Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Creutzfeldt–Jakob disease and other prion diseases

Subjects

Abstract

Prion diseases share common clinical and pathological characteristics such as spongiform neuronal degeneration and deposition of an abnormal form of a host-derived protein, termed prion protein. The characteristic features of prion diseases are long incubation times, short clinical courses, extreme resistance of the transmissible agent to degradation and lack of nucleic acid involvement. Sporadic and genetic forms of prion diseases occur worldwide, of which genetic forms are associated with mutations in PRNP. Human to human transmission of these diseases has occurred due to iatrogenic exposure, and zoonotic forms of prion diseases are linked to bovine disease. Significant progress has been made in the diagnosis of these disorders. Clinical tools for diagnosis comprise brain imaging and cerebrospinal fluid tests. Aggregation assays for detection of the abnormally folded prion protein have a clear potential to diagnose the disease in peripherally accessible biofluids. After decades of therapeutic nihilism, new treatment strategies and clinical trials are on the horizon. Although prion diseases are relatively rare disorders, understanding their pathogenesis and mechanisms of prion protein misfolding has significantly enhanced the field in research of neurodegenerative diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Crude mortality rates for sporadic Creutzfeldt–Jakob disease, 2018–2022.
Fig. 2: Epidemic curve for variant Creutzfeldt–Jakob disease.
Fig. 3: Mechanisms of prion disease pathogenesis.
Fig. 4: MRI lesion profile in sporadic Creutzfeldt-Jakob disease.
Fig. 5: Biological basis of therapeutic strategies in prion disease.

Similar content being viewed by others

References

  1. Alemà, G. in Proceedings of the 5th World Congress of Psychiatry (eds de la Fuente, R. & Weisman, M. N.) 1221–1227 (American Elsevier, 1973).

  2. Masters, C. L. et al. Creutzfeldt-Jakob disease: patterns of worldwide occurrence and the significance of familial and sporadic clustering. Ann. Neurol. 5, 177–188 (1979).

    Article  CAS  PubMed  Google Scholar 

  3. Will, R. G. et al. Descriptive epidemiology of Creutzfeldt-Jakob disease in six European countries, 1993-1995. EU Collaborative Study Group for CJD. Ann. Neurol. 43, 763–767 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Watson, N. et al. The importance of ongoing international surveillance for Creutzfeldt-Jakob disease. Nat. Rev. Neurol. 17, 362–379 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Watson, N. et al. Validation of revised International Creutzfeldt-Jakob disease surveillance network diagnostic criteria for sporadic Creutzfeldt-Jakob disease. JAMA Netw. Open. 5, e2146319 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ladogana, A. et al. Mortality from Creutzfeldt-Jakob disease and related disorders in Europe, Australia, and Canada. Neurology 64, 1586–1591 (2005). This study provides comparative data on disease mortality in Europe as a joint effort of national surveillance systems.

    Article  CAS  PubMed  Google Scholar 

  7. Ladogana, A. et al. Creutzfeldt-Jakob disease: the public health perception. Eur. J. Neurodeg Dis. 1, 101–113 (2012).

    Google Scholar 

  8. D’Aignaux, J. H. et al. Analysis of the geographical distribution of sporadic Creutzfeldt-Jakob disease in France between 1992 and 1998. Int. J. Epidemiol. 31, 490–495 (2002).

    Article  PubMed  Google Scholar 

  9. Nakatani, E. et al. Temporal and regional variations in sporadic Creutzfeldt-Jakob disease in Japan, 2001-2010. Epidemiol. Infect. 143, 1073–1078 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Puopolo, M. et al. Spatial epidemiology of sporadic Creutzfeldt-Jakob disease in Apulia, Italy. Neuroepidemiology 54, 83–90 (2020).

    Article  PubMed  Google Scholar 

  11. Klug, G. M. et al. Intensity of human prion disease surveillance predicts observed disease incidence. J. Neurol. Neurosurg. Psychiatry 84, 1372–1377 (2013).

    Article  PubMed  Google Scholar 

  12. Sun, Y. et al. Incidence of and mortality due to human prion diseases in Taiwan: a prospective 20-year nationwide surveillance study from 1998 to 2017. Clin. Epidemiol. 12, 1073–1081 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Stehmann, C. et al. Communicable Diseases Intelligence. Creutzfeldt-Jakob disease surveillance in Australia: update to 31 December 2022. Commonwealth of Australia Department of Health and Aged Care https://doi.org/10.33321/cdi.2023.47.37 (2023).

  14. Kim, Y. C. & Jeong, B. H. Creutzfeldt-Jakob disease incidence, South Korea, 2001-2019. Emerg. Infect. Dis. 28, 1863–1866 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Government of Canada. Creutzfeldt-Jakob Disease Surveillance System (CJDSS) report. Government of Canada www.canada.ca/en/public-health/services/surveillance/blood-safety-contribution-program/creutzfeldt-jakob-disease/cjd-surveillance-system.html (2023).

  16. Hermann, P. et al. Biomarkers and diagnostic guidelines for sporadic Creutzfeldt-Jakob disease. Lancet Neurol. 20, 235–246 (2021). This paper summarizes the current knowledge on clinical biomarkers and consensus guidelines by experts from national CJD surveillance systems for clinical diagnosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Parchi, P. et al. Classification of sporadic Creutzfeldt-Jakob disease based on molecular and phenotypic analysis of 300 subjects. Ann. Neurol. 46, 224–233 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Denouel, A. et al. The role of environmental factors on sporadic Creutzfeldt-Jakob disease mortality: evidence from an age-period-cohort analysis. Eur. J. Epidemiol. 38, 757–764 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Pocchiari, M. et al. Predictors of survival in sporadic Creutzfeldt-Jakob disease and other human transmissible spongiform encephalopathies. Brain 127, 2348–2359 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Alperovitch, A. et al. Codon 129 prion protein genotype and sporadic Creutzfeldt-Jakob disease. Lancet 353, 1673–1674 (1999). This paper provides evidence for the role of the codon 129 genotype of the prion protein gene in disease susceptibility in sporadic CJD.

    Article  CAS  PubMed  Google Scholar 

  21. Palmer, M. S., Dryden, A. J., Hughes, J. T. & Collinge, J. Homozygous prion protein genotype predisposes to sporadic Creutzfeldt-Jakob disease. Nature 352, 340–342 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Prusiner, S. B. Prions. Proc. Natl Acad. Sci. USA 95, 13363–13383 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mead, S., Lloyd, S. & Collinge, J. Genetic factors in mammalian prion diseases. Annu. Rev. Genet. 53, 117–147 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Brown, P. et al. Human spongiform encephalopathy: the National Institutes of Health series of 300 cases of experimentally transmitted disease. Ann. Neurol. 35, 513–529 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Tateishi, J. et al. First experimental transmission of fatal familial insomnia. Nature 376, 434–435 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Tateishi, J., Kitamoto, T., Hoque, M. Z. & Furukawa, H. Experimental transmission of Creutzfeldt-Jakob disease and related diseases to rodents. Neurology 46, 532–537 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Minikel, E. V. et al. Quantifying prion disease penetrance using large population control cohorts. Sci. Transl. Med. 8, 322ra329 (2016).

    Article  Google Scholar 

  28. Kovacs, G. G. et al. Genetic prion disease: the EUROCJD experience. Hum. Genet. 118, 166–174 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Kim, D. Y., Shim, K. H., Bagyinszky, E. & An, S. S. A. Prion mutations in Republic of Republic of Korea, China, and Japan. Int. J. Mol. Sci. 24, 625 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ladogana, A. & Kovacs, G. G. Genetic Creutzfeldt-Jakob disease. Handb. Clin. Neurol. 153, 219–242 (2018).

    Article  PubMed  Google Scholar 

  31. Brown, P. et al. Familial Creutzfeldt-Jakob disease in Chile is associated with the codon 200 mutation of the PRNP amyloid precursor gene on chromosome 20. J. Neurol. Sci. 112, 65–67 (1992).

    Article  CAS  PubMed  Google Scholar 

  32. Duffy, P. et al. Letter: possible person-to-person transmission of Creutzfeldt-Jakob disease. N. Engl. J. Med. 290, 692–693 (1974).

    Article  CAS  PubMed  Google Scholar 

  33. Brown, P. et al. Iatrogenic Creutzfeldt-Jakob disease, final assessment. Emerg. Infect. Dis. 18, 901–907 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rudge, P. et al. Iatrogenic CJD due to pituitary-derived growth hormone with genetically determined incubation times of up to 40 years. Brain 138, 3386–3399 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  35. National CJD. Surveillance Unit. Creutzfeldt-Jakob disease in the UK. NCJDRSU www.cjd.ed.ac.uk/sites/default/files/figs.pdf (2024).

  36. Takumi, I. & Akino, K. Creutzfeldt-Jakob disease and lyodura:a special reference to prion disease control in the field of neurosurgery [Japanese]. No Shinkei Geka 50, 1078–1086 (2022).

    PubMed  Google Scholar 

  37. Hamaguchi, T. et al. Insight into the frequent occurrence of dura mater graft-associated Creutzfeldt-Jakob disease in Japan. J. Neurol. Neurosurg. Psychiatry 84, 1171–1175 (2013).

    Article  PubMed  Google Scholar 

  38. Kobayashi, Y., Kitamoto, T. & Mizusawa, H. Iatrogenic Creutzfeldt-Jakob disease. Handb. Clin. Neurol. 153, 207–218 (2018).

    Article  PubMed  Google Scholar 

  39. Brandel, J. P. et al. Distribution of codon 129 genotype in human growth hormone-treated CJD patients in France and the UK. Lancet 362, 128–130 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Peckeu, L. et al. Factors influencing the incubation of an infectious form of Creutzfeldt-Jakob disease. Clin. Infect. Dis. 70, 1487–1490 (2020).

    CAS  PubMed  Google Scholar 

  41. Will, R. G. et al. A new variant of Creutzfeldt-Jakob disease in the UK. Lancet 347, 921–925 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Diack, A. B. et al. Variant CJD. 18 years of research and surveillance. Prion 8, 286–295 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Brandel, J. P. et al. Variant Creutzfeldt-Jakob disease diagnosed 7.5 years after occupational exposure. N. Engl. J. Med. 383, 83–85 (2020).

    Article  PubMed  Google Scholar 

  44. Santé publique France. Maladie de Creutzfeldt-Jakob [French]. Santé publique France www.santepubliquefrance.fr/maladies-et-traumatismes/maladies-infectieuses-d-origine-alimentaire/maladie-de-creutzfeldt-jakob (2024).

  45. Diack, A. B., Will, R. G. & Manson, J. C. Public health risks from subclinical variant CJD. PLoS Pathog. 13, e1006642 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Collinge, J. et al. Kuru in the 21st century – an acquired human prion disease with very long incubation periods. Lancet 367, 2068–2074 (2006).

    Article  PubMed  Google Scholar 

  47. Alpers, M. P. Review. The epidemiology of kuru: monitoring the epidemic from its peak to its end. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 3707–3713 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Collinge, J. Mammalian prions and their wider relevance in neurodegenerative diseases. Nature 539, 217–226 (2016).

    Article  ADS  PubMed  Google Scholar 

  49. Kara, E., Marks, J. D. & Aguzzi, A. Toxic protein spread in neurodegeneration: reality versus fantasy. Trends Mol. Med. 24, 1007–1020 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Peng, C., Trojanowski, J. Q. & Lee, V. M. Protein transmission in neurodegenerative disease. Nat. Rev. Neurol. 16, 199–212 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li, J., Browning, S., Mahal, S. P., Oelschlegel, A. M. & Weissmann, C. Darwinian evolution of prions in cell culture. Science 327, 869–872 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  52. Marrero-Winkens, C. et al. From seeds to fibrils and back: fragmentation as an overlooked step in the propagation of prions and prion-like proteins. Biomolecules 10, 1305 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Orgel, L. E. Prion replication and secondary nucleation. Chem. Biol. 3, 413–414 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. Bueler, H. et al. Mice devoid of PrP are resistant to scrapie. Cell 73, 1339–1347 (1993).

    Article  CAS  PubMed  Google Scholar 

  55. Benestad, S. L., Austbo, L., Tranulis, M. A., Espenes, A. & Olsaker, I. Healthy goats naturally devoid of prion protein. Vet. Res. 43, 87 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Richt, J. A. et al. Production of cattle lacking prion protein. Nat. Biotechnol. 25, 132–138 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Bueler, H. et al. High prion and PrPSc levels but delayed onset of disease in scrapie-inoculated mice heterozygous for a disrupted PrP gene. Mol. Med. 1, 19–30 (1994).

    Article  CAS  PubMed  Google Scholar 

  58. Mallucci, G. et al. Depleting neuronal PrP in prion infection prevents disease and reverses spongiosis. Science 302, 871–874 (2003). This paper underscores the causal involvement of the prion protein in prion infection and provides evidence for targeting PrP for therapy.

    Article  ADS  CAS  PubMed  Google Scholar 

  59. Minikel, E. V. et al. Prion protein lowering is a disease-modifying therapy across prion disease stages, strains and endpoints. Nucleic Acids Res. 48, 10615–10631 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Houston, F. & Andreoletti, O. Animal prion diseases: the risks to human health. Brain Pathol. 29, 248–262 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Sandberg, M. K. et al. Prion neuropathology follows the accumulation of alternate prion protein isoforms after infective titre has peaked. Nat. Commun. 5, 4347 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  62. Artikis, E., Kraus, A. & Caughey, B. Structural biology of ex vivo mammalian prions. J. Biol. Chem. 298, 102181 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Riek, R. et al. NMR structure of the mouse prion protein domain PrP(121-231). Nature 382, 180–182 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  64. Brown, D. R. et al. The cellular prion protein binds copper in vivo. Nature 390, 684–687 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  65. Pan, K. M. et al. Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc. Natl Acad. Sci. USA 90, 10962–10966 (1993).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kraus, A. et al. High-resolution structure and strain comparison of infectious mammalian prions. Mol. Cell 81, 4540–4551.e6 (2021).

    Article  CAS  PubMed  Google Scholar 

  67. Manka, S. W. et al. 2.7 Å cryo-EM structure of ex vivo RML prion fibrils. Nat. Commun. 13, 4004 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hoyt, F. et al. Cryo-EM structure of anchorless RML prion reveals variations in shared motifs between distinct strains. Nat. Commun. 13, 4005 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hallinan, G. I. et al. Cryo-EM structures of prion protein filaments from Gerstmann–Sträussler–Scheinker disease. Acta Neuropathol. 144, 509–520 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Taylor, D. R. & Hooper, N. M. The prion protein and lipid rafts. Mol. Membr. Biol. 23, 89–99 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Linsenmeier, L. et al. Diverse functions of the prion protein – does proteolytic processing hold the key? Biochim. Biophys. Acta Mol. Cell Res. 1864, 2128–2137 (2017).

    Article  CAS  PubMed  Google Scholar 

  72. Skedsmo, F. S. et al. Demyelinating polyneuropathy in goats lacking prion protein. FASEB J. 34, 2359–2375 (2020).

    Article  CAS  PubMed  Google Scholar 

  73. Bremer, J. et al. Axonal prion protein is required for peripheral myelin maintenance. Nat. Neurosci. 13, 310–318 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Collinge, J. Variant Creutzfeldt-Jakob disease. Lancet 354, 317–323 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Bishop, M. T., Will, R. G. & Manson, J. C. Defining sporadic Creutzfeldt-Jakob disease strains and their transmission properties. Proc. Natl Acad. Sci. USA 107, 12005–12010 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cassard, H. et al. Prions from sporadic Creutzfeldt-Jakob disease patients propagate as strain mixtures. mBio 11, e00393-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Bruce, M. et al. Transmission of bovine spongiform encephalopathy and scrapie to mice: strain variation and the species barrier. Philos. Trans. R. Soc. Lond. B Biol. Sci. 343, 405–411 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  78. Mead, S. et al. Genetic risk factors for variant Creutzfeldt-Jakob disease: a genome-wide association study. Lancet Neurol. 8, 57–66 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Manka, S. W. et al. A structural basis for prion strain diversity. Nat. Chem. Biol. 19, 607–613 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Noble, G. P., Walsh, D. J., Miller, M. B., Jackson, W. S. & Supattapone, S. Requirements for mutant and wild-type prion protein misfolding in vitro. Biochemistry 54, 1180–1187 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. Jones, E. et al. Identification of novel risk loci and causal insights for sporadic Creutzfeldt-Jakob disease: a genome-wide association study. Lancet Neurol. 19, 840–848 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Supattapone, S. Cofactor molecules: essential partners for infectious prions. Prog. Mol. Biol. Transl. Sci. 175, 53–75 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Legname, G. et al. Synthetic mammalian prions. Science 305, 673–676 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  84. Aguilar-Calvo, P. et al. Shortening heparan sulfate chains prolongs survival and reduces parenchymal plaques in prion disease caused by mobile, ADAM10-cleaved prions. Acta Neuropathol. 139, 527–546 (2020).

    Article  CAS  PubMed  Google Scholar 

  85. Heikenwalder, M. et al. Chronic lymphocytic inflammation specifies the organ tropism of prions. Science 307, 1107–1110 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  86. Beringue, V. et al. Facilitated cross-species transmission of prions in extraneural tissue. Science 335, 472–475 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  87. Sigurdson, C. J., Bartz, J. C. & Glatzel, M. Cellular and molecular mechanisms of prion disease. Annu. Rev. Pathol. 14, 497–516 (2019).

    Article  CAS  PubMed  Google Scholar 

  88. Fraser, H. Neuronal spread of scrapie agent and targeting of lesions within the retino-tectal pathway. Nature 295, 149–150 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  89. Lakkaraju, A. K. K. et al. Glial activation in prion diseases is selectively triggered by neuronal PrPSc. Brain Pathol. 32, e13056 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Prinz, M. et al. Intrinsic resistance of oligodendrocytes to prion infection. J. Neurosci. 24, 5974–5981 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bradford, B. M., McGuire, L. I., Hume, D. A., Pridans, C. & Mabbott, N. A. Microglia deficiency accelerates prion disease but does not enhance prion accumulation in the brain. Glia 70, 2169–2187 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Falsig, J. et al. A versatile prion replication assay in organotypic brain slices. Nat. Neurosci. 11, 109–117 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Scheckel, C., Imeri, M., Schwarz, P. & Aguzzi, A. Ribosomal profiling during prion disease uncovers progressive translational derangement in glia but not in neurons. Elife 9, e62911 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sandberg, M. K., Al-Doujaily, H., Sharps, B., Clarke, A. R. & Collinge, J. Prion propagation and toxicity in vivo occur in two distinct mechanistic phases. Nature 470, 540–542 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  95. Eskandari-Sedighi, G. et al. Quaternary structure changes for PrPSc predate PrPC downregulation and neuronal death during progression of experimental scrapie disease. Mol. Neurobiol. 58, 375–390 (2021).

    Article  CAS  PubMed  Google Scholar 

  96. Mok, T. H. et al. Seed amplification and neurodegeneration marker trajectories in individuals at risk of prion disease. Brain 146, 2570–2583 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Schmitz, M. et al. Detection of prion protein seeding activity in tear fluids. N. Engl. J. Med. 388, 1816–1817 (2023).

    Article  PubMed  Google Scholar 

  98. Vallabh, S. M. et al. Cerebrospinal fluid and plasma biomarkers in individuals at risk for genetic prion disease. BMC Med. 18, 140 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Mercer, R. C. C. & Harris, D. A. Mechanisms of prion-induced toxicity. Cell Tissue Res. 392, 81–96 (2023).

    Article  PubMed  Google Scholar 

  100. Brandner, S. et al. Normal host prion protein necessary for scrapie-induced neurotoxicity. Nature 379, 339–343 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  101. Benilova, I. & De Strooper, B. Prion protein in Alzheimer’s pathogenesis: a hot and controversial issue. EMBO Mol. Med. 2, 289–290 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Collinge, J. Molecular neurology of prion disease. J. Neurol. Neurosurg. Psychiatry 76, 906–919 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Mallucci, G. R. et al. Targeting cellular prion protein reverses early cognitive deficits and neurophysiological dysfunction in prion-infected mice. Neuron 53, 325–335 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Chesebro, B. et al. Anchorless prion protein results in infectious amyloid disease without clinical scrapie. Science 308, 1435–1439 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  105. Lauren, J., Gimbel, D. A., Nygaard, H. B., Gilbert, J. W. & Strittmatter, S. M. Cellular prion protein mediates impairment of synaptic plasticity by amyloid-β oligomers. Nature 457, 1128–1132 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  106. Balducci, C. & Forloni, G. Doxycycline for Alzheimer’s disease: fighting β-amyloid oligomers and neuroinflammation. Front. Pharmacol. 10, 738 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Fang, C. et al. Prions activate a p38 MAPK synaptotoxic signaling pathway. PLoS Pathog. 14, e1007283 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Moreno, J. A. et al. Sustained translational repression by eIF2ɑ-P mediates prion neurodegeneration. Nature 485, 507–511 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lakkaraju, A. K. K. et al. Loss of PIKfyve drives the spongiform degeneration in prion diseases. EMBO Mol. Med. 13, e14714 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Smith, H. L. et al. Astrocyte unfolded protein response induces a specific reactivity state that causes non-cell-autonomous neuronal degeneration. Neuron 105, 855–866.e5 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Mallucci, G. R. et al. Post-natal knockout of prion protein alters hippocampal CA1 properties, but does not result in neurodegeneration. EMBO J. 21, 202–210 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Rhoads, D. D. et al. Diagnosis of prion diseases by RT-QuIC results in improved surveillance. Neurology 95, e1017–e1026 (2020).

    Article  CAS  PubMed  Google Scholar 

  113. World Health Organization. Global surveillance, diagnosis and therapy of human transmissible spongiform encephalopatheis: Report of WHO Consultation 1998. WHO iris.who.int/bitstream/handle/10665/65516/WHO_EMC_ZDI_98.9.pdf?sequence=1&isAllowed=y (1998).

  114. Parchi, P. et al. Consensus classification of human prion disease histotypes allows reliable identification of molecular subtypes: an inter-rater study among surveillance centres in Europe and USA. Acta Neuropathol. 124, 517–529 (2012). This paper provides a clinical and neuropathological classification system for sporadic CJD based on molecular characteristics of the abnormal prion protein and codon 129 genotype of PRNP.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Zerr, I. & Parchi, P. Sporadic Creutzfeldt-Jakob disease. Handb. Clin. Neurol. 153, 155–174 (2018).

    Article  PubMed  Google Scholar 

  116. Mead, S. & Rudge, P. CJD mimics and chameleons. Pract. Neurol. 17, 113–121 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Hermann, P. & Zerr, I. Rapidly progressive dementias – aetiologies, diagnosis and management. Nat. Rev. Neurol. 18, 363–376 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zerr, I. et al. Updated clinical diagnostic criteria for sporadic Creutzfeldt-Jakob disease. Brain 132, 2659–2668 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Steinhoff, B. J. et al. Diagnostic value of periodic complexes in Creutzfeldt-Jakob disease. Ann. Neurol. 56, 702–708 (2004).

    Article  PubMed  Google Scholar 

  120. Muayqil, T., Gronseth, G. & Camicioli, R. Evidence-based guideline: diagnostic accuracy of CSF 14-3-3 protein in sporadic Creutzfeldt-Jakob disease: report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology 79, 1499–1506 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Skillback, T. et al. Diagnostic performance of cerebrospinal fluid total tau and phosphorylated tau in Creutzfeldt-Jakob disease: results from the Swedish Mortality Registry. JAMA Neurol. 71, 476–483 (2014).

    Article  PubMed  Google Scholar 

  122. Stoeck, K. et al. Cerebrospinal fluid biomarker supported diagnosis of Creutzfeldt-Jakob disease and rapid dementias: a longitudinal multicentre study over 10 years. Brain 135, 3051–3061 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Lattanzio, F. et al. Prion-specific and surrogate CSF biomarkers in Creutzfeldt-Jakob disease: diagnostic accuracy in relation to molecular subtypes and analysis of neuropathological correlates of p-tau and Aβ42 levels. Acta Neuropathol. 133, 559–578 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Atarashi, R. et al. Ultrasensitive human prion detection in cerebrospinal fluid by real-time quaking-induced conversion. Nat. Med. 17, 175–178 (2011).

    Article  CAS  PubMed  Google Scholar 

  125. Orru, C. D. et al. Rapid and sensitive RT-QuIC detection of human Creutzfeldt-Jakob disease using cerebrospinal fluid. mBio 6, e02451-14 (2015). Together with Atarashi et al. (2011), this paper reports the new technology, RT-QuIC, for detection of misfolded PrP aggregates in biological fluids.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Orru, C. D. et al. A test for Creutzfeldt-Jakob disease using nasal brushings. N. Engl. J. Med. 371, 519–529 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Orru, C. D. et al. Prion seeding activity and infectivity in skin samples from patients with sporadic Creutzfeldt-Jakob disease. Sci. Transl. Med. 9, eaam7785 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Hermann, P. et al. Application of real-time quaking-induced conversion in Creutzfeldt-Jakob disease surveillance. J. Neurol. 270, 2149–2161 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Abu-Rumeileh, S. et al. Comparison between plasma and cerebrospinal fluid biomarkers for the early diagnosis and association with survival in prion disease. J. Neurol. Neurosurg. Psychiatry 91, 1181–1188 (2020).

    Article  PubMed  Google Scholar 

  130. Rudge, P., Hyare, H., Green, A., Collinge, J. & Mead, S. Imaging and CSF analyses effectively distinguish CJD from its mimics. J. Neurol. Neurosurg. Psychiatry 89, 461–466 (2018).

    Article  PubMed  Google Scholar 

  131. Bizzi, A. et al. Evaluation of a new criterion for detecting prion disease with diffusion magnetic resonance imaging. JAMA Neurol. 77, 1141–1149 (2020).

    Article  PubMed  Google Scholar 

  132. Yasuda, M. et al. Propagation of diffusion-weighted MRI abnormalities in the preclinical stage of sporadic Creutzfeldt-Jakob disease. Neurology 99, 699–702 (2022).

    Article  CAS  PubMed  Google Scholar 

  133. Abu-Rumeileh, S. et al. Sporadic fatal insomnia in Europe: phenotypic features and diagnostic challenges. Ann. Neurol. 84, 347–360 (2018).

    Article  CAS  PubMed  Google Scholar 

  134. Jesuthasan, A. et al. Assessing initial MRI reports for suspected CJD patients. J. Neurol. 269, 4452–4458 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Marquetand, J. et al. Periodic EEG patterns in sporadic Creutzfeld-Jakob-Disease can be benzodiazepine-responsive and be difficult to distinguish from non-convulsive status epilepticus. Seizure 53, 47–50 (2017).

    Article  PubMed  Google Scholar 

  136. Lapergue, B. et al. Sporadic Creutzfeldt-Jakob disease mimicking nonconvulsive status epilepticus. Neurology 74, 1995–1999 (2010).

    Article  CAS  PubMed  Google Scholar 

  137. Minikel, E. V. et al. Age at onset in genetic prion disease and the design of preventive clinical trials. Neurology 93, e125–e134 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Arata, H. et al. Early clinical signs and imaging findings in Gerstmann-Sträussler-Scheinker syndrome (Pro102Leu). Neurology 66, 1672–1678 (2006).

    Article  CAS  PubMed  Google Scholar 

  139. Krasnianski, A. et al. Fatal familial insomnia: clinical features and early identification. Ann. Neurol. 63, 658–661 (2008).

    Article  PubMed  Google Scholar 

  140. Schmitz, M. et al. Diagnostic accuracy of cerebrospinal fluid biomarkers in genetic prion diseases. Brain 145, 700–712 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Mead, S. et al. A novel prion disease associated with diarrhea and autonomic neuropathy. N. Engl. J. Med. 369, 1904–1914 (2013).

    Article  CAS  PubMed  Google Scholar 

  142. Llorens, F. et al. Diagnostic accuracy of prion disease biomarkers in iatrogenic Creutzfeldt-Jakob disease. Biomolecules 10, 290 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Heath, C. A. et al. Validation of diagnostic criteria for variant Creutzfeldt-Jakob disease. Ann. Neurol. 67, 761–770 (2010).

    Article  PubMed  Google Scholar 

  144. Moda, F. et al. Prions in the urine of patients with variant Creutzfeldt-Jakob disease. N. Engl. J. Med. 371, 530–539 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Lacroux, C. et al. Preclinical detection of variant CJD and BSE prions in blood. PLoS Pathog. 10, e1004202 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Mok, T. et al. Variant Creutzfeldt-Jakob disease in a patient with heterozygosity at PRNP codon 129. N. Engl. J. Med. 376, 292–294 (2017).

    Article  PubMed  Google Scholar 

  147. Paterson, R. W. et al. Differential diagnosis of Jakob-Creutzfeldt disease. Arch. Neurol. 69, 1578–1582 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Chitravas, N. et al. Treatable neurological disorders misdiagnosed as Creutzfeldt-Jakob disease. Ann. Neurol. 70, 437–444 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Maat, P. et al. Pathologically confirmed autoimmune encephalitis in suspected Creutzfeldt-Jakob disease. Neurol. Neuroimmunol. Neuroinflamm 2, e178 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Biggi, S. et al. Identification of compounds inhibiting prion replication and toxicity by removing PrPC from the cell surface. J. Neurochem. 152, 136–150 (2020).

    Article  CAS  PubMed  Google Scholar 

  151. Forloni, G., Roiter, I. & Tagliavini, F. Clinical trials of prion disease therapeutics. Curr. Opin. Pharmacol. 44, 53–60 (2019).

    Article  CAS  PubMed  Google Scholar 

  152. Baiardi, S., Mammana, A., Capellari, S. & Parchi, P. Human prion disease: molecular pathogenesis, and possible therapeutic targets and strategies. Expert Opin. Ther. Targets 27, 1271–1284 (2023).

    Article  CAS  PubMed  Google Scholar 

  153. Otto, M. et al. Efficacy of flupirtine on cognitive function in patients with CJD: a double-blind study. Neurology 62, 714–718 (2004).

    Article  CAS  PubMed  Google Scholar 

  154. Doh-Ura, K., Iwaki, T. & Caughey, B. Lysosomotropic agents and cysteine protease inhibitors inhibit scrapie-associated prion protein accumulation. J. Virol. 74, 4894–4897 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Collins, S. J. et al. Quinacrine does not prolong survival in a murine Creutzfeldt-Jakob disease model. Ann. Neurol. 52, 503–506 (2002).

    Article  CAS  PubMed  Google Scholar 

  156. Barret, A. et al. Evaluation of quinacrine treatment for prion diseases. J. Virol. 77, 8462–8469 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Murakami-Kubo, I. et al. Quinoline derivatives are therapeutic candidates for transmissible spongiform encephalopathies. J. Virol. 78, 1281–1288 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Haik, S. et al. Compassionate use of quinacrine in Creutzfeldt-Jakob disease fails to show significant effects. Neurology 63, 2413–2415 (2004).

    Article  CAS  PubMed  Google Scholar 

  159. Nakajima, M. et al. Results of quinacrine administration to patients with Creutzfeldt-Jakob disease. Dement. Geriatr. Cogn. Disord. 17, 158–163 (2004).

    Article  CAS  PubMed  Google Scholar 

  160. Collinge, J. et al. Safety and efficacy of quinacrine in human prion disease (PRION-1 study): a patient-preference trial. Lancet Neurol. 8, 334–344 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Geschwind, M. D. et al. Quinacrine treatment trial for sporadic Creutzfeldt-Jakob disease. Neurology 81, 2015–2023 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Ghaemmaghami, S. et al. Continuous quinacrine treatment results in the formation of drug-resistant prions. PLoS Pathog. 5, e1000673 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Schenk, D. et al. Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400, 173–177 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  164. van Dyck, C. H. et al. Lecanemab in early Alzheimer’s disease. N. Engl. J. Med. 388, 9–21 (2023).

    Article  PubMed  Google Scholar 

  165. Sims, J. R. et al. Donanemab in early symptomatic Alzheimer disease: the TRAILBLAZER-ALZ 2 randomized clinical trial. JAMA 330, 512–527 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Gabizon, R., McKinley, M. P., Groth, D. & Prusiner, S. B. Immunoaffinity purification and neutralization of scrapie prion infectivity. Proc. Natl Acad. Sci. USA 85, 6617–6621 (1988).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  167. Enari, M., Flechsig, E. & Weissmann, C. Scrapie prion protein accumulation by scrapie-infected neuroblastoma cells abrogated by exposure to a prion protein antibody. Proc. Natl Acad. Sci. USA 98, 9295–9299 (2001). This study provides evidence for targeting PrP for therapy.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  168. Peretz, D. et al. Antibodies inhibit prion propagation and clear cell cultures of prion infectivity. Nature 412, 739–743 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  169. Fernandez-Borges, N. et al. DNA vaccination can break immunological tolerance to PrP in wild-type mice and attenuates prion disease after intracerebral challenge. J. Virol. 80, 9970–9976 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Nitschke, C. et al. Immunisation strategies against prion diseases: prime-boost immunisation with a PrP DNA vaccine containing foreign helper T-cell epitopes does not prevent mouse scrapie. Vet. Microbiol. 123, 367–376 (2007).

    Article  CAS  PubMed  Google Scholar 

  171. Solforosi, L. et al. Cross-linking cellular prion protein triggers neuronal apoptosis in vivo. Science 303, 1514–1516 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  172. Sonati, T. et al. The toxicity of antiprion antibodies is mediated by the flexible tail of the prion protein. Nature 501, 102–106 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  173. Frontzek, K. et al. A conformational switch controlling the toxicity of the prion protein. Nat. Struct. Mol. Biol. 29, 831–840 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Heppner, F. L. et al. Prevention of scrapie pathogenesis by transgenic expression of anti-prion protein antibodies. Science 294, 178–182 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  175. White, M. D. et al. Single treatment with RNAi against prion protein rescues early neuronal dysfunction and prolongs survival in mice with prion disease. Proc. Natl Acad. Sci. USA 105, 10238–10243 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  176. Reimann, R. R. et al. Differential toxicity of antibodies to the prion protein. PLoS Pathog. 12, e1005401 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Mead, S. et al. Prion protein monoclonal antibody (PRN100) therapy for Creutzfeldt-Jakob disease: evaluation of a first-in-human treatment programme. Lancet Neurol. 21, 342–354 (2022). This paper reports on successful administration and clinical effect of an anti-prion protein antibody.

    Article  CAS  PubMed  Google Scholar 

  178. Tagliavini, F. et al. Tetracycline affects abnormal properties of synthetic PrP peptides and PrPSc in vitro. J. Mol. Biol. 300, 1309–1322 (2000).

    Article  CAS  PubMed  Google Scholar 

  179. Forloni, G. et al. Tetracyclines affect prion infectivity. Proc. Natl Acad. Sci. USA 99, 10849–10854 (2002). This paper provides a rationale for treatment with doxycycline.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  180. De Luigi, A. et al. The efficacy of tetracyclines in peripheral and intracerebral prion infection. PLoS ONE 3, e1888 (2008).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  181. Lucchetti, J. et al. Plasma and brain concentrations of doxycycline after single and repeated doses in wild-type and APP23 mice. J. Pharmacol. Exp. Ther. 368, 32–40 (2019).

    Article  CAS  PubMed  Google Scholar 

  182. Forloni, G., Salmona, M., Marcon, G. & Tagliavini, F. Tetracyclines and prion infectivity. Infect. Disord. Drug. Targets 9, 23–30 (2009).

    Article  CAS  PubMed  Google Scholar 

  183. Haik, S. et al. Doxycycline in Creutzfeldt-Jakob disease: a phase 2, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 13, 150–158 (2014).

    Article  CAS  PubMed  Google Scholar 

  184. Varges, D. et al. Doxycycline in early CJD: a double-blinded randomised phase II and observational study. J. Neurol. Neurosurg. Psychiatry 88, 119–125 (2017).

    Article  PubMed  Google Scholar 

  185. Hannaoui, S. et al. Cycline efficacy on the propagation of human prions in primary cultured neurons is strain-specific. J. Infect. Dis. 209, 1144–1148 (2014).

    Article  CAS  PubMed  Google Scholar 

  186. Forloni, G. et al. Preventive study in subjects at risk of fatal familial insomnia: innovative approach to rare diseases. Prion 9, 75–79 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Forloni, G. et al. Preventive pharmacological treatment in subjects at risk for fatal familial insomnia: science and public engagement. Prion 16, 66–77 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Zomosa-Signoret, V., Arnaud, J. D., Fontes, P., Alvarez-Martinez, M. T. & Liautard, J. P. Physiological role of the cellular prion protein. Vet. Res. 39, 9 (2008).

    Article  PubMed  Google Scholar 

  189. Nazor Friberg, K. et al. Intracerebral infusion of antisense oligonucleotides into prion-infected mice. Mol. Ther. Nucleic Acids 1, e9 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Ahn, M. et al. Convection-enhanced delivery of AAV2-PrPshRNA in prion-infected mice. PLoS ONE 9, e98496 (2014).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  191. Masone, A. et al. A tetracationic porphyrin with dual anti-prion activity. iScience 26, 107480 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  192. Bennett, C. F., Krainer, A. R. & Cleveland, D. W. Antisense oligonucleotide therapies for neurodegenerative diseases. Annu. Rev. Neurosci. 42, 385–406 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Finkel, R. S. et al. Nusinersen versus sham control in infantile-onset spinal muscular atrophy. N. Engl. J. Med. 377, 1723–1732 (2017).

    Article  CAS  PubMed  Google Scholar 

  194. Miller, T. M. et al. Trial of antisense oligonucleotide tofersen for SOD1 ALS. N. Engl. J. Med. 387, 1099–1110 (2022).

    Article  CAS  PubMed  Google Scholar 

  195. Blair, H. A. Tofersen: first approval. Drugs 83, 1039–1043 (2023).

    Article  CAS  PubMed  Google Scholar 

  196. Kumar, D., Hasan, G. M., Islam, A. & Hassan, M. I. Therapeutic targeting of Huntington’s disease: molecular and clinical approaches. Biochem. Biophys. Res. Commun. 655, 18–24 (2023).

    Article  CAS  PubMed  Google Scholar 

  197. Raymond, G. J. et al. Antisense oligonucleotides extend survival of prion-infected mice. JCI Insight 5, e131175 (2019).

    Article  PubMed  Google Scholar 

  198. Vallabh, S. M., Minikel, E. V., Schreiber, S. L. & Lander, E. S. Towards a treatment for genetic prion disease: trials and biomarkers. Lancet Neurol. 19, 361–368 (2020).

    Article  CAS  PubMed  Google Scholar 

  199. Thompson, A. G. et al. The Medical Research Council prion disease rating scale: a new outcome measure for prion disease therapeutic trials developed and validated using systematic observational studies. Brain 136, 1116–1127 (2013).

    Article  PubMed  Google Scholar 

  200. Brandel, J. P., Welaratne, A., Denouel, A. & Haik, S. Validation of the Medical Research Council prion disease rating scale in France. Brain Commun. 5, fcad267 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Nihat, A. et al. Development of prognostic models for survival and care status in sporadic Creutzfeldt-Jakob disease. Brain Commun. 4, fcac201 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Appleby, B. S. & Yobs, D. R. Symptomatic treatment, care, and support of CJD patients. Handb. Clin. Neurol. 153, 399–408 (2018).

    Article  PubMed  Google Scholar 

  203. Harrison, K. L. et al. Developing neuropalliative care for sporadic Creutzfeldt-Jakob disease. Prion 16, 23–39 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. McNiven, K. et al. Enteral feeding is associated with longer survival in the advanced stages of prion disease. Brain Commun. 1, fcz012 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Uflacker, A., Edmondson, M. C., Onyike, C. U. & Appleby, B. S. Caregiver burden in atypical dementias: comparing frontotemporal dementia, Creutzfeldt-Jakob disease, and Alzheimer’s disease. Int. Psychogeriatr. 28, 269–273 (2016).

    Article  PubMed  Google Scholar 

  206. Arpinelli, F. & Bamfi, F. The FDA guidance for industry on PROs: the point of view of a pharmaceutical company. Health Qual. Life Outcomes 4, 85 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Zerr, I. & Hermann, P. in Prion and Diseases (eds Zou, W. Q. & Gambetti, P.) 675–701 (Springer, 2023).

  208. Nationales Referenzzentrum. CJD in Germany (11.12.2023). NRZ cjd-goettingen.de/en/news/cjd-figures/cjd-in-germany/ (2023).

  209. Istituto Superiore di Sanità. Registers and surveillance: National Registry of Creutzfeldt-Jakob disease and related disorders. Istituto Superiore di Sanità www.iss.it/en/registro-mcj-dati-epidemiologici (2023).

  210. UN Department of Economic and Social Affairs Statistics Division. Population and vital statistics report. UN unstats.un.org/unsd/demographic-social/products/vitstats/seratab2.pdf (2024).

  211. Cashman, N. R. & Caughey, B. Prion diseases – close to effective therapy? Nat. Rev. Drug. Discov. 3, 874–884 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Introduction (I.Z.); Epidemiology (A.L.); Mechanisms/pathophysiology (S.M.); Diagnosis, screening and prevention (P.H. and I.Z.); Management (G.F.); Quality of life (B.S.A.); Outlook (I.Z.); overview of Primer (I.Z.).

Corresponding author

Correspondence to Inga Zerr.

Ethics declarations

Competing interests

I.Z. declares funding from BMG through the Robert Koch Institute, CJD Foundation and JPND; and consulting for IONIS, Sangamo, Gate Bio, Biogen and Lilly. B.S.A. declares funding from CDC, NIH, CJD Foundation, Ionis and Alector; consulting for Ionis, Sangamo, Gate Bio and Merck; and royalties from Wolters Kluwer. All other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Disease Primers thanks O. Andréoletti, H. Budka, G. Legname, P. Liberski and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zerr, I., Ladogana, A., Mead, S. et al. Creutzfeldt–Jakob disease and other prion diseases. Nat Rev Dis Primers 10, 14 (2024). https://doi.org/10.1038/s41572-024-00497-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-024-00497-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing