al. Novel somatic mutations in primary hyperaldosteronism are related to the clinical, radiological and pathological phenotype. Clin. Endocrinol. 83, 779–789 (2015).

    CAS  Google Scholar 

  67. Akerstrom, T. et al. Activating mutations in CTNNB1 in aldosterone producing adenomas. Sci. Rep. 6, 19546 (2016).

    PubMed  PubMed Central  Google Scholar 

  68. Teo, A. E. et al. Pregnancy, primary aldosteronism, and adrenal CTNNB1 mutations. N. Engl. J. Med. 373, 1429–1436 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Rhayem, Y. et al. PRKACA somatic mutations are rare findings in aldosterone-producing adenomas. J. Clin. Endocrinol. Metab. 101, 3010–3017 (2016).

    CAS  PubMed  Google Scholar 

  70. Tadjine, M., Lampron, A., Ouadi, L. & Bourdeau, I. Frequent mutations of beta-catenin gene in sporadic secreting adrenocortical adenomas. Clin. Endocrinol. 68, 264–270 (2008).

    CAS  Google Scholar 

  71. Tissier, F. et al. Mutations of beta-catenin in adrenocortical tumors: activation of the Wnt signaling pathway is a frequent event in both benign and malignant adrenocortical tumors. Cancer Res. 65, 7622–7627 (2005).

    CAS  PubMed  Google Scholar 

  72. Beuschlein, F. et al. Constitutive activation of PKA catalytic subunit in adrenal Cushing’s syndrome. N. Engl. J. Med. 370, 1019–1028 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Cao, Y. et al. Activating hotspot L205R mutation in PRKACA and adrenal Cushing’s syndrome. Science 344, 913–917 (2014).

    CAS  PubMed  Google Scholar 

  74. Sato, Y. et al. Recurrent somatic mutations underlie corticotropin-independent Cushing’s syndrome. Science 344, 917–920 (2014).

    CAS  PubMed  Google Scholar 

  75. Goh, G. et al. Recurrent activating mutation in PRKACA in cortisol-producing adrenal tumors. Nat. Genet. 46, 613–617 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Nanba, K. et al. Targeted molecular characterization of aldosterone-producing adenomas in white Americans. J. Clin. Endocrinol. Metab. 103, 3869–3876 (2018).

    PubMed  PubMed Central  Google Scholar 

  77. Nanba, K. et al. Genetic characteristics of aldosterone-producing adenomas in blacks. Hypertension 73, 885–892 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. De Sousa, K. et al. Genetic, cellular, and molecular heterogeneity in adrenals with aldosterone-producing adenoma. Hypertension 75, 1034–1044 (2020).

    PubMed  PubMed Central  Google Scholar 

  79. Nishimoto, K. et al. Aldosterone-stimulating somatic gene mutations are common in normal adrenal glands. Proc. Natl Acad. Sci. USA 112, E4591–E4599 (2015).

    CAS  PubMed  Google Scholar 

  80. Omata, K. et al. Cellular and genetic causes of idiopathic hyperaldosteronism. Hypertension 72, 874–880 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Spat, A. & Hunyady, L. Control of aldosterone secretion: a model for convergence in cellular signaling pathways. Physiol. Rev. 84, 489–539 (2004).

    CAS  PubMed  Google Scholar 

  82. Oki, K., Plonczynski, M. W., Lam, M. L., Gomez-Sanchez, E. P. & Gomez-Sanchez, C. E. The potassium channel, Kir3.4, participates in angiotensin II-stimulated aldosterone production by a human adrenocortical cell line. Endocrinology 153, 4328–4335 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Murthy, M., Azizan, E. A., Brown, M. J. & O’Shaughnessy, K. M. Characterization of a novel somatic KCNJ5 mutation delI157 in an aldosterone-producing adenoma. J. Hypertens. 30, 1827–1833 (2012).

    CAS  PubMed  Google Scholar 

  84. Cheng, C. J. et al. Novel KCNJ5 mutations in sporadic aldosterone-producing adenoma reduce Kir3.4 membrane abundance. J. Clin. Endocrinol. Metab. 100, E155–E163 (2015).

    CAS  PubMed  Google Scholar 

  85. Yang, Y. et al. Primary aldosteronism: KCNJ5 mutations and adrenocortical cell growth. Hypertension 74, 809–816 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Jentsch, T. J. & Pusch, M. CLC chloride channels and transporters: structure, function, physiology, and disease. Physiol. Rev. 98, 1493–1590 (2018).

    CAS  PubMed  Google Scholar 

  87. Grunder, S., Thiemann, A., Pusch, M. & Jentsch, T. J. Regions involved in the opening of CIC-2 chloride channel by voltage and cell volume. Nature 360, 759–762 (1992).

    CAS  PubMed  Google Scholar 

  88. Dutta, R. K. et al. A somatic mutation in CLCN2 identified in a sporadic aldosterone-producing adenoma. Eur. J. Endocrinol. 181, K37–K41 (2019).

    CAS  PubMed  Google Scholar 

  89. Goppner, C. et al. Pathogenesis of hypertension in a mouse model for human CLCN2 related hyperaldosteronism. Nat. Commun. 10, 4678 (2019).

    PubMed  PubMed Central  Google Scholar 

  90. Schewe, J. et al. Elevated aldosterone and blood pressure in a mouse model of familial hyperaldosteronism with ClC-2 mutation. Nat. Commun. 10, 5155 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Stindl, J. et al. Pathogenesis of adrenal aldosterone-producing adenomas carrying mutations of the Na+/K+-ATPase. Endocrinology 156, 4582–4591 (2015).

    CAS  PubMed  Google Scholar 

  92. Kaplan, J. H. Biochemistry of Na,K-ATPase. Annu. Rev. Biochem. 71, 511–535 (2002).

    CAS  PubMed  Google Scholar 

  93. Williams, T. A. et al. Somatic ATP1A1, ATP2B3, and KCNJ5 mutations in aldosterone-producing adenomas. Hypertension 63, 188–195 (2014).

    CAS  PubMed  Google Scholar 

  94. Zheng, F. F. et al. Clinical characteristics of somatic mutations in Chinese patients with aldosterone-producing adenoma. Hypertension 65, 622–628 (2015).

    CAS  PubMed  Google Scholar 

  95. Akerstrom, T. et al. Novel somatic mutations and distinct molecular signature in aldosterone-producing adenomas. Endocr. Relat. Cancer 22, 735–744 (2015).

    PubMed  Google Scholar 

  96. Einholm, A. P., Andersen, J. P. & Vilsen, B. Importance of Leu99 in transmembrane segment M1 of the Na+, K+-ATPase in the binding and occlusion of K+. J. Biol. Chem. 282, 23854–23866 (2007).

    CAS  PubMed  Google Scholar 

  97. Dutta, R. K. et al. Complementary somatic mutations of KCNJ5, ATP1A1, and ATP2B3 in sporadic aldosterone producing adrenal adenomas. Endocr. Relat. Cancer 21, L1–L4 (2014).

    CAS  PubMed  Google Scholar 

  98. Tauber, P. et al. Cellular pathophysiology of an adrenal adenoma-associated mutant of the plasma membrane Ca2+-ATPase ATP2B3. Endocrinology 157, 2489–2499 (2016).

    CAS  PubMed  Google Scholar 

  99. Nishimoto, K. et al. Case report: nodule development from subcapsular aldosterone-producing cell clusters causes hyperaldosteronism. J. Clin. Endocrinol. Metab. 101, 6–9 (2016).

    CAS  PubMed  Google Scholar 

  100. Nishimoto, K. et al. Adrenocortical zonation in humans under normal and pathological conditions. J. Clin. Endocrinol. Metab. 95, 2296–2305 (2010).

    CAS  PubMed  Google Scholar 

  101. Boulkroun, S. et al. Adrenal cortex remodeling and functional zona glomerulosa hyperplasia in primary aldosteronism. Hypertension 56, 885–892 (2010).

    CAS  PubMed  Google Scholar 

  102. Nishimoto, K. et al. Immunohistochemistry of aldosterone synthase leads the way to the pathogenesis of primary aldosteronism. Mol. Cell Endocrinol. 441, 124–133 (2017).

    CAS  PubMed  Google Scholar 

  103. Sun, N. et al. Mass spectrometry imaging establishes 2 distinct metabolic phenotypes of aldosterone-producing cell clusters in primary aldosteronism. Hypertension 75, 634–644 (2020).

    CAS  PubMed  Google Scholar 

  104. Boulkroun, S. et al. Aldosterone-producing adenoma formation in the adrenal cortex involves expression of stem/progenitor cell markers. Endocrinology 152, 4753–4763 (2011).

    CAS  PubMed  Google Scholar 

  105. Berthon, A. et al. WNT/beta-catenin signalling is activated in aldosterone-producing adenomas and controls aldosterone production. Hum. Mol. Genet. 23, 889–905 (2014).

    CAS  PubMed  Google Scholar 

  106. Enberg, U. et al. Postoperative differentiation between unilateral adrenal adenoma and bilateral adrenal hyperplasia in primary aldosteronism by mRNA expression of the gene CYP11B2. Eur. J. Endocrinol. 151, 73–85 (2004).

    CAS  PubMed  Google Scholar 

  107. Vouillarmet, J. et al. Aldosterone-producing adenoma with a somatic KCNJ5 mutation revealing APC-dependent familial adenomatous polyposis. J. Clin. Endocrinol. Metab. 101, 3874–3878 (2016).

    CAS  PubMed  Google Scholar 

  108. Stowasser, M. et al. Evidence for abnormal left ventricular structure and function in normotensive individuals with familial hyperaldosteronism type I. J. Clin. Endocrinol. Metab. 90, 5070–5076 (2005).

    CAS  PubMed  Google Scholar 

  109. Tauber, P. et al. Pharmacology and pathophysiology of mutated KCNJ5 found in adrenal aldosterone-producing adenomas. Endocrinology 155, 1353–1362 (2014).

    CAS  PubMed  Google Scholar 

  110. Scholl, U. I. et al. Macrolides selectively inhibit mutant KCNJ5 potassium channels that cause aldosterone-producing adenoma. J. Clin. Invest. 127, 2739–2750 (2017).

    PubMed  PubMed Central  Google Scholar 

  111. Williams, T. A. et al. Genotype-specific steroid profiles associated with aldosterone-producing adenomas. Hypertension 67, 139–145 (2016).

    CAS  PubMed  Google Scholar 

  112. Osswald, A. et al. Lack of influence of somatic mutations on steroid gradients during adrenal vein sampling in aldosterone-producing adenoma patients. Eur. J. Endocrinol. 169, 657–663 (2013).

    CAS  PubMed  Google Scholar 

  113. Kitamoto, T. et al. Clinical and steroidogenic characteristics of aldosterone-producing adenomas with ATPase or CACNA1D gene mutations. J. Clin. Endocrinol. Metab. 101, 494–503 (2016).

    CAS  PubMed  Google Scholar 

  114. Hattangady, N. G. et al. Mutated KCNJ5 activates the acute and chronic regulatory steps in aldosterone production. J. Mol. Endocrinol. 57, 1–11 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Tezuka, Y. et al. 18-Oxocortisol synthesis in aldosterone-producing adrenocortical adenoma and significance of KCNJ5 mutation status. Hypertension 73, 1283–1290 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Murakami, M. et al. In situ metabolomics of aldosterone-producing adenomas. JCI Insight 4, e130356 (2019).

    PubMed Central  Google Scholar 

  117. Maiolino, G. et al. Macrolides for KCNJ5-mutated aldosterone-producing adenoma (MAPA): design of a study for personalized diagnosis of primary aldosteronism. Blood Press. 27, 200–205 (2018).

    CAS  PubMed  Google Scholar 

  118. Catena, C. et al. Cardiovascular outcomes in patients with primary aldosteronism after treatment. Arch. Intern. Med. 168, 80–85 (2008).

    CAS  PubMed  Google Scholar 

  119. Reincke, M. et al. Observational study mortality in treated primary aldosteronism: the German Conn’s registry. Hypertension 60, 618–624 (2012).

    CAS  PubMed  Google Scholar 

  120. Wu, V. C. et al. Long term outcome of aldosteronism after target treatments. Sci. Rep. 6, 32103 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Sukor, N., Kogovsek, C., Gordon, R. D., Robson, D. & Stowasser, M. Improved quality of life, blood pressure, and biochemical status following laparoscopic adrenalectomy for unilateral primary aldosteronism. J. Clin. Endocrinol. Metab. 95, 1360–1364 (2010).

    CAS  PubMed  Google Scholar 

  122. Steichen, O., Zinzindohoue, F., Plouin, P. F. & Amar, L. Outcomes of adrenalectomy in patients with unilateral primary aldosteronism: a review. Horm. Metab. Res. 44, 221–227 (2012).

    CAS  PubMed  Google Scholar 

  123. Rossi, G. P. et al. Long-term control of arterial hypertension and regression of left ventricular hypertrophy with treatment of primary aldosteronism. Hypertension 62, 62–69 (2013).

    CAS  PubMed  Google Scholar 

  124. Williams, T. A. et al. Outcomes after adrenalectomy for unilateral primary aldosteronism: an international consensus on outcome measures and analysis of remission rates in an international cohort. Lancet Diabetes Endocrinol. 5, 689–699 (2017).

    PubMed  PubMed Central  Google Scholar 

  125. Chang, Y. H. et al. Surgery decreases the long-term incident stroke risk in patients with primary aldosteronism. Surgery 167, 367–377 (2020).

    PubMed  Google Scholar 

  126. Rossi, G. P. et al. Adrenalectomy lowers incident atrial fibrillation in primary aldosteronism patients at long term. Hypertension 71, 585–591 (2018).

    CAS  PubMed  Google Scholar 

  127. Lin, Y. H. et al. Adrenalectomy improves increased carotid intima-media thickness and arterial stiffness in patients with aldosterone producing adenoma. Atherosclerosis 221, 154–159 (2012).

    CAS  PubMed  Google Scholar 

  128. Lin, Y. H. et al. Adrenalectomy reverses myocardial fibrosis in patients with primary aldosteronism. J. Hypertens. 30, 1606–1613 (2012).

    CAS  PubMed  Google Scholar 

  129. Komada, H. et al. Insulin secretion and sensitivity before and after surgical treatment for aldosterone-producing adenoma. Diabetes Metab. 46, 236–242 (2020).

    Article  PubMed  Google Scholar 

  130. Sonino, N. et al. Psychological assessment of primary aldosteronism: a controlled study. J. Clin. Endocrinol. Metab. 96, E878–E883 (2011).

    CAS  PubMed  Google Scholar 

  131. Apostolopoulou, K. et al. Gender differences in anxiety and depressive symptoms in patients with primary hyperaldosteronism: a cross-sectional study. World J. Biol. Psychiatry 15, 26–35 (2014).

    PubMed  Google Scholar 

  132. Velema, M. et al. Quality of life in primary aldosteronism: a comparative effectiveness study of adrenalectomy and medical treatment. J. Clin. Endocrinol. Metab. 103, 16–24 (2018).

    PubMed  Google Scholar 

  133. Citton, M., Viel, G., Torresan, F., Rossi, G. P. & Iacobone, M. Effect of unilateral adrenalectomy on the quality of life of patients with lateralized primary aldosteronism. BMC Surg. 18, 105 (2019).

    PubMed  PubMed Central  Google Scholar 

  134. Ishidoya, S. et al. Changes in quality of life after laparoscopic adrenalectomy for patients with primary aldosteronism: prospective 2-year longitudinal cohort study in a Japanese tertiary center. Int. J. Urol. 26, 752–753 (2019).

    PubMed  Google Scholar 

  135. Velema, M. S. et al. A disease-specific quality of life questionnaire for primary aldosteronism. Endocr. Connect. 8, 389–397 (2019).

    PubMed  PubMed Central  Google Scholar 

  136. Morisaki, M. et al. Predictors of clinical success after surgery for primary aldosteronism in the Japanese nationwide cohort. J. Endocr. Soc. 3, 2012–2022 (2019).

    PubMed  PubMed Central  Google Scholar 

  137. Vilela, L. A. P. et al. KCNJ5 somatic mutation is a predictor of hypertension remission after adrenalectomy for unilateral primary aldosteronism. J. Clin. Endocrinol. Metab. 104, 4695–4702 (2019).

    PubMed  Google Scholar 

  138. Parthasarathy, H. K. et al. A double-blind, randomized study comparing the antihypertensive effect of eplerenone and spironolactone in patients with hypertension and evidence of primary aldosteronism. J. Hypertens. 29, 980–990 (2011).

    CAS  PubMed  Google Scholar 

  139. Karagiannis, A. et al. Spironolactone versus eplerenone for the treatment of idiopathic hyperaldosteronism. Expert. Opin. Pharmacother. 9, 509–515 (2008).

    CAS  PubMed  Google Scholar 

  140. Rossi, G. P. Primary aldosteronism: JACC state-of-the-art review. J. Am. Coll. Cardiol. 74, 2799–2811 (2019).

    CAS  PubMed  Google Scholar 

  141. Jeunemaitre, X. et al. Efficacy and tolerance of spironolactone in essential hypertension. Am. J. Cardiol. 60, 820–825 (1987).

    CAS  PubMed  Google Scholar 

  142. de Gasparo, M. et al. Three new epoxy-spirolactone derivatives: characterization in vivo and in vitro. J. Pharmacol. Exp. Ther. 240, 650–656 (1987).

    PubMed  Google Scholar 

  143. Burgess, E. D. et al. Long-term safety and efficacy of the selective aldosterone blocker eplerenone in patients with essential hypertension. Clin. Ther. 25, 2388–2404 (2003).

    CAS  PubMed  Google Scholar 

  144. Capelli, I. et al. New mineralocorticoid receptor antagonists: update on their use in chronic kidney disease and heart failure. J. Nephrol. 33, 37–48 (2020).

    PubMed  Google Scholar 

  145. Mulatero, P. et al. Long-term cardio- and cerebrovascular events in patients with primary aldosteronism. J. Clin. Endocrinol. Metab. 98, 4826–4833 (2013).

    CAS  PubMed  Google Scholar 

  146. Hundemer, G. L., Curhan, G. C., Yozamp, N., Wang, M. & Vaidya, A. Cardiometabolic outcomes and mortality in medically treated primary aldosteronism: a retrospective cohort study. Lancet Diabetes Endocrinol. 6, 51–59 (2018).

    PubMed  Google Scholar 

  147. Hundemer, G. L., Curhan, G. C., Yozamp, N., Wang, M. & Vaidya, A. Incidence of atrial fibrillation and mineralocorticoid receptor activity in patients with medically and surgically treated primary aldosteronism. JAMA Cardiol. 3, 768–774 (2018).

    PubMed  PubMed Central  Google Scholar 

  148. Hundemer, G. L., Curhan, G. C., Yozamp, N., Wang, M. & Vaidya, A. Renal outcomes in medically and surgically treated primary aldosteronism. Hypertension 72, 658–666 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Vaidya, A., Mulatero, P., Baudrand, R. & Adler, G. K. The expanding spectrum of primary aldosteronism: implications for diagnosis, pathogenesis, and treatment. Endocr. Rev. 39, 1057–1088 (2018).

    PubMed  PubMed Central  Google Scholar 

  150. Caroccia, B. et al. Macrolides blunt aldosterone biosynthesis: a proof-of-concept study in KCNJ5 mutated adenoma cells ex vivo. Hypertension 70, 1238–1242 (2017).

    CAS  PubMed  Google Scholar 

  151. Conn, J. W. Presidential address. I. Painting background. II. Primary aldosteronism, a new clinical syndrome. J. Lab. Clin. Med. 45, 3–17 (1955).

    CAS  PubMed  Google Scholar 

  152. Conn, J. W. & Louis, L. H. Primary aldosteronism: a new clinical entity. Trans. Assoc. Am. Physicians 68, 215–231 (1955).

    CAS  PubMed  Google Scholar 

  153. Gordon, R. D. et al. Clinical and pathological diversity of primary aldosteronism, including a new familial variety. Clin. Exp. Pharmacol. Physiol. 18, 283–286 (1991).

    CAS  PubMed  Google Scholar 

  154. Funder, J. W. et al. Case detection, diagnosis, and treatment of patients with primary aldosteronism: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 93, 3266–3281 (2008).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The laboratory of M.-C.Z. is supported through institutional funding from INSERM, by the Agence Nationale pour la Recherche (ANR-15-CE14-0017-03, ANR-18-CE93-0003-01), the Fondation pour la Recherche Médicale (EQU201903007864) and by the H2020 project ENSAT-HT grant number 633983.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Maria-Christina Zennaro.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Autonomous aldosterone production

Aldosterone production that is autonomous from its physiological regulators and inappropriate to the salt and blood volume status of the individual.

Bilateral adrenal hyperplasia

One of the two major causes of primary aldosteronism, also called idiopathic hyperaldosteronism, in which aldosterone is produced autonomously from both adrenal glands.

Essential hypertension

Arterial hypertension without a known identifiable cause, defined after having excluded all forms secondary to a defined disease; it represents 85–95% of cases.

Aldosterone lateralization indices

Values reflecting the production of aldosterone from one adrenal gland compared with the other, calculated by dividing the aldosterone to cortisol ratio in the dominant adrenal vein by the ratio in the non-dominant adrenal vein, measured by adrenal vein sampling.

Lateralized aldosterone production

Autonomous aldosterone production from one adrenal gland.

Lateralized primary aldosteronism

Primary aldosteronism due to autonomous aldosterone production from one adrenal gland.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zennaro, MC., Boulkroun, S. & Fernandes-Rosa, F.L. Pathogenesis and treatment of primary aldosteronism. Nat Rev Endocrinol 16, 578–589 (2020). https://doi.org/10.1038/s41574-020-0382-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-020-0382-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing