Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Rotator cuff tears

Abstract

Rotator cuff tears are the most common upper extremity condition seen by primary care and orthopaedic surgeons, with a spectrum ranging from tendinopathy to full-thickness tears with arthritic change. Some tears are traumatic, but most rotator cuff problems are degenerative. Not all tears are symptomatic and not all progress, and many patients in whom tears become more extensive do not experience symptom worsening. Hence, a standard algorithm for managing patients is challenging. The pathophysiology of rotator cuff tears is complex and encompasses an interplay between the tendon, bone and muscle. Rotator cuff tears begin as degenerative changes within the tendon, with matrix disorganization and inflammatory changes. Subsequently, tears progress to partial-thickness and then full-thickness tears. Muscle quality, as evidenced by the overall size of the muscle and intramuscular fatty infiltration, also influences symptoms, tear progression and the outcomes of surgery. Treatment depends primarily on symptoms, with non-operative management sufficient for most patients with rotator cuff problems. Modern arthroscopic repair techniques have improved recovery, but outcomes are still limited by a lack of understanding of how to improve tendon to bone healing in many patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural anatomy of the rotator cuff when viewed from the anterior and posterior aspects.
Fig. 2: Representative pathology and functional differences in rotator cuff pathology.
Fig. 3: Muscle and tendon biology of the rotator cuff.
Fig. 4: Surgical anatomy of rotator cuff tears.
Fig. 5: Algorithm for rotator cuff tear treatment.

Similar content being viewed by others

References

  1. Gray, M., Wallace, A. & Aldridge, S. Assessment of shoulder pain for non-specialists. BMJ 355, i5783 (2016).

    Article  PubMed  Google Scholar 

  2. Rugg, C. M., Gallo, R. A., Craig, E. V. & Feeley, B. T. The pathogenesis and management of cuff tear arthropathy. J. Shoulder Elbow Surg. 27, 2271–2283 (2018).

    Article  PubMed  Google Scholar 

  3. Millar, N. L. et al. Tendinopathy. Nat. Rev. Dis. Primers 7, 1 (2021).

    Article  PubMed  Google Scholar 

  4. Keener, J. D. et al. Patterns of tear progression for asymptomatic degenerative rotator cuff tears. J. Shoulder Elbow Surg. 24, 1845–1851 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Keener, J. D. et al. A prospective evaluation of survivorship of asymptomatic degenerative rotator cuff tears. J. Bone Joint Surg. Am. 97, 89–98 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Nie, D., Zhou, Y., Wang, W., Zhang, J. & Wang, J. H. Mechanical overloading induced-activation of mTOR signaling in tendon stem/progenitor cells contributes to tendinopathy development. Front. Cell Dev. Biol. 9, 687856 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gladstone, J. N., Bishop, J. Y., Lo, I. K. & Flatow, E. L. Fatty infiltration and atrophy of the rotator cuff do not improve after rotator cuff repair and correlate with poor functional outcome. Am. J. Sports Med. 35, 719–728 (2007).

    Article  PubMed  Google Scholar 

  8. Davies, M. R. et al. Rotator cuff tear size regulates fibroadipogenic progenitor number and gene expression profile in the supraspinatus independent of patient age. Am. J. Sports Med. 50, 208–215 (2022).

    Article  PubMed  Google Scholar 

  9. Feeley, B. T. et al. Human rotator cuff tears have an endogenous, inducible stem cell source capable of improving muscle quality and function after rotator cuff repair. Am. J. Sports Med. 48, 2660–2668 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yanik, E. L., Chamberlain, A. M. & Keener, J. D. Trends in rotator cuff repair rates and comorbidity burden among commercially insured patients younger than the age of 65 years, United States 2007-2016. JSES Rev. Rep. Tech. 1, 309–316 (2021).

    PubMed  PubMed Central  Google Scholar 

  11. Keener, J. D., Steger-May, K., Stobbs, G. & Yamaguchi, K. Asymptomatic rotator cuff tears: patient demographics and baseline shoulder function. J. Shoulder Elbow Surg. 19, 1191–1198 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hinsley, H., Ganderton, C., Arden, N. K. & Carr, A. J. Prevalence of rotator cuff tendon tears and symptoms in a Chingford general population cohort, and the resultant impact on UK health services: a cross-sectional observational study. BMJ Open 12, e059175 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yamamoto, A. et al. Prevalence and risk factors of a rotator cuff tear in the general population. J. Shoulder Elbow Surg. 19, 116–120 (2010).

    Article  PubMed  Google Scholar 

  14. Minagawa, H. et al. Prevalence of symptomatic and asymptomatic rotator cuff tears in the general population: from mass-screening in one village. J. Orthop. 10, 8–12 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Keener, J. D., Patterson, B. M., Orvets, N. & Chamberlain, A. M. Degenerative rotator cuff tears: refining surgical indications based on natural history data. J. Am. Acad. Orthop. Surg. 27, 156–165 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kim, H. M. et al. Relationship of tear size and location to fatty degeneration of the rotator cuff. J. Bone Joint Surg. Am. 92, 829 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yamaguchi, K. et al. The demographic and morphological features of rotator cuff disease. A comparison of asymptomatic and symptomatic shoulders. J. Bone Joint Surg. Am. 88, 1699–1704 (2006).

    Article  PubMed  Google Scholar 

  18. Mall, N. A. et al. Symptomatic progression of asymptomatic rotator cuff tears: a prospective study of clinical and sonographic variables. J. Bone Joint Surg. Am. 92, 2623–2633 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yamaguchi, K. et al. Natural history of asymptomatic rotator cuff tears: a longitudinal analysis of asymptomatic tears detected sonographically. J. Shoulder Elbow Surg. 10, 199–203 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Teunis, T., Lubberts, B., Reilly, B. T. & Ring, D. A systematic review and pooled analysis of the prevalence of rotator cuff disease with increasing age. J. Shoulder Elbow Surg. 23, 1913–1921 (2014).

    Article  PubMed  Google Scholar 

  21. Harvie, P. et al. Genetic influences in the aetiology of tears of the rotator cuff. Sibling risk of a full-thickness tear. J. Bone Joint Surg. Br. 86, 696–700 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Gwilym, S. E. et al. Genetic influences in the progression of tears of the rotator cuff. J. Bone Joint Surg. Br. 91, 915–917 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Zhao, J. et al. Risk factors for supraspinatus tears: a meta-analysis of observational studies. Orthop. J. Sports Med. 9, 23259671211042826 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Tashjian, R. Z., Granger, E. K., Farnham, J. M., Cannon-Albright, L. A. & Teerlink, C. C. Genome-wide association study for rotator cuff tears identifies two significant single-nucleotide polymorphisms. J. Shoulder Elbow Surg. 25, 174–179 (2016).

    Article  PubMed  Google Scholar 

  25. Tashjian, R. Z., Kim, S. K., Roche, M. D., Jones, K. B. & Teerlink, C. C. Genetic variants associated with rotator cuff tearing utilizing multiple population-based genetic resources. J. Shoulder Elbow Surg. 30, 520–531 (2021).

    Article  PubMed  Google Scholar 

  26. Yanik, E. L. et al. Identification of a novel genetic marker for risk of degenerative rotator cuff disease surgery in the UK biobank. J. Bone Joint Surg. Am. 103, 1259–1267 (2021).

    Article  PubMed  Google Scholar 

  27. Kim, S. K., Nguyen, C., Jones, K. B. & Tashjian, R. Z. A genome-wide association study for shoulder impingement and rotator cuff disease. J. Shoulder Elbow Surg. 30, 2134–2145 (2021).

    Article  PubMed  Google Scholar 

  28. Yoshida, K. et al. Association of superoxide-induced oxidative stress with rotator cuff tears in human patients. J. Orthop. Res. 38, 212–218 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Zhao, J. et al. What factors are associated with symptomatic rotator cuff tears: a meta-analysis. Clin. Orthop. Relat. Res. 480, 96–105 (2022).

    Article  PubMed  Google Scholar 

  30. Huang, S. W. et al. Autoimmune connective tissue diseases and the risk of rotator cuff repair surgery: a population-based retrospective cohort study. BMJ Open 9, e023848 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Huang, S. W. et al. Diabetes mellitus increases the risk of rotator cuff tear repair surgery: a population-based cohort study. J. Diabetes Complications 30, 1473–1477 (2016).

    Article  PubMed  Google Scholar 

  32. Huang, S. W., Wu, C. W., Lin, L. F., Liou, T. H. & Lin, H. W. Gout can increase the risk of receiving rotator cuff tear repair surgery. Am. J. Sports Med. 45, 2355–2363 (2017).

    Article  PubMed  Google Scholar 

  33. Mandalia, K. et al. Social determinants of health influence clinical outcomes of patients undergoing rotator cuff repair: a systematic review. J. Shoulder Elbow Surg. 32, 419–434 (2023).

    Article  PubMed  Google Scholar 

  34. Chung, S. W. et al. Altered gene and protein expressions in torn rotator cuff tendon tissues in diabetic patients. Arthroscopy 33, 518–526 e1 (2017).

    Article  PubMed  Google Scholar 

  35. Yeom, J. W. et al. Postoperative HbA1c level as a predictor of rotator cuff integrity after arthroscopic rotator cuff repair in patients with type 2 diabetes. Orthop. J. Sports Med. 11, 23259671221145987 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kim, M. S., Rhee, S. M. & Cho, N. S. Increased HbA1c levels in diabetics during the postoperative 3-6 months after rotator cuff repair correlated with increased retear rates. Arthroscopy 39, 176–182 (2023).

    Article  PubMed  Google Scholar 

  37. Wilde, B. et al. Abnormal laboratory values for metabolic and hormonal syndromes are prevalent among patients undergoing rotator cuff repair. Arthrosc. Sports Med. Rehabil. 5, e695–e701 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Smith, K. M. et al. The effect of sex hormone deficiency on the incidence of rotator cuff repair: analysis of a large insurance database. J. Bone Joint Surg. Am. 104, 774–779 (2022).

    Article  PubMed  Google Scholar 

  39. Soslowsky, L. J. et al. Neer Award 1999. Overuse activity injures the supraspinatus tendon in an animal model: a histologic and biomechanical study. J. Shoulder Elbow Surg. 9, 79–84 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Carpenter, J. E., Flanagan, C. L., Thomopoulos, S., Yian, E. H. & Soslowsky, L. J. The effects of overuse combined with intrinsic or extrinsic alterations in an animal model of rotator cuff tendinosis. Am. J. Sports Med. 26, 801–807 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Keener, J. D. et al. Shoulder activity level and progression of degenerative cuff disease. J. Shoulder Elbow Surg. 26, 1500–1507 (2017).

    Article  PubMed  Google Scholar 

  42. Teerlink, C. C., Cannon-Albright, L. A. & Tashjian, R. Z. Significant association of full-thickness rotator cuff tears and estrogen-related receptor-β (ESRRB). J. Shoulder Elbow Surg. 24, e31–e35 (2015).

    Article  PubMed  Google Scholar 

  43. Torchia, M. T. et al. Evaluation of survivorship of asymptomatic degenerative rotator cuff tears in patients 65 years and younger: a prospective analysis with long-term follow-up. J. Shoulder Elbow Surg. 32, 1432–1444 (2023).

    Article  PubMed  Google Scholar 

  44. Miranda, H., Viikari-Juntura, E., Heistaro, S., Heliovaara, M. & Riihimaki, H. A population study on differences in the determinants of a specific shoulder disorder versus nonspecific shoulder pain without clinical findings. Am. J. Epidemiol. 161, 847–855 (2005).

    Article  PubMed  Google Scholar 

  45. Svendsen, S. W. et al. Work above shoulder level and degenerative alterations of the rotator cuff tendons: a magnetic resonance imaging study. Arthritis Rheum. 50, 3314–3322 (2004).

    Article  PubMed  Google Scholar 

  46. Dalboge, A., Frost, P., Andersen, J. H. & Svendsen, S. W. Cumulative occupational shoulder exposures and surgery for subacromial impingement syndrome: a nationwide Danish cohort study. Occup. Environ. Med. 71, 750–756 (2014).

    Article  PubMed  Google Scholar 

  47. Dalboge, A., Frost, P., Andersen, J. H. & Svendsen, S. W. Surgery for subacromial impingement syndrome in relation to occupational exposures, lifestyle factors and diabetes mellitus: a nationwide nested case-control study. Occup. Environ Med. 74, 728–736 (2017).

    Article  PubMed  Google Scholar 

  48. Meyers, A. R. et al. Work-related risk factors for rotator cuff syndrome in a prospective study of manufacturing and healthcare workers. Hum. Factors 65, 419–434 (2023).

    Article  PubMed  Google Scholar 

  49. Yanik, E. L. et al. Occupational demands associated with rotator cuff disease surgery in the UK Biobank. Scand. J. Work. Environ Health 49, 53–63 (2023).

    Article  PubMed  Google Scholar 

  50. Maman, E. et al. Outcome of nonoperative treatment of symptomatic rotator cuff tears monitored by magnetic resonance imaging. J. Bone Joint Surg. Am. 91, 1898–1906 (2009).

    Article  PubMed  Google Scholar 

  51. Chalmers, P. N. et al. Does the critical shoulder angle correlate with rotator cuff tear progression? Clin. Orthop. Relat. Res. 475, 1608–1617 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Rojas Lievano, J., Bautista, M., Woodcock, S., Fierro, G. & Gonzalez, J. C. Controversy on the association of the critical shoulder angle and the development of degenerative rotator cuff tears: is there a true association? A meta-analytical approach. Am. J. Sports Med. 50, 2552–2560 (2022).

    Article  PubMed  Google Scholar 

  53. Jeong, J. Y. et al. Location of rotator cuff tear initiation: a magnetic resonance imaging study of 191 shoulders. Am. J. Sports Med. 46, 649–655 (2018).

    Article  PubMed  Google Scholar 

  54. Lohr, J. F. & Uhthoff, H. K. The microvascular pattern of the supraspinatus tendon. Clin. Orthop. Relat. Res. 254, 35–38 (1990).

    Article  Google Scholar 

  55. Burkhart, S. S., Esch, J. C. & Jolson, R. S. The rotator crescent and rotator cable: an anatomic description of the shoulder’s “suspension bridge”. Arthroscopy 9, 611–616 (1993).

    Article  CAS  PubMed  Google Scholar 

  56. Mesiha, M. M., Derwin, K. A., Sibole, S. C., Erdemir, A. & McCarron, J. A. The biomechanical relevance of anterior rotator cuff cable tears in a cadaveric shoulder model. J. Bone Joint Surg. Am. 95, 1817–1824 (2013).

    Article  PubMed  Google Scholar 

  57. Kim, H. M. et al. Location and initiation of degenerative rotator cuff tears: an analysis of three hundred and sixty shoulders. J. Bone Joint Surg. Am. 92, 1088–1096 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Namdari, S. et al. Characteristics of small to medium-sized rotator cuff tears with and without disruption of the anterior supraspinatus tendon. J. Shoulder Elbow Surg. 23, 20–27 (2014).

    Article  PubMed  Google Scholar 

  59. Moosmayer, S., Tariq, R., Stiris, M. & Smith, H. J. The natural history of asymptomatic rotator cuff tears: a three-year follow-up of fifty cases. J. Bone Joint Surg. Am. 95, 1249–1255 (2013).

    Article  PubMed  Google Scholar 

  60. Safran, O., Schroeder, J., Bloom, R., Weil, Y. & Milgrom, C. Natural history of nonoperatively treated symptomatic rotator cuff tears in patients 60 years old or younger. Am. J. Sports Med. 39, 710–714 (2011).

    Article  PubMed  Google Scholar 

  61. Hebert-Davies, J. et al. Progression of fatty muscle degeneration in atraumatic rotator cuff tears. J. Bone Joint Surg. Am. 99, 832–839 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Neer, C. S.2nd Anterior acromioplasty for the chronic impingement syndrome in the shoulder: a preliminary report. J. Bone Joint Surg. Am. 54, 41–50 (1972).

    Article  PubMed  Google Scholar 

  63. Overbeek, C. L. et al. Altered cocontraction patterns of humeral head depressors in patients with subacromial pain syndrome: a cross-sectional electromyography analysis. Clin. Orthop. Relat. Res. 477, 1862–1868 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Overbeek, C. L. et al. Increased co-contraction of arm adductors is associated with a favorable course in subacromial pain syndrome. J. Shoulder Elbow Surg. 27, 1925–1931 (2018).

    Article  PubMed  Google Scholar 

  65. Levy, B. J. et al. Subacromial bursal tissue and surrounding matrix of patients undergoing rotator cuff repair contains progenitor cells. Arthroscopy 38, 1115–1123 (2022).

    Article  PubMed  Google Scholar 

  66. Kriscenski, D. E. et al. Characterization of murine subacromial bursal-derived cells. Connect. Tissue Res. 63, 287–297 (2022).

    Article  CAS  PubMed  Google Scholar 

  67. Morikawa, D. et al. Analysis of patient factors affecting in vitro characteristics of subacromial bursal connective tissue progenitor cells during rotator cuff repair. J. Clin. Med. 10, 4006 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Marshall, B. P. et al. The subacromial bursa is a key regulator of the rotator cuff and a new therapeutic target for improving repair. Preprint at bioRxiv https://doi.org/10.1101/2023.07.01.547347 (2023).

  69. McFarland, E. G. et al. Impingement is not impingement: the case for calling it “rotator cuff disease”. Muscles Ligaments Tendons J. 3, 196–200 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Maffulli, N., Khan, K. M. & Puddu, G. Overuse tendon conditions: time to change a confusing terminology. Arthroscopy 14, 840–843 (1998).

    Article  CAS  PubMed  Google Scholar 

  71. Sharma, P. & Maffulli, N. Tendon injury and tendinopathy: healing and repair. J. Bone Joint Surg. Am. 87, 187–202 (2005).

    PubMed  Google Scholar 

  72. D’Addona, A., Maffulli, N., Formisano, S. & Rosa, D. Inflammation in tendinopathy. Surgeon 15, 297–302 (2017).

    Article  PubMed  Google Scholar 

  73. Dakin, S. G. et al. Inflammation activation and resolution in human tendon disease. Sci. Transl. Med. 7, 311ra173 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Akbar, M. et al. Single cell and spatial transcriptomics in human tendon disease indicate dysregulated immune homeostasis. Ann. Rheum. Dis. 80, 1494–1497 (2021).

    Article  CAS  PubMed  Google Scholar 

  75. Millar, N. L. et al. IL-17A mediates inflammatory and tissue remodelling events in early human tendinopathy. Sci. Rep. 6, 27149 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  76. Franklin, S. L. et al. Up-regulation of glutamate in painful human supraspinatus tendon tears. Am. J. Sports Med. 42, 1955–1962 (2014).

    Article  PubMed  Google Scholar 

  77. Dean, B. J., Snelling, S. J., Dakin, S. G., Javaid, M. K. & Carr, A. J. In vitro effects of glutamate and N-methyl-D-aspartate receptor (NMDAR) antagonism on human tendon derived cells. J. Orthop. Res. 33, 1515–1522 (2015).

    Article  CAS  PubMed  Google Scholar 

  78. Abate, M. et al. Oxidative stress and abnormal tendon sonographic features in elite soccer players (a pilot study). Rev. Bras. Ortop. 56, 432–437 (2021).

    Google Scholar 

  79. Zapp, C. et al. Mechanoradicals in tensed tendon collagen as a source of oxidative stress. Nat. Commun. 11, 2315 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  80. Liang, Y. et al. Quercetin reduces tendon adhesion in rat through suppression of oxidative stress. BMC Musculoskelet. Disord. 21, 608 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yuan, T. et al. Proteomic analysis reveals rotator cuff injury caused by oxidative stress. Ther. Adv. Chronic Dis. 12, 2040622320987057 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lui, P. P. Y., Zhang, X., Yao, S., Sun, H. & Huang, C. Roles of oxidative stress in acute tendon injury and degenerative tendinopathy – a target for intervention. Int. J. Mol. Sci. 23, 3571 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wunderli, S. L. et al. Tendon response to matrix unloading is determined by the patho-physiological niche. Matrix Biol. 89, 11–26 (2020).

    Article  CAS  PubMed  Google Scholar 

  84. Joshi, S. K. et al. mTOR regulates fatty infiltration through SREBP-1 and PPARγ after a combined massive rotator cuff tear and suprascapular nerve injury in rats. J. Orthop. Res. 31, 724–730 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  85. Lui, P. P. Y. Tendinopathy in diabetes mellitus patients – epidemiology, pathogenesis, and management. Scand. J. Med. Sci. Sports 27, 776–787 (2017).

    Article  CAS  PubMed  Google Scholar 

  86. Pouzaud, F. et al. In vitro discrimination of fluoroquinolones toxicity on tendon cells: involvement of oxidative stress. J. Pharmacol. Exp. Ther. 308, 394–402 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Lehner, C. et al. Bupivacaine induces short-term alterations and impairment in rat tendons. Am. J. Sports Med. 41, 1411–1418 (2013).

    Article  PubMed  Google Scholar 

  88. Sajithlal, G. B., Chithra, P. & Chandrakasan, G. Effect of curcumin on the advanced glycation and cross-linking of collagen in diabetic rats. Biochem. Pharmacol. 56, 1607–1614 (1998).

    Article  CAS  PubMed  Google Scholar 

  89. Lansdown, D. A. et al. Preoperative IDEAL (Iterative Decomposition of Echoes of Asymmetrical Length) magnetic resonance imaging rotator cuff muscle fat fractions are associated with rotator cuff repair outcomes. J. Shoulder Elbow Surg. 28, 1936–1941 (2019).

    Article  PubMed  Google Scholar 

  90. Meyer, G. A., Thomopoulos, S., Abu-Amer, Y. & Shen, K. C. Tenotomy-induced muscle atrophy is sex-specific and independent of NFκB. Elife 11, e82016 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Liu, X. et al. Evaluation of Akt/mTOR activity in muscle atrophy after rotator cuff tears in a rat model. J. Orthop. Res. 30, 1440–1446 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  92. Davies, M. R. et al. Rat rotator cuff muscle responds differently from hindlimb muscle to a combined tendon-nerve injury. J. Orthop. Res. 33, 1046–1053 (2015).

    Article  CAS  PubMed  Google Scholar 

  93. Zheng, R. et al. Leucine attenuates muscle atrophy and autophagosome formation by activating PI3K/AKT/mTOR signaling pathway in rotator cuff tears. Cell Tissue Res. 378, 113–125 (2019).

    Article  ADS  PubMed  Google Scholar 

  94. Valencia, A. P., Iyer, S. R., Spangenburg, E. E., Gilotra, M. N. & Lovering, R. M. Impaired contractile function of the supraspinatus in the acute period following a rotator cuff tear. BMC Musculoskelet. Disord. 18, 436 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Jackman, R. W., Cornwell, E. W., Wu, C. L. & Kandarian, S. C. Nuclear factor-κB signalling and transcriptional regulation in skeletal muscle atrophy. Exp. Physiol. 98, 19–24 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. Davies, M. R. et al. Muscle stem cell activation in a mouse model of rotator cuff injury. J. Orthop. Res. 36, 1370–1376 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Brack, A. S. & Munoz-Canoves, P. The ins and outs of muscle stem cell aging. Skelet. Muscle 6, 1 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Barruet, E. et al. Functionally heterogeneous human satellite cells identified by single cell RNA sequencing. Elife 9, e51576 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hwang, A. B. & Brack, A. S. Muscle stem cells and aging. Curr. Top. Dev. Biol. 126, 299–322 (2018).

    Article  PubMed  Google Scholar 

  100. Brack, A. S. et al. Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317, 807–810 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  101. Brack, A. S. & Rando, T. A. Intrinsic changes and extrinsic influences of myogenic stem cell function during aging. Stem Cell Rev. 3, 226–237 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Gerber, C., Meyer, D. C., Schneeberger, A. G., Hoppeler, H. & von Rechenberg, B. Effect of tendon release and delayed repair on the structure of the muscles of the rotator cuff: an experimental study in sheep. J. Bone Joint Surg. Am. 86, 1973–1982 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Chung, S. W. et al. Effect of hypercholesterolemia on fatty infiltration and quality of tendon-to-bone healing in a rabbit model of a chronic rotator cuff tear: electrophysiological, biomechanical, and histological analyses. Am. J. Sports Med. 44, 1153–1164 (2016).

    Article  ADS  PubMed  Google Scholar 

  104. Joe, A. W. et al. Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat. Cell Biol. 12, 153–163 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Uezumi, A. et al. Fibrosis and adipogenesis originate from a common mesenchymal progenitor in skeletal muscle. J. Cell Sci. 124, 3654–3664 (2011).

    Article  CAS  PubMed  Google Scholar 

  106. Uezumi, A., Fukada, S., Yamamoto, N., Takeda, S. & Tsuchida, K. Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. Nat. Cell Biol. 12, 143–152 (2010).

    Article  CAS  PubMed  Google Scholar 

  107. Wosczyna, M. N. et al. Targeting microRNA-mediated gene repression limits adipogenic conversion of skeletal muscle mesenchymal stromal cells. Cell Stem Cell 28, 1323–1334.e8 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wang, X. et al. Diverse effector and regulatory functions of fibro/adipogenic progenitors during skeletal muscle fibrosis in muscular dystrophy. iScience 26, 105775 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  109. Consalvi, S. et al. Determinants of epigenetic resistance to HDAC inhibitors in dystrophic fibro-adipogenic progenitors. EMBO Rep. 23, e54721 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Theret, M., Rossi, F. M. V. & Contreras, O. Evolving roles of muscle-resident fibro-adipogenic progenitors in health, regeneration, neuromuscular disorders, and aging. Front. Physiol. 12, 673404 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Moratal, C., Arrighi, N., Dechesne, C. A. & Dani, C. Control of muscle fibro-adipogenic progenitors by myogenic lineage is altered in aging and Duchenne muscular dystrophy. Cell Physiol. Biochem. 53, 1029–1045 (2019).

    Article  CAS  PubMed  Google Scholar 

  112. Lee, C. et al. Rotator cuff fibro-adipogenic progenitors demonstrate highest concentration, proliferative capacity, and adipogenic potential across muscle groups. J. Orthop. Res. 38, 1113–1121 (2020).

    Article  CAS  PubMed  Google Scholar 

  113. Davies, M. R. et al. TGF-β small molecule inhibitor SB431542 reduces rotator cuff muscle fibrosis and fatty infiltration by promoting fibro/adipogenic progenitor apoptosis. PLoS ONE 11, e0155486 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Shirasawa, H. et al. Retinoic acid receptor agonists suppress muscle fatty infiltration in mice. Am. J. Sports Med. 49, 332–339 (2021).

    Article  PubMed  Google Scholar 

  115. Itoigawa, Y., Kishimoto, K. N., Sano, H., Kaneko, K. & Itoi, E. Molecular mechanism of fatty degeneration in rotator cuff muscle with tendon rupture. J. Orthop. Res. 29, 861–866 (2011).

    Article  CAS  PubMed  Google Scholar 

  116. Davis, M. E. et al. Simvastatin reduces fibrosis and protects against muscle weakness after massive rotator cuff tear. J. Shoulder Elbow Surg. 24, 280–287 (2015).

    Article  PubMed  Google Scholar 

  117. Contreras, O., Rossi, F. M. V. & Theret, M. Origins, potency, and heterogeneity of skeletal muscle fibro-adipogenic progenitors – time for new definitions. Skelet. Muscle 11, 16 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Biferali, B., Proietti, D., Mozzetta, C. & Madaro, L. Fibro-adipogenic progenitors cross-talk in skeletal muscle: the social network. Front. Physiol. 10, 1074 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Malecova, B. et al. Dynamics of cellular states of fibro-adipogenic progenitors during myogenesis and muscular dystrophy. Nat. Commun. 9, 3670 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  120. Garcia, S. M. et al. Distinct human stem cell subpopulations drive adipogenesis and fibrosis in musculoskeletal injury. Preprint at bioRxiv https://doi.org/10.1101/2023.07.28.551038 (2023).

  121. Davies, M. R. et al. Muscle-derived beige adipose precursors secrete promyogenic exosomes that treat rotator cuff muscle degeneration in mice and are identified in humans by single-cell RNA sequencing. Am. J. Sports Med. 50, 2247–2257 (2022).

    Article  PubMed  Google Scholar 

  122. Wang, Z. et al. β3-Adrenergic receptor agonist treats rotator cuff fatty infiltration by activating beige fat in mice. J. Shoulder Elbow Surg. 30, 373–386 (2021).

    Article  PubMed  Google Scholar 

  123. Wang, Z. et al. Intramuscular brown fat activation decreases muscle atrophy and fatty infiltration and improves gait after delayed rotator cuff repair in mice. Am. J. Sports Med. 48, 1590–1600 (2020).

    Article  PubMed  Google Scholar 

  124. Lee, C. et al. Beige FAPs transplantation improves muscle quality and shoulder function after massive rotator cuff tears. J. Orthop. Res. 38, 1159–1166 (2020).

    Article  CAS  PubMed  Google Scholar 

  125. Bunker, D. L., Ilie, V., Ilie, V. & Nicklin, S. Tendon to bone healing and its implications for surgery. Muscles Ligaments Tendons J. 4, 343–350 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Tresoldi, I. et al. Tendon’s ultrastructure. Muscles Ligaments Tendons J. 3, 2–6 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Moser, H. L. et al. Cell lineage tracing and functional assessment of supraspinatus tendon healing in an acute repair murine model. J. Orthop. Res. 39, 1789–1799 (2021).

    Article  PubMed  Google Scholar 

  128. Rodeo, S. A., Arnoczky, S. P., Torzilli, P. A., Hidaka, C. & Warren, R. F. Tendon-healing in a bone tunnel. A biomechanical and histological study in the dog. J. Bone Joint Surg. Am. 75, 1795–1803 (1993).

    Article  CAS  PubMed  Google Scholar 

  129. Rodeo, S. A., Suzuki, K., Deng, X. H., Wozney, J. & Warren, R. F. Use of recombinant human bone morphogenetic protein-2 to enhance tendon healing in a bone tunnel. Am. J. Sports Med. 27, 476–488 (1999).

    Article  CAS  PubMed  Google Scholar 

  130. Hashimoto, Y., Yoshida, G., Toyoda, H. & Takaoka, K. Generation of tendon-to-bone interface “enthesis” with use of recombinant BMP-2 in a rabbit model. J. Orthop. Res. 25, 1415–1424 (2007).

    Article  PubMed  Google Scholar 

  131. Bedi, A. et al. The effect of matrix metalloproteinase inhibition on tendon-to-bone healing in a rotator cuff repair model. J. Shoulder Elbow Surg. 19, 384–391 (2010).

    Article  PubMed  Google Scholar 

  132. Kovacevic, D. & Rodeo, S. A. Biological augmentation of rotator cuff tendon repair. Clin. Orthop. Relat. Res. 466, 622–633 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Lim, J. K. et al. Enhancement of tendon graft osteointegration using mesenchymal stem cells in a rabbit model of anterior cruciate ligament reconstruction. Arthroscopy 20, 899–910 (2004).

    Article  PubMed  Google Scholar 

  134. Pill, S. G., Phillips, J., Kissenberth, M. J. & Hawkins, R. J. Decision making in massive rotator cuff tears. Instr. Course Lect. 61, 97–111 (2012).

    PubMed  Google Scholar 

  135. Carter, A. N. & Erickson, S. M. Proximal biceps tendon rupture: primarily an injury of middle age. Phys. Sportsmed. 27, 95–101 (1999).

    Article  CAS  PubMed  Google Scholar 

  136. Millar, N. L. et al. Frozen shoulder. Nat. Rev. Dis. Primers 8, 59 (2022).

    Article  PubMed  Google Scholar 

  137. Hegedus, E. J. et al. Which physical examination tests provide clinicians with the most value when examining the shoulder? Update of a systematic review with meta-analysis of individual tests. Br. J. Sports Med. 46, 964–978 (2012).

    Article  PubMed  Google Scholar 

  138. Hermans, J. et al. Does this patient with shoulder pain have rotator cuff disease? The rational clinical examination systematic review. JAMA 310, 837–847 (2013).

    Article  CAS  PubMed  Google Scholar 

  139. Alqunaee, M., Galvin, R. & Fahey, T. Diagnostic accuracy of clinical tests for subacromial impingement syndrome: a systematic review and meta-analysis. Arch. Phys. Med. Rehabil. 93, 229–236 (2012).

    Article  PubMed  Google Scholar 

  140. Micheroli, R. et al. Correlation of findings in clinical and high resolution ultrasonography examinations of the painful shoulder. J. Ultrason. 15, 29–44 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Silva, L. et al. Accuracy of physical examination in subacromial impingement syndrome. Rheumatology 47, 679–683 (2008).

    Article  CAS  PubMed  Google Scholar 

  142. Jain, N. B. et al. The diagnostic accuracy of special tests for rotator cuff tear: the ROW cohort study. Am. J. Phys. Med. Rehabil. 96, 176–183 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  143. Schiefer, M. et al. Clinical diagnosis of subscapularis tendon tear using the bear hug semiological maneuver. Rev. Bras. Ortop. 47, 588–592 (2012).

    Article  PubMed  Google Scholar 

  144. Ernstbrunner, L. et al. Chronic pseudoparalysis needs to be distinguished from pseudoparesis: a structural and biomechanical analysis. Am. J. Sports Med. 49, 291–297 (2021).

    Article  PubMed  Google Scholar 

  145. Hamada, K., Yamanaka, K., Uchiyama, Y., Mikasa, T. & Mikasa, M. A radiographic classification of massive rotator cuff tear arthritis. Clin. Orthop. Relat. Res. 469, 2452 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  146. van der Reijden, J. J. et al. The value of radiographic markers in the diagnostic work-up of rotator cuff tears, an arthroscopic correlated study. Skelet. Radiol. 49, 55–64 (2020).

    Article  Google Scholar 

  147. Pearsall, A. W. et al. Radiographic findings associated with symptomatic rotator cuff tears. J. Shoulder Elbow Surg. 12, 122–127 (2003).

    Article  PubMed  Google Scholar 

  148. Samilson, R. L. & Prieto, V. Dislocation arthropathy of the shoulder. J. Bone. Joint Surg. Am. 65, 456–460 (1983).

    Article  CAS  PubMed  Google Scholar 

  149. Brox, J., Lereim, P., Merckoll, E. & Finnanger, A. M. Radiographic classification of glenohumeral arthrosis. Acta Orthop. Scand. 74, 186–189 (2003).

    Article  PubMed  Google Scholar 

  150. Goutallier, D. et al. Acromio humeral distance less than six millimeter: its meaning in full-thickness rotator cuff tear. Orthop. Traumatol. Surg. Res. 97, 246–251 (2011).

    Article  CAS  PubMed  Google Scholar 

  151. Bahrs, C., Lingenfelter, E., Fischer, F., Walters, E. M. & Schnabel, M. Mechanism of injury and morphology of the greater tuberosity fracture. J. Shoulder Elbow Surg. 15, 140–147 (2006).

    Article  PubMed  Google Scholar 

  152. Speed, C. A. & Hazleman, B. L. Calcific tendinitis of the shoulder. N. Engl. J. Med. 340, 1582–1584 (1999).

    Article  CAS  PubMed  Google Scholar 

  153. Elsharkawi, M., Cakir, B., Reichel, H. & Kappe, T. Reliability of radiologic glenohumeral osteoarthritis classifications. J. Shoulder Elbow Surg. 22, 1063–1067 (2013).

    Article  PubMed  Google Scholar 

  154. Smith, T. O., Daniell, H., Geere, J.-A., Toms, A. P. & Hing, C. B. The diagnostic accuracy of MRI for the detection of partial- and full-thickness rotator cuff tears in adults. Magn. Reson. Imaging 30, 336–346 (2012).

    Article  PubMed  Google Scholar 

  155. Roy, J.-S. et al. Diagnostic accuracy of ultrasonography, MRI and MR arthrography in the characterisation of rotator cuff disorders: a systematic review and meta-analysis. Br. J. Sports Med. 49, 1316–1328 (2015).

    Article  PubMed  Google Scholar 

  156. Cofield, R. H. et al. Surgical repair of chronic rotator cuff tears. A prospective long-term study. J. Bone Joint Surg. Am. 83, 71–77 (2001).

    Article  CAS  PubMed  Google Scholar 

  157. Meyer, D. C., Wieser, K., Farshad, M. & Gerber, C. Retraction of supraspinatus muscle and tendon as predictors of success of rotator cuff repair. Am. J. Sports Med. 40, 2242–2247 (2012).

    Article  PubMed  Google Scholar 

  158. Jungmann, P. M. et al. Reliable semiquantitative whole‐joint MRI score for the shoulder joint: the Shoulder Osteoarthritis Severity (SOAS) score. J. Magn. Reson. Imaging 49, e152–e163 (2019).

    Article  PubMed  Google Scholar 

  159. Fuchs, B., Weishaupt, D., Zanetti, M., Hodler, J. & Gerber, C. Fatty degeneration of the muscles of the rotator cuff: assessment by computed tomography versus magnetic resonance imaging. J. Shoulder Elbow Surg. 8, 599–605 (1999).

    Article  CAS  PubMed  Google Scholar 

  160. Burkhart, S. S., Barth, J. R., Richards, D. P., Zlatkin, M. B. & Larsen, M. Arthroscopic repair of massive rotator cuff tears with stage 3 and 4 fatty degeneration. Arthroscopy 23, 347–354 (2007).

    Article  PubMed  Google Scholar 

  161. Goutallier, D., Postel, J.-M., Bernageau, J., Lavau, L. & Voisin, M.-C. Fatty muscle degeneration in cuff ruptures: pre- and postoperative evaluation by CT scan. Clin. Orthop. Relat. Res. 304, 78–83 (1994).

    Article  Google Scholar 

  162. Goutallier, D., Postel, J.-M., Gleyze, P., Leguilloux, P. & Van Driessche, S. Influence of cuff muscle fatty degeneration on anatomic and functional outcomes after simple suture of full-thickness tears. J. Shoulder Elbow Surg. 12, 550–554 (2003).

    Article  PubMed  Google Scholar 

  163. Lippe, J. et al. Inter-rater agreement of the Goutallier, Patte, and Warner classification scores using preoperative magnetic resonance imaging in patients with rotator cuff tears. Arthroscopy 28, 154–159 (2012).

    Article  ADS  PubMed  Google Scholar 

  164. Schiefer, M. et al. Intraobserver and interobserver agreement of Goutallier classification applied to magnetic resonance images. J. Shoulder Elbow Surg. 24, 1314–1321 (2015).

    Article  PubMed  Google Scholar 

  165. Slabaugh, M. A. et al. Interobserver and intraobserver reliability of the Goutallier classification using magnetic resonance imaging: proposal of a simplified classification system to increase reliability. Am. J. Sports Med. 40, 1728–1734 (2012).

    Article  PubMed  Google Scholar 

  166. Agten, C. A., Rosskopf, A. B., Gerber, C. & Pfirrmann, C. W. Quantification of early fatty infiltration of the rotator cuff muscles: comparison of multi-echo Dixon with single-voxel MR spectroscopy. Eur. Radiol. 26, 3719–3727 (2016).

    Article  PubMed  Google Scholar 

  167. Lansdown, D. A. et al. A prospective, quantitative evaluation of fatty infiltration before and after rotator cuff repair. Orthop. J. Sports Med. 5, 2325967117718537 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Lee, S. et al. Magnetic resonance rotator cuff fat fraction and its relationship with tendon tear severity and subject characteristics. J. Shoulder Elbow Surg. 24, 1442–1451 (2015).

    Article  PubMed  Google Scholar 

  169. Nardo, L. et al. Quantitative assessment of fat infiltration in the rotator cuff muscles using water–fat MRI. J. Magn. Reson. Imaging 39, 1178–1185 (2014).

    Article  PubMed  Google Scholar 

  170. Kwon, J., Kim, S. H., Lee, Y. H., Kim, T. I. & Oh, J. H. The rotator cuff healing index: a new scoring system to predict rotator cuff healing after surgical repair. Am. J. Sports Med. 47, 173–180 (2019).

    Article  PubMed  Google Scholar 

  171. Lenza, M. et al. Magnetic resonance imaging, magnetic resonance arthrography and ultrasonography for assessing rotator cuff tears in people with shoulder pain for whom surgery is being considered. Cochrane Database Syst. Rev. 2013, CD009020 (2013).

    PubMed  PubMed Central  Google Scholar 

  172. Lecouvet, F. E. et al. Multidetector spiral CT arthrography of the shoulder: clinical applications and limits, with MR arthrography and arthroscopic correlations. Eur. J. Radiol. 68, 120–136 (2008).

    Article  PubMed  Google Scholar 

  173. Nazarian, L. N. et al. Imaging algorithms for evaluating suspected rotator cuff disease: Society of Radiologists in Ultrasound consensus conference statement. Radiology 267, 589–595 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Middleton, W. D. et al. Sonography and MRI of the shoulder: comparison of patient satisfaction. AJR Am. J. Roentgenol. 183, 1449–1452 (2004).

    Article  PubMed  Google Scholar 

  175. Parker, L. et al. Musculoskeletal imaging: Medicare use, costs, and potential for cost substitution. J. Am. Coll. Radiol. 5, 182–188 (2008).

    Article  PubMed  Google Scholar 

  176. Iannotti, J. P. et al. Accuracy of office-based ultrasonography of the shoulder for the diagnosis of rotator cuff tears. J. Bone Joint Surg. Am. 87, 1305–1311 (2005).

    PubMed  Google Scholar 

  177. Farooqi, A. S. et al. Diagnostic accuracy of ultrasonography for rotator cuff tears: a systematic review and meta-analysis. Orthop. J. Sports Med. 9, 23259671211035106 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Khoury, V., Cardinal, É. & Brassard, P. Atrophy and fatty infiltration of the supraspinatus muscle: sonography versus MRI. AJR Am. J. Roentgenol. 190, 1105–1111 (2008).

    Article  PubMed  Google Scholar 

  179. Aranha, L., Eapen, C., Patel, V. D., Prabhakar, A. J. & Hariharan, K. Muscle fatigue response of rotator cuff muscles in different postures. Arch. Orthop. Trauma. Surg. 143, 3191–3199 (2023).

    Article  PubMed  Google Scholar 

  180. Griffith, K. M. et al. Review of human supraspinatus tendon mechanics. Part I: fatigue damage accumulation and failure. J. Shoulder Elbow Surg. 31, 2671–2677 (2022).

    Article  PubMed  Google Scholar 

  181. Ranger, T. A., Wong, A. M., Cook, J. L. & Gaida, J. E. Is there an association between tendinopathy and diabetes mellitus? A systematic review with meta-analysis. Br. J. Sports Med. 50, 982–989 (2016).

    Article  PubMed  Google Scholar 

  182. Lewis, J. S. & Sandford, F. M. Rotator cuff tendinopathy: is there a role for polyunsaturated fatty acids and antioxidants? J. Hand Ther. 22, 49–55 (2009).

    Article  PubMed  Google Scholar 

  183. Angeline, M. E. et al. Effect of diet-induced vitamin D deficiency on rotator cuff healing in a rat model. Am. J. Sports Med. 42, 27–34 (2014).

    Article  PubMed  Google Scholar 

  184. Kuo, L. T. et al. Depression increases the risk of rotator cuff tear and rotator cuff repair surgery: a nationwide population-based study. PLoS ONE 14, e0225778 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Song, A. et al. Comparative time to improvement in nonoperative and operative treatment of rotator cuff tears. J. Bone Joint Surg. Am. 102, 1142–1150 (2020).

    Article  PubMed  Google Scholar 

  186. Kuhn, J. E. et al. Effectiveness of physical therapy in treating atraumatic full-thickness rotator cuff tears: a multicenter prospective cohort study. J. Shoulder Elbow Surg. 22, 1371–1379 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Dunn, W. R. et al. 2013 Neer Award: predictors of failure of nonoperative treatment of chronic, symptomatic, full-thickness rotator cuff tears. J. Shoulder Elbow Surg. 25, 1303–1311 (2016).

    Article  MathSciNet  PubMed  Google Scholar 

  188. Moosmayer, S. et al. Tendon repair compared with physiotherapy in the treatment of rotator cuff tears: a randomized controlled study in 103 cases with a five-year follow-up. J. Bone Joint Surg. Am. 96, 1504–1514 (2014).

    Article  PubMed  Google Scholar 

  189. Kukkonen, J. et al. Treatment of nontraumatic rotator cuff tears: a randomized controlled trial with two years of clinical and imaging follow-up. J. Bone Joint Surg. Am. 97, 1729–1737 (2015).

    Article  PubMed  Google Scholar 

  190. Moosmayer, S. et al. At a 10-year follow-up, tendon repair is superior to physiotherapy in the treatment of small and medium-sized rotator cuff tears. J. Bone Joint Surg. Am. 101, 1050–1060 (2019).

    Article  PubMed  Google Scholar 

  191. Levy, O., Mullett, H., Roberts, S. & Copeland, S. The role of anterior deltoid reeducation in patients with massive irreparable degenerative rotator cuff tears. J. Shoulder Elbow Surg. 17, 863–870 (2008).

    Article  PubMed  Google Scholar 

  192. Bennell, K. et al. Efficacy of standardised manual therapy and home exercise programme for chronic rotator cuff disease: randomised placebo controlled trial. BMJ 340, c2756 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Bernhardsson, S., Klintberg, I. H. & Wendt, G. K. Evaluation of an exercise concept focusing on eccentric strength training of the rotator cuff for patients with subacromial impingement syndrome. Clin. Rehabil. 25, 69–78 (2011).

    Article  PubMed  Google Scholar 

  194. Ludewig, P. M. & Reynolds, J. F. The association of scapular kinematics and glenohumeral joint pathologies. J. Orthop. Sports Phys. Ther. 39, 90–104 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Cools, A. M. et al. Rehabilitation of scapular muscle balance: which exercises to prescribe? Am. J. Sports Med. 35, 1744–1751 (2007).

    Article  PubMed  Google Scholar 

  196. Boudreault, J. et al. The efficacy of oral non-steroidal anti-inflammatory drugs for rotator cuff tendinopathy: a systematic review and meta-analysis. J. Rehabil. Med. 46, 294–306 (2014).

    Article  PubMed  Google Scholar 

  197. Mazières, B., Rouanet, S., Guillon, Y., Scarsi, C. & Reiner, V. Topical ketoprofen patch in the treatment of tendinitis: a randomized, double blind, placebo controlled study. J. Rheumatol. 32, 1563–1570 (2005).

    PubMed  Google Scholar 

  198. Tangtiphaiboontana, J. et al. The effects of nonsteroidal anti-inflammatory medications after rotator cuff surgery: a randomized, double-blind, placebo-controlled trial. J. Shoulder Elbow Surg. 30, 1990–1997 (2021).

    Article  PubMed  Google Scholar 

  199. Desai, V. S. et al. Increasing numbers of shoulder corticosteroid injections within a year preoperatively may be associated with a higher rate of subsequent revision rotator cuff surgery. Arthroscopy 35, 45–50 (2019).

    Article  PubMed  Google Scholar 

  200. Werner, B. C. et al. The timing of elective shoulder surgery after shoulder injection affects postoperative infection risk in Medicare patients. J. Shoulder Elbow Surg. 25, 390–397 (2016).

    Article  PubMed  Google Scholar 

  201. Bhattacharjee, S., Lee, W., Lee, M. J. & Shi, L. L. Preoperative corticosteroid joint injections within 2 weeks of shoulder arthroscopies increase postoperative infection risk. J. Shoulder Elbow Surg. 28, 2098–2102 (2019).

    Article  PubMed  Google Scholar 

  202. Xiang, X. N. et al. Conservative treatment of partial-thickness rotator cuff tears and tendinopathy with platelet-rich plasma: a systematic review and meta-analysis. Clin. Rehabil. 35, 1661–1673 (2021).

    Article  PubMed  Google Scholar 

  203. Pang, L. et al. Platelet-rich plasma injection can be a viable alternative to corticosteroid injection for conservative treatment of rotator cuff disease: a meta-analysis of randomized controlled trials. Arthroscopy 39, 402–421.e1 (2023).

    Article  PubMed  Google Scholar 

  204. Jo, C. H. et al. Intratendinous injection of autologous adipose tissue-derived mesenchymal stem cells for the treatment of rotator cuff disease: a first-in-human trial. Stem Cell 36, 1441–1450 (2018).

    Article  CAS  Google Scholar 

  205. Paloneva, J. et al. Declining incidence of acromioplasty in Finland. Acta Orthop. 86, 220–224 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Oh, J. H., Kim, J. Y., Lee, H. K. & Choi, J. A. Classification and clinical significance of acromial spur in rotator cuff tear: heel-type spur and rotator cuff tear. Clin. Orthop. Relat. Res. 468, 1542–1550 (2010).

    Article  PubMed  Google Scholar 

  207. Farfaras, S., Sernert, N., Rostgard Christensen, L., Hallstrom, E. K. & Kartus, J. T. Subacromial decompression yields a better clinical outcome than therapy alone: a prospective randomized study of patients with a minimum 10-year follow-up. Am. J. Sports Med. 46, 1397–1407 (2018).

    Article  PubMed  Google Scholar 

  208. Farfaras, S., Sernert, N., Hallstrom, E. & Kartus, J. Comparison of open acromioplasty, arthroscopic acromioplasty and physiotherapy in patients with subacromial impingement syndrome: a prospective randomised study. Knee Surg. Sports Traumatol. Arthrosc. 24, 2181–2191 (2016).

    Article  PubMed  Google Scholar 

  209. Waterman, B. R. et al. Randomized trial of arthroscopic rotator cuff with or without acromioplasty: no difference in patient-reported outcomes at long-term follow-up. Arthroscopy 37, 3072–3078 (2021).

    Article  PubMed  Google Scholar 

  210. Paavola, M. et al. Subacromial decompression versus diagnostic arthroscopy for shoulder impingement: a 5-year follow-up of a randomised, placebo surgery controlled clinical trial. Br. J. Sports Med. 55, 99–107 (2021).

    Article  PubMed  Google Scholar 

  211. Kolk, A. et al. Does acromioplasty result in favorable clinical and radiologic outcomes in the management of chronic subacromial pain syndrome? A double-blinded randomized clinical trial with 9 to 14 years’ follow-up. J. Shoulder Elbow Surg. 26, 1407–1415 (2017).

    Article  PubMed  Google Scholar 

  212. Ketola, S., Lehtinen, J. T. & Arnala, I. Arthroscopic decompression not recommended in the treatment of rotator cuff tendinopathy: a final review of a randomised controlled trial at a minimum follow-up of ten years. Bone Joint J. 99-B, 799–805 (2017).

    Article  CAS  PubMed  Google Scholar 

  213. Woodmass, J. M. et al. Arthroscopic rotator cuff repair with and without acromioplasty in the treatment of full-thickness rotator cuff tears: long-term outcomes of a multicenter, randomized controlled trial. J. Bone Joint Surg. Am. 104, 2101–2107 (2022).

    Article  PubMed  Google Scholar 

  214. Jensen, A. R. et al. Evaluation of the trends, concomitant procedures, and complications with open and arthroscopic rotator cuff repairs in the Medicare population. Orthop. J. Sports Med. 5, 2325967117731310 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Buyukdogan, K. et al. Long-term outcomes after arthroscopic transosseous-equivalent repair: clinical and magnetic resonance imaging results of rotator cuff tears at a minimum follow-up of 10 years. J. Shoulder Elbow Surg. 30, 2767–2777 (2021).

    Article  PubMed  Google Scholar 

  216. Randelli, P. S. et al. Long-term results of arthroscopic rotator cuff repair: initial tear size matters: a prospective study on clinical and radiological results at a minimum follow-up of 10 years. Am. J. Sports Med. 47, 2659–2669 (2019).

    Article  PubMed  Google Scholar 

  217. Jeong, H. J., Nam, K. P., Yeo, J. H., Rhee, S. M. & Oh, J. H. Retear after arthroscopic rotator cuff repair results in functional outcome deterioration over time. Arthroscopy 38, 2399–2412 (2022).

    Article  PubMed  Google Scholar 

  218. Le, B. T., Wu, X. L., Lam, P. H. & Murrell, G. A. Factors predicting rotator cuff retears: an analysis of 1000 consecutive rotator cuff repairs. Am. J. Sports Med. 42, 1134–1142 (2014).

    Article  PubMed  Google Scholar 

  219. Guo, A. A., Stitz, D. J., Lam, P. & Murrell, G. A. C. Tear size and stiffness are important predictors of retear: an assessment of factors associated with repair integrity at 6 months in 1,526 rotator cuff repairs. JB JS Open Access 7, e22.00006 (2022).

    PubMed  PubMed Central  Google Scholar 

  220. Maher, A. et al. Do age, demographics, and tear characteristics affect outcomes after rotator cuff repair? results of over 2000 rotator cuff repairs at 5-year follow-up. Orthop. J. Sports Med. 10, 23259671221119222 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Gerber, C. et al. Neer Award 2007: reversion of structural muscle changes caused by chronic rotator cuff tears using continuous musculotendinous traction. An experimental study in sheep. J. Shoulder Elbow Surg. 18, 163–171 (2009).

    Article  PubMed  Google Scholar 

  222. Zhao, J. et al. Risk factors affecting rotator cuff retear after arthroscopic repair: a meta-analysis and systematic review. J. Shoulder Elbow Surg. 30, 2660–2670 (2021).

    Article  PubMed  Google Scholar 

  223. Gatto, A. P., Hu, D. A., Feeley, B. T. & Lansdown, D. Dyslipidemia is associated with risk for rotator cuff repair failure: a systematic review and meta-analysis. JSES Rev. Rep. Tech. 2, 302–309 (2022).

    PubMed  PubMed Central  Google Scholar 

  224. Yang, Z. et al. Association of obesity with high retears and complication rates, and low functional scores after rotator cuff repair: a systematic review and meta-analysis. J. Shoulder Elbow Surg. 32, 2400–2411 (2023).

    Article  PubMed  Google Scholar 

  225. Fan, N. et al. The effects of smoking on clinical and structural outcomes after rotator cuff repair: a systematic review and meta-analysis. J. Shoulder Elbow Surg. 31, 656–667 (2022).

    Article  PubMed  Google Scholar 

  226. Sheean, A. J., Hartzler, R. U. & Burkhart, S. S. Arthroscopic rotator cuff repair in 2019: linked, double row repair for achieving higher healing rates and optimal clinical outcomes. Arthroscopy 35, 2749–2755 (2019).

    Article  PubMed  Google Scholar 

  227. Bedeir, Y. H., Schumaier, A. P., Abu-Sheasha, G. & Grawe, B. M. Type 2 retear after arthroscopic single-row, double-row and suture bridge rotator cuff repair: a systematic review. Eur. J. Orthop. Surg. Traumatol. 29, 373–382 (2019).

    Article  PubMed  Google Scholar 

  228. Malavolta, E. A. et al. Prognostic factors for clinical outcomes after arthroscopic rotator cuff repair. Orthop. J. Sports Med. 11, 23259671231160738 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Bishop, M. E. et al. Biomechanical and clinical comparison of suture techniques in arthroscopic rotator cuff repair. JBJS Rev. 5, e3 (2017).

    Article  PubMed  Google Scholar 

  230. Hohmann, E. et al. Single- versus double-row repair for full-thickness rotator cuff tears using suture anchors. A systematic review and meta-analysis of basic biomechanical studies. Eur. J. Orthop. Surg. Traumatol. 28, 859–868 (2018).

    Article  PubMed  Google Scholar 

  231. Millett, P. J., Warth, R. J., Dornan, G. J., Lee, J. T. & Spiegl, U. J. Clinical and structural outcomes after arthroscopic single-row versus double-row rotator cuff repair: a systematic review and meta-analysis of level I randomized clinical trials. J. Shoulder Elbow Surg. 23, 586–597 (2014).

    Article  PubMed  Google Scholar 

  232. Sobhy, M. H., Khater, A. H., Hassan, M. R. & El Shazly, O. Do functional outcomes and cuff integrity correlate after single- versus double-row rotator cuff repair? A systematic review and meta-analysis study. Eur. J. Orthop. Surg. Traumatol. 28, 593–605 (2018).

    Article  PubMed  Google Scholar 

  233. Hernigou, P. et al. Biologic augmentation of rotator cuff repair with mesenchymal stem cells during arthroscopy improves healing and prevents further tears: a case-controlled study. Int. Orthop. 38, 1811–1818 (2014).

    Article  PubMed  Google Scholar 

  234. Cole, B. J. et al. Prospective randomized trial of biologic augmentation with bone marrow aspirate concentrate in patients undergoing arthroscopic rotator cuff repair. Am. J. Sports Med. 51, 1234–1242 (2023).

    Article  PubMed  Google Scholar 

  235. Feltri, P. et al. Platelet-rich plasma does not improve clinical results in patients with rotator cuff disorders but reduces the retear rate. A systematic review and meta-analysis. Knee Surg. Sports Traumatol. Arthrosc. 31, 1940–1952 (2023).

    Article  PubMed  Google Scholar 

  236. Lavoie-Gagne, O. et al. Double-row repair with platelet-rich plasma optimizes retear rates after small to medium full-thickness rotator cuff repair: a systematic review and network meta-analysis of randomized controlled trials. Arthroscopy 38, 2714–2729 (2022).

    Article  PubMed  Google Scholar 

  237. Zhang, C., Cai, Y. Z. & Wang, Y. Injection of leukocyte-poor platelet-rich plasma for moderate-to-large rotator cuff tears does not improve clinical outcomes but reduces retear rates and fatty infiltration: a prospective, single-blinded randomized study. Arthroscopy 38, 2381–2388.e1 (2022).

    Article  PubMed  Google Scholar 

  238. Liu, B., Jeong, H. J., Yeo, J. H. & Oh, J. H. Efficacy of intraoperative platelet-rich plasma augmentation and postoperative platelet-rich plasma booster injection for rotator cuff healing: a randomized controlled clinical trial. Orthop. J. Sports Med. 9, 23259671211006100 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  239. Hurley, E. T., Lim Fat, D., Moran, C. J. & Mullett, H. The efficacy of platelet-rich plasma and platelet-rich fibrin in arthroscopic rotator cuff repair: a meta-analysis of randomized controlled trials. Am. J. Sports Med. 47, 753–761 (2019).

    Article  PubMed  Google Scholar 

  240. Castricini, R. et al. Platelet-rich plasma augmentation for arthroscopic rotator cuff repair: a randomized controlled trial. Am. J. Sports Med. 39, 258–265 (2011).

    Article  PubMed  Google Scholar 

  241. Randelli, P. S., Stoppani, C. A., Santarsiero, G., Nocerino, E. & Menon, A. Platelet-rich plasma in arthroscopic rotator cuff repair: clinical and radiological results of a prospective randomized controlled trial study at 10-year follow-up. Arthroscopy 38, 51–61 (2022).

    Article  PubMed  Google Scholar 

  242. Oudelaar, B. W., Peerbooms, J. C., Huis In, ‘T., Veld, R. & Vochteloo, A. J. H. Concentrations of blood components in commercial platelet-rich plasma separation systems: a review of the literature. Am. J. Sports Med. 47, 479–487 (2019).

    Article  PubMed  Google Scholar 

  243. Oh, J. H., Park, M. S. & Rhee, S. M. Treatment strategy for irreparable rotator cuff tears. Clin. Orthop. Surg. 10, 119–134 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  244. de Marinis, R. et al. Lower trapezius transfer improves clinical outcomes with a rate of complications and reoperations comparable to other surgical alternatives in patients with functionally irreparable rotator cuff tears: a systematic review. Arthroscopy https://doi.org/10.1016/j.arthro.2023.06.029 (2023).

  245. Mirzayan, R. et al. Emerging treatment options for massive rotator cuff tears: biologic tuberoplasty, balloon arthroplasty, anterior cable reconstruction, lower trapezius transfer. Instr. Course Lect. 72, 223–238 (2023).

    PubMed  Google Scholar 

  246. Saccomanno, M. F. et al. Combined arthroscopic-assisted lower trapezius tendon transfer and superior capsule reconstruction for massive irreparable posterior-superior rotator cuff tears: surgical technique. Arthrosc. Tech. 12, e823–e830 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  247. Galvin, J. W. et al. Outcomes and complications of primary reverse shoulder arthroplasty with minimum of 2 years’ follow-up: a systematic review and meta-analysis. J. Shoulder Elbow Surg. 31, e534–e544 (2022).

    Article  PubMed  Google Scholar 

  248. Burden, E. G., Batten, T. J., Smith, C. D. & Evans, J. P. Reverse total shoulder arthroplasty. Bone Joint J. 103-B, 813–821 (2021).

    Article  PubMed  Google Scholar 

  249. Bacle, G., Nove-Josserand, L., Garaud, P. & Walch, G. Long-term outcomes of reverse total shoulder arthroplasty: a follow-up of a previous study. J. Bone Joint Surg. Am. 99, 454–461 (2017).

    Article  PubMed  Google Scholar 

  250. Bulhoff, M. et al. Medium- to long-term outcomes after reverse total shoulder arthroplasty with a standard long stem. J. Clin. Med 11, 2274 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  251. Favard, L. et al. Reverse prostheses in arthropathies with cuff tear: are survivorship and function maintained over time? Clin. Orthop. Relat. Res. 469, 2469–2475 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  252. Zumstein, M., Pinedo, M., Old, J. & Pascal, B. Problems, complications, reoperations, and revisions in reverse total shoulder arthroplasty: a systematic review. J. Shoulder Elbow Surg. 20, 146–157 (2011).

    Article  PubMed  Google Scholar 

  253. Su, F. et al. Incidence, risk factors, and complications of acromial stress fractures after reverse total shoulder arthroplasty. J. Shoulder Elbow Surg. 33, 65–72 (2023).

    Article  PubMed  Google Scholar 

  254. Jeong, H. J. et al. Subacromial notching after reverse total shoulder arthroplasty. J. Shoulder Elbow Surg. 32, 1876–1885 (2023).

    Article  PubMed  Google Scholar 

  255. Cheung, E. V. et al. Instability after reverse total shoulder arthroplasty. J. Shoulder Elbow Surg. 27, 1946–1952 (2018).

    Article  MathSciNet  PubMed  Google Scholar 

  256. Schell, L. E. et al. Aseptic glenoid baseplate loosening after reverse total shoulder arthroplasty with a single prosthesis. J. Shoulder Elbow Surg. 32, 1584–1593 (2023).

    Article  PubMed  Google Scholar 

  257. Baksh, N. et al. Does preoperative corticosteroid injection increase the risk of periprosthetic joint infection after reverse shoulder arthroplasty? J. Shoulder Elbow Surg. 32, 1459–1464 (2023).

    Article  PubMed  Google Scholar 

  258. Reddy, R. P., Solomon, D. A., Hughes, J. D., Lesniak, B. P. & Lin, A. Clinical outcomes of rotator cuff repair in patients with concomitant glenohumeral osteoarthritis. J. Shoulder Elbow Surg. 31, S25–S33 (2022).

    Article  PubMed  Google Scholar 

  259. Manop, P., Apivatgaroon, A., Puntu, W. & Chernchujit, B. Risk factors for rotator cuff repair failure and reliability of the rotator cuff healing index (RoHI) in Thai patients: comparison of the RoHI with a modified scoring system. Orthop. J. Sports Med. 11, 23259671231179449 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  260. Jeon, Y. D. et al. Significance of the acromiohumeral distance on stress radiography for predicting healing and function after arthroscopic repair of massive rotator cuff tears. J. Shoulder Elbow Surg. 30, e471–e481 (2021).

    Article  PubMed  Google Scholar 

  261. Davey, M. S. et al. Arthroscopic rotator cuff repair results in improved clinical outcomes and low revision rates at 10-year follow-up: a systematic review. Arthroscopy 39, 452–458 (2023).

    Article  PubMed  Google Scholar 

  262. Sanchez-Sotelo, J. & Athwal, G. S. How to optimize reverse shoulder arthroplasty for irreparable cuff tears. Curr. Rev. Musculoskelet. Med. 13, 553–560 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  263. Tempelhof, S., Rupp, S. & Seil, R. Age-related prevalence of rotator cuff tears in asymptomatic shoulders. J. Shoulder Elbow Surg. 8, 296–299 (1999).

    Article  CAS  PubMed  Google Scholar 

  264. Longo, U. G. et al. Anxiety and depressive symptoms correlated to patient-reported outcome measures after rotator cuff repair: a prospective study in the perioperative period. J. Clin. Med. 12, 2999 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  265. Panattoni, N. et al. The influence of psychosocial factors on patient-reported outcome measures in rotator cuff tears pre- and post-surgery: a systematic review. Qual. Life Res. 31, 91–116 (2022).

    Article  PubMed  Google Scholar 

  266. Longo, U. G. et al. Arthroscopic rotator cuff repair improves sleep disturbance and quality of life: a prospective study. Int. J. Environ. Res. Public Health 18, 3797 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  267. Kunze, K. N. et al. Systematic review of sleep quality before and after arthroscopic rotator cuff repair: are improvements experienced and maintained? Orthop. J. Sports Med. 8, 2325967120969224 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  268. Serbest, S., Tiftikçi, U., Askın, A., Yaman, F. & Alpua, M. Preoperative and post-operative sleep quality evaluation in rotator cuff tear patients. Knee Surg. Sports Traumatol. Arthrosc. 25, 2109–2113 (2017).

    Article  PubMed  Google Scholar 

  269. Zheng, E. T., Lowenstein, N. A., Collins, J. E. & Matzkin, E. G. Resolution of sleep disturbance and improved functional outcomes after rotator cuff repair. Am. J. Sports Med. 51, 1852–1858 (2023).

    Article  PubMed  Google Scholar 

  270. Boorman, R. S. et al. What happens to patients when we do not repair their cuff tears? Five-year rotator cuff quality-of-life index outcomes following nonoperative treatment of patients with full-thickness rotator cuff tears. J. Shoulder Elbow Surg. 27, 444–448 (2018).

    Article  PubMed  Google Scholar 

  271. Fucentese, S. F., von Roll, A. L., Pfirrmann, C. W., Gerber, C. & Jost, B. Evolution of nonoperatively treated symptomatic isolated full-thickness supraspinatus tears. J. Bone Joint Surg. Am. 94, 801–808 (2012).

    Article  PubMed  Google Scholar 

  272. Jain, N. B. et al. Comparative effectiveness of operative versus nonoperative treatment for rotator cuff tears: a propensity score analysis from the ROW cohort. Am. J. Sports Med. 47, 3065–3072 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  273. van Deurzen, D. et al. Long-term results of arthroscopic and mini-open repair of small- to medium-size full-thickness rotator cuff tears. Shoulder Elbow 11, 68–76 (2019).

    Article  PubMed  Google Scholar 

  274. Yoo, J. H., Cho, N. S. & Rhee, Y. G. Effect of postoperative repair integrity on health-related quality of life after rotator cuff repair: healed versus retear group. Am. J. Sports Med. 41, 2637–2644 (2013).

    Article  PubMed  Google Scholar 

  275. Galatz, L. M., Griggs, S., Cameron, B. D. & Iannotti, J. P. Prospective longitudinal analysis of postoperative shoulder function : a ten-year follow-up study of full-thickness rotator cuff tears. J. Bone Joint Surg. Am. 83, 1052–1056 (2001).

    Article  CAS  PubMed  Google Scholar 

  276. Nicholson, A. D. et al. Minimum 15-year follow-up for clinical outcomes of arthroscopic rotator cuff repair. J. Shoulder Elbow Surg. 31, 1696–1703 (2022).

    Article  PubMed  Google Scholar 

  277. Green, A. et al. Long-term functional and structural outcome of rotator cuff repair in patients 60 years old or less. JSES Int. 7, 58–66 (2023).

    Article  PubMed  Google Scholar 

  278. Gerber, C., Canonica, S., Catanzaro, S. & Ernstbrunner, L. Longitudinal observational study of reverse total shoulder arthroplasty for irreparable rotator cuff dysfunction: results after 15 years. J. Shoulder Elbow Surg. 27, 831–838 (2018).

    Article  PubMed  Google Scholar 

  279. Mulieri, P., Dunning, P., Klein, S., Pupello, D. & Frankle, M. Reverse shoulder arthroplasty for the treatment of irreparable rotator cuff tear without glenohumeral arthritis. J. Bone Joint Surg. Am. 92, 2544–2556 (2010).

    Article  PubMed  Google Scholar 

  280. Hartzler, R. U. et al. Reverse shoulder arthroplasty for massive rotator cuff tear: risk factors for poor functional improvement. J. Shoulder Elbow Surg. 24, 1698–1706 (2015).

    Article  PubMed  Google Scholar 

  281. Fealy, S. et al. Patterns of vascular and anatomical response after rotator cuff repair. Am. J. Sports Med. 34, 120–127 (2006).

    Article  PubMed  Google Scholar 

  282. Randelli, P. et al. History of rotator cuff surgery. Knee Surg. Sports Traumatol. Arthrosc. 23, 344–362 (2015).

    Article  PubMed  Google Scholar 

  283. Minkwitz, S. et al. Histological and molecular features of the subacromial bursa of rotator cuff tears compared to non-tendon defects: a pilot study. BMC Musculoskelet. Disord. 22, 877 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Corrado, B. et al. Ultrasound-guided collagen injections in the treatment of supraspinatus tendinopathy: a case series pilot study. J. Biol. Regul. Homeost. Agents 34 (3 Suppl. 2), 33–39 (2020).

    CAS  PubMed  Google Scholar 

  285. Corrado, B., Bonini, I., Alessio Chirico, V., Rosano, N. & Gisonni, P. Use of injectable collagen in partial-thickness tears of the supraspinatus tendon: a case report. Oxf. Med. Case Rep. 2020, omaa103 (2020).

    Article  Google Scholar 

  286. Randelli, F. et al. Effect of a collagen-based compound on morpho-functional properties of cultured human tenocytes. Cells 7, 246 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Martinello, T. et al. Successful recellularization of human tendon scaffolds using adipose-derived mesenchymal stem cells and collagen gel. J. Tissue Eng. Regen. Med. 8, 612–619 (2014).

    Article  CAS  PubMed  Google Scholar 

  288. Jo, Y., Kim, W. J. & Lee, H. Healing of partial tear of the supraspinatus tendon after atelocollagen injection confirmed by MRI: a case report. Medicine 99, e23498 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  289. Suh, D. S. et al. Atelocollagen enhances the healing of rotator cuff tendon in rabbit model. Am. J. Sports Med. 45, 2019–2027 (2017).

    Article  PubMed  Google Scholar 

  290. Canty, E. G. & Kadler, K. E. Procollagen trafficking, processing and fibrillogenesis. J. Cell Sci. 118, 1341–1353 (2005).

    Article  CAS  PubMed  Google Scholar 

  291. Hynes, R. O. Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–687 (2002).

    Article  CAS  PubMed  Google Scholar 

  292. Massoud, E. I. Healing of subcutaneous tendons: influence of the mechanical environment at the suture line on the healing process. World J. Orthop. 4, 229–240 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  293. Aguado, G., Obando, D. V., Herrera, G. A., Ramirez, A. & Llinas, P. J. Retears of the rotator cuff: an ultrasonographic assessment during the first postoperative year. Orthop. J. Sports Med. 7, 2325967119889049 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  294. Hein, J., Reilly, J. M., Chae, J., Maerz, T. & Anderson, K. Retear rates after arthroscopic single-row, double-row, and suture bridge rotator cuff repair at a minimum of 1 year of imaging follow-up: a systematic review. Arthroscopy 31, 2274–2281 (2015).

    Article  PubMed  Google Scholar 

  295. Mihata, T., McGarry, M. H., Pirolo, J. M., Kinoshita, M. & Lee, T. Q. Superior capsule reconstruction to restore superior stability in irreparable rotator cuff tears: a biomechanical cadaveric study. Am. J. Sports Med. 40, 2248–2255 (2012).

    Article  PubMed  Google Scholar 

  296. Ishihara, Y. et al. Role of the superior shoulder capsule in passive stability of the glenohumeral joint. J. Shoulder Elbow Surg. 23, 642–648 (2014).

    Article  PubMed  Google Scholar 

  297. Mihata, T. et al. A biomechanical cadaveric study comparing superior capsule reconstruction using fascia lata allograft with human dermal allograft for irreparable rotator cuff tear. J. Shoulder Elbow Surg. 26, 2158–2166 (2017).

    Article  PubMed  Google Scholar 

  298. Ji, J. H. et al. Transtendon arthroscopic repair of high grade partial-thickness articular surface tears of the rotator cuff with biceps tendon augmentation: technical note and preliminary results. Arch. Orthop. Trauma. Surg. 132, 335–342 (2012).

    Article  PubMed  Google Scholar 

  299. Park, M. C. et al. Anterior cable reconstruction using the proximal biceps tendon for large rotator cuff defects limits superior migration and subacromial contact without inhibiting range of motion: a biomechanical analysis. Arthroscopy 34, 2590–2600 (2018).

    Article  PubMed  Google Scholar 

  300. Schmalzl, J. et al. Tendon-derived stem cells from the long head of the biceps tendon: inflammation does not affect the regenerative potential. Bone Joint Res. 8, 414–424 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  301. Potty, A. G. et al. Approaching artificial intelligence in orthopaedics: predictive analytics and machine learning to prognosticate arthroscopic rotator cuff surgical outcomes. J. Clin. Med. 12, 2369 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  302. Akhtar, A., Richards, J. & Monga, P. The biomechanics of the rotator cuff in health and disease – a narrative review. J. Clin. Orthop. Trauma. 18, 150–156 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge S. E. Feeley for her initial artwork for the Primer.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (B.T.F. and A.B.); Epidemiology (J.K. and P.M.); Mechanisms/pathophysiology (A.B. and B.T.F.), Diagnosis, screening and prevention (R.J.W.III, J.B. and D.A.L.), Management (O.L., J.H.O. and V.J.S.), Quality of Life, (J.S.-S.) Outlook (N.M.); Overview of Primer (B.T.F.).

Corresponding author

Correspondence to Brian T. Feeley.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Disease Primers thanks A. Carr; N. Jain, who co-reviewed with R. Prakash; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bedi, A., Bishop, J., Keener, J. et al. Rotator cuff tears. Nat Rev Dis Primers 10, 8 (2024). https://doi.org/10.1038/s41572-024-00492-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-024-00492-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing