Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Traumatic muscle injury

Abstract

Traumatic muscle injury represents a collection of skeletal muscle pathologies caused by trauma to the muscle tissue and is defined as damage to the muscle tissue that can result in a functional deficit. Traumatic muscle injury can affect people across the lifespan and can result from high stresses and strains to skeletal muscle tissue, often due to muscle activation while the muscle is lengthening, resulting in indirect and non-contact muscle injuries (strains or ruptures), or from external impact, resulting in direct muscle injuries (contusion or laceration). At a microscopic level, muscle fibres can repair focal damage but must be completely regenerated after full myofibre necrosis. The diagnosis of muscle injury is based on patient history and physical examination. Imaging may be indicated to eliminate differential diagnoses. The management of muscle injury has changed within the past 5 years from initial rest, immobilization and (over)protection to early activation and progressive loading using an active approach. One challenge of muscle injury management is that numerous medical treatment options, such as medications and injections, are often used or proposed to try to accelerate muscle recovery despite very limited efficacy evidence. Another challenge is the prevention of muscle injury owing to the multifactorial and complex nature of this injury.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural organization of skeletal muscle.
Fig. 2: Mechanism of muscle injury.
Fig. 3: Molecular mechanisms of muscle injury.
Fig. 4: Imaging modalities for exemplary muscle injuries and differential diagnosis.

Similar content being viewed by others

References

  1. Garrett, W. E. Muscle strain injuries: clinical and basic aspects. Med. Sci. Sports Exerc. 22, 436–443 (1990).

    Article  PubMed  Google Scholar 

  2. Lieber, R. L. Skeletal Muscle Structure, Function, and Plasticity: The Physiological Basis of Rehabilitation (Lippincott Williams & Wilkins, 2009).

  3. Tidball, J. G. & Lin, C. Structural changes at the myogenic cell surface during the formation of myotendinous junctions. Cell Tissue Res. 257, 77–84 (1989).

    Article  CAS  PubMed  Google Scholar 

  4. Knudsen, A. B. et al. The human myotendinous junction: an ultrastructural and 3D analysis study. Scand. J. Med. Sci. Sports 25, e116–e123 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Freund, H.-J. Motor unit and muscle activity in voluntary motor control. Physiol. Rev. 63, 387–436 (1983).

    Article  CAS  PubMed  Google Scholar 

  6. Tidball, J. G. Mechanisms of muscle injury, repair, and regeneration. Compr. Physiol. 1, 2029–2062 (2011). This paper is a narrative review discussing mechanisms of muscle injury, repair and regeneration.

    Article  PubMed  Google Scholar 

  7. Grounds, M. D. The need to more precisely define aspects of skeletal muscle regeneration. Int. J. Biochem. Cell Biol. 56, 56–65 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Teixeira, E. & Duarte, J. A. Skeletal muscle loading changes its regenerative capacity. Sports Med. 46, 783–792 (2016). This paper discusses the interest of skeletal muscle loading for muscle repair and regeneration.

    Article  PubMed  Google Scholar 

  9. Picavet, H. S. J. & Hoeymans, N. Health related quality of life in multiple musculoskeletal diseases: SF-36 and EQ-5D in the DMC3 study. Ann. Rheum. Dis. 63, 723–729 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mcleod, T. C. V., Bay, R. C., Parsons, J. T., Sauers, E. L. & Snyder, A. R. Recent injury and health-related quality of life in adolescent athletes. J. Athl. Train. 44, 603–610 (2009).

    Article  Google Scholar 

  11. Richard-Bulteau, H. et al. Recovery of skeletal muscle mass after extensive injury: positive effects of increased contractile activity. Am. J. Physiol. Cell Physiol. 294, 467–476 (2008). This paper reports the interest of an early active approach after muscle injury in animal models.

    Article  Google Scholar 

  12. Bayer, M. L., Magnusson, S. P. & Kjaer, M. Early versus delayed rehabilitation after acute muscle injury. N. Engl. J. Med. 377, 1300–1301 (2017). This paper reports the results of a randomized controlled trial in which patients with traumatic muscle injuries receiving early exercise therapy (2 days after injury) had a significantly decreased time to return to sport compared with those with delayed exercise therapy (9 days after injury).

    Article  PubMed  Google Scholar 

  13. Cheung, K., Hume, P. A. & Maxwell, L. Delayed onset muscle soreness: treatment strategies and performance factors. Sports Med. 33, 145–164 (2003).

    Article  PubMed  Google Scholar 

  14. Lewis, P. B., Ruby, D. & Bush-Joseph, C. A. Muscle soreness and delayed-onset muscle soreness. Clin. Sports Med. 31, 255–262 (2012).

    Article  PubMed  Google Scholar 

  15. Graham, H. K. et al. Cerebral palsy. Nat. Rev. Dis. Primers 2, 15082 (2016).

    Article  PubMed  Google Scholar 

  16. GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 396, 1204–1222 (2020).

    Article  Google Scholar 

  17. Bull, F. C. et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 54, 1451–1462 (2020).

    Article  PubMed  Google Scholar 

  18. Sattin, R. W. et al. The incidence of fall injury events among the elderly in a defined population. Am. J. Epidemiol. 131, 1028–1037 (1990).

    Article  CAS  PubMed  Google Scholar 

  19. Parker, D. L., Carl, W. R., French, L. R. & Martin, F. B. Characteristics of adolescent work injuries reported to the Minnesota Department of Labor and Industry. Am. J. Public Health 84, 606–611 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Choi, B. C., Levitsky, M., Lloyd, R. D. & Stones, I. M. Patterns and risk factors for sprains and strain in Ontario, Canada 1990: an analysis of the Workplace Health and Safety Agency data base. J. Occup. Env. Med. 38, 379–389 (1996).

    Article  CAS  Google Scholar 

  21. Freid, V. M., Makuc, D. M. & Rooks, R. N. Ambulatory health care visits by children: principal diagnosis and place of visit. Vital Health Stat. 137, 1–23 (1998).

    Google Scholar 

  22. Saleh, S. S., Fuortes, L., Vaughn, T. & Bauer, E. P. Epidemiology of occupational injuries and illnesses in a university population: a focus on age and gender differences. Am. J. Ind. Med. 39, 581–586 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Zielinski, A. E., Rochette, L. M. & Smith, G. A. Stair-related injuries to young children treated in US emergency departments, 1999-2008. Pediatrics 129, 721–727 (2012).

    Article  PubMed  Google Scholar 

  24. Algarni, F. S., Gross, D. P., Senthilselvan, A. & Battié, M. C. Ageing workers with work-related musculoskeletal injuries. Occup. Med. 65, 229–237 (2015).

    Article  CAS  Google Scholar 

  25. Orr, R., Simas, V., Canetti, E. & Schram, B. A profile of injuries sustained by firefighters: a critical review. Int. J. Environ. Res. Public Health 16, 3931 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Minetto, M. A. et al. Common musculoskeletal disorders in the elderly: the star triad. J. Clin. Med. Clin. Med. 9, 1216 (2020).

    Article  Google Scholar 

  27. Taib, B. et al. Utility of a pediatric adaptive sports clinic: a case series review. Phys. Occup. Ther. Pediatr. 43, 645–656 (2023).

    Article  PubMed  Google Scholar 

  28. Kuske, B., Hamilton, D. F., Pattle, S. B. & Simpson, H. A. R. W. Patterns of hamstring muscle tears in the general population: a systematic review. PLoS ONE 11, e0152855 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Voth, M., Lustenberger, T., Auner, B., Frank, J. & Marzi, I. What injuries should we expect in the emergency room? Injury 48, 2119–2124 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Cintean, R., Eickhoff, A., Zieger, J., Gebhard, F. & Schütze, K. Epidemiology, patterns, and mechanisms of pediatric trauma: a review of 12,508 patients. Eur. J. Trauma Emerg. Surg. 49, 451–459 (2023).

    Article  PubMed  Google Scholar 

  31. Puroila, A., Paananen, M., Taimela, S., Järvelin, M. R. & Karppinen, J. Lifestyle-factors in adolescence as predictors of number of musculoskeletal pain sites in adulthood: a 17-year follow-up study of a birth cohort. Pain Med. 16, 1177–1185 (2015).

    Article  PubMed  Google Scholar 

  32. Petit, A. et al. Risk factors for episodic neck pain in workers: a 5-year prospective study of a general working population. Int. Arch. Occup. Environ. Health 91, 251–261 (2018).

    Article  PubMed  Google Scholar 

  33. Farioli, A. et al. Musculoskeletal pain in Europe: the role of personal, occupational, and social risk factors. Scand. J. Work Environ. Health 40, 36–46 (2014).

    Article  PubMed  Google Scholar 

  34. Soares, C. O. et al. Preventive factors against work-related musculoskeletal disorders: narrative review. Rev. Bras. Med. Trab. 17, 415–430 (2019).

    Article  PubMed  Google Scholar 

  35. Junge, A. et al. Sports injuries during the summer Olympic games 2008. Am. J. Sports Med. 37, 2165–2172 (2009).

    Article  PubMed  Google Scholar 

  36. Engebretsen, L. et al. Sports injuries and illnesses during the London summer Olympic games 2012. Br. J. Sports Med. 47, 407–414 (2013).

    Article  PubMed  Google Scholar 

  37. Rees, H., McCarthy Persson, U., Delahunt, E., Boreham, C. & Blake, C. The incidence of injury in male field hockey players: a systematic review and meta-analysis. Phys. Ther. Sport 52, 45–53 (2021).

    Article  PubMed  Google Scholar 

  38. Hollander, K. et al. Epidemiology of injuries in outdoor and indoor hockey players over one season: a prospective cohort study. Br. J. Sports Med. 52, 1091–1096 (2018).

    Article  PubMed  Google Scholar 

  39. Dick, R. et al. Descriptive epidemiology of collegiate women’s field hockey injuries: National collegiate athletic association injury surveillance system, 1988-1989 through 2002-2003. J. Athl. Train. 42, 211–220 (2007).

    PubMed  PubMed Central  Google Scholar 

  40. Orchard, J. W., Seward, H. & Orchard, J. J. Results of 2 decades of injury surveillance and public release of data in the Australian Football League. Am. J. Sports Med. 41, 734–741 (2013).

    Article  PubMed  Google Scholar 

  41. López-Valenciano, A. et al. Epidemiology of injuries in professional football: a systematic review and meta-analysis. Br. J. Sports Med. 54, 711–718 (2020).

    Article  PubMed  Google Scholar 

  42. Horan, D. et al. Injury incidence rates in women’s football: a systematic review and meta-analysis of prospective injury surveillance studies. Br. J. Sports Med. 57, 471–480 (2022).

    Article  PubMed  Google Scholar 

  43. King, D. et al. Match and training injuries in Women’s Rugby Union: a systematic review of published studies. Sports Med. 49, 1559–1574 (2019).

    Article  PubMed  Google Scholar 

  44. King, D. A., Clark, T. N., Hume, P. A. & Hind, K. Match and training injury incidence in rugby league: a systematic review, pooled analysis, and update on published studies. Sports Med. Health Sci. 4, 75–84 (2022).

    Article  CAS  Google Scholar 

  45. Soligard, T. et al. Sports injury and illness incidence in the Rio de Janeiro 2016 Olympic Summer Games: a prospective study of 11274 athletes from 207 countries. Br. J. Sports Med. 51, 1265–1271 (2017).

    Article  PubMed  Google Scholar 

  46. Soligard, T. et al. New sports, COVID-19 and the heat: sports injuries and illnesses in the Tokyo 2020 summer olympics. Br. J. Sports Med. 57, 46–54 (2022).

    Article  Google Scholar 

  47. Edouard, P., Branco, P. & Alonso, J. M. Muscle injury is the principal injury type and hamstring muscle injury is the first injury diagnosis during top-level international athletics championships between 2007 and 2015. Br. J. Sports Med. 50, 619–630 (2016).

    Article  PubMed  Google Scholar 

  48. Ekstrand, J., Spreco, A., Bengtsson, H. & Bahr, R. Injury rates decreased in men’s professional football: an 18-year prospective cohort study of almost 12 000 injuries sustained during 1.8 million hours of play. Br. J. Sports Med. 55, 1084–1092 (2021).

    Article  PubMed  Google Scholar 

  49. Ornon, G., Ziltener, J. L., Fritschy, D. & Menetrey, J. Epidemiology of injuries in professional ice hockey: a prospective study over seven years. J. Exp. Orthop. 7, 87 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ekstrand, J. et al. Hamstring injury rates have increased during recent seasons and now constitute 24% of all injuries in men’s professional football: the UEFA Elite Club Injury Study from 2001/02 to 2021/22. Br. J. Sports Med. 57, 292–298 (2022). This paper reports the important proportion of muscle injury in football and the increase in hamstring muscle injuries with time.

    Article  PubMed  Google Scholar 

  51. McLeod, G. et al. Medical-attention injuries in community cricket: a systematic review. BMJ Open Sport Exerc. Med. 6, e000670 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Orchard, J. & Seward, H. Epidemiology of injuries in the Australian Football League, seasons 1997–2000. Br. J. Sports Med. 36, 39–45 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Engebretsen, L. et al. Sports injuries and illnesses during the winter Olympic games 2010. Br. J. Sports Med. 44, 772–780 (2010).

    Article  PubMed  Google Scholar 

  54. Soligard, T. et al. Sports injuries and illnesses in the Sochi 2014 Olympic Winter Games. Br. J. Sports Med. 49, 441–447 (2015).

    Article  PubMed  Google Scholar 

  55. Soligard, T. et al. Sports injury and illness incidence in the PyeongChang 2018 olympic winter games: a prospective study of 2914 athletes from 92 countries. Br. J. Sports Med. 53, 1085–1092 (2019).

    Article  PubMed  Google Scholar 

  56. Campbell, R. A., Bradshaw, E. J., Ball, N. B., Pease, D. L. & Spratford, W. Injury epidemiology and risk factors in competitive artistic gymnasts: a systematic review. Br. J. Sports Med. 53, 1056–1069 (2019).

    Article  PubMed  Google Scholar 

  57. Borowski, L. A., Yard, E. E., Fields, S. K. & Comstock, R. D. The epidemiology of US high school basketball injuries, 2005-2007. Am. J. Sports Med. 36, 2328–2335 (2008).

    Article  PubMed  Google Scholar 

  58. Canata, G. L. & Jones, H. Epidemiology of Injuries in Sports (Springer, 2022).

  59. Edouard, P. et al. Lower limb muscle injury location shift from posterior lower leg to hamstring muscles with increasing discipline-related running velocity in international athletics championships. J. Sci. Med. Sport 24, 653–659 (2021). This paper reports the differences in the location of lower limb muscle injuries according to the running velocities required by the athletics disciplines.

    Article  PubMed  Google Scholar 

  60. Dalton, S. L., Kerr, Z. Y. & Dompier, T. P. Epidemiology of hamstring strains in 25 NCAA sports in the 2009-2010 to 2013-2014 academic years. Am. J. Sports Med. 43, 2671–2679 (2015).

    Article  PubMed  Google Scholar 

  61. Lin, D. J., Wong, T. T. & Kazam, J. K. Shoulder injuries in the overhead-throwing athlete: epidemiology, mechanisms of injury, and imaging findings. Radiology 286, 370–387 (2018).

    Article  PubMed  Google Scholar 

  62. Edouard, P., Feddermann-Demont, N., Alonso, J. M., Branco, P. & Junge, A. Sex differences in injury during top-level international athletics championships: surveillance data from 14 championships between 2007 and 2014. Br. J. Sports Med. 49, 472–477 (2015).

    Article  PubMed  Google Scholar 

  63. Eckard, T. G., Kerr, Z. Y., Padua, D. A., Djoko, A. & Dompier, T. P. Epidemiology of quadriceps strains in National Collegiate Athletic Association athletes, 2009-2010 through 2014-2015. J. Athl. Train. 52, 474–481 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Green, B., Bourne, M. N., Van Dyk, N. & Pizzari, T. Recalibrating the risk of hamstring strain injury (HSI): a 2020 systematic review and meta-analysis of risk factors for index and recurrent hamstring strain injury in sport. Br. J. Sports Med. 54, 1081–1088 (2020).

    Article  PubMed  Google Scholar 

  65. Ekstrand, J., Hägglund, M. & Waldén, M. Epidemiology of muscle injuries in professional football (soccer). Am. J. Sports Med. 39, 1226–1232 (2011).

    Article  PubMed  Google Scholar 

  66. Green, B. & Pizzari, T. Calf muscle strain injuries in sport: a systematic review of risk factors for injury. Br. J. Sports Med. 51, 1189–1194 (2017).

    Article  PubMed  Google Scholar 

  67. Pietsch, S. & Pizzari, T. Risk factors for quadriceps muscle strain injuries in sport: a systematic review. J. Orthop. Sports Phys. Ther. 52, 389–400 (2022).

    Article  PubMed  Google Scholar 

  68. Gonzales Farrell, S., Hatem, M. & Bharam, S. Acute adductor muscle injury: a systematic review on diagnostic imaging, treatment, and prevention. Am. J. Sports Med. https://doi.org/10.1177/03635465221140923 (2023).

  69. Duhig, S. et al. Effect of high-speed running on hamstring strain injury risk. Br. J. Sports Med. 50, 1536–1540 (2016).

    Article  PubMed  Google Scholar 

  70. Malone, S., Roe, M., Doran, D. A., Gabbett, T. J. & Collins, K. High chronic training loads and exposure to bouts of maximal velocity running reduce injury risk in elite Gaelic football. J. Sci. Med. Sport 20, 250–254 (2017).

    Article  PubMed  Google Scholar 

  71. Schuermans, J., Van Tiggelen, D., Palmans, T., Danneels, L. & Witvrouw, E. Deviating running kinematics and hamstring injury susceptibility in male soccer players: cause or consequence? Gait Posture 57, 270–277 (2017).

    Article  PubMed  Google Scholar 

  72. Edouard, P. et al. Low horizontal force production capacity during sprinting as potencial risk factor of hamstring injury in football. Int. J. Environ. Res. Public. Health 18, 7827 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Cross, K. M., Gurka, K. K., Saliba, S., Conaway, M. & Hertel, J. Comparison of hamstring strain injury rates between male and female intercollegiate soccer athletes. Am. J. Sports Med. 41, 742–748 (2013).

    Article  PubMed  Google Scholar 

  74. Hauret, K. G. et al. Epidemiology of exercise- and sports-related injuries in a population of young, physically active adults: a survey of military servicemembers. Am. J. Sports Med. 43, 2645–2653 (2015).

    Article  PubMed  Google Scholar 

  75. Knapik, J. J., Graham, B. S., Rieger, J., Steelman, R. & Pendergrass, T. Activities associated with injuries in initial entry training. Mil. Med. 178, 500–506 (2013).

    Article  PubMed  Google Scholar 

  76. Lieber, R. L. & Friden, J. Muscle damage is not a function of muscle force but active muscle strain. J. Appl. Physiol. 74, 520–526 (1993).

    Article  CAS  PubMed  Google Scholar 

  77. Serner, A., Mosler, A. B., Tol, J. L., Bahr, R. & Weir, A. Mechanisms of acute adductor longus injuries in male football players: a systematic visual video analysis. Br. J. Sports Med. 53, 158–164 (2019).

    Article  PubMed  Google Scholar 

  78. Klein, C., Luig, P., Henke, T., Bloch, H. & Platen, P. Nine typical injury patterns in German professional male football (soccer): a systematic visual video analysis of 345 match injuries. Br. J. Sports Med. 55, 390–396 (2021).

    Article  Google Scholar 

  79. Gronwald, T. et al. Hamstring injury patterns in professional male football (soccer): a systematic video analysis of 52 cases. Br. J. Sports Med. 56, 165–171 (2022).

    Article  PubMed  Google Scholar 

  80. Jokela, A. et al. Mechanisms of hamstring injury in professional soccer players: video analysis and magnetic resonance imaging findings. Clin. J. Sport Med. 33, 217–224 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Kerin, F. et al. Its not all about sprinting: mechanisms of acute hamstring strain injuries in professional male rugby union — a systematic visual video analysis. Br. J. Sports Med. 56, 608–615 (2022).

    Article  PubMed  Google Scholar 

  82. Bobbert, M. F. & van Soest, A. J. ‘Knoek’. Two-joint muscles offer the solution, but what was the problem? Mot. Control. 4, 48–52 (2000).

    Article  CAS  Google Scholar 

  83. Balius, R. et al. A histoarchitectural approach to skeletal muscle injury: searching for a common nomenclature. Orthop. J. Sports Med. 8, 2325967120909090 (2020).

    PubMed  PubMed Central  Google Scholar 

  84. Mendiguchia, J., Alentorn-Geli, E., Idoate, F. & Myer, G. D. Rectus femoris muscle injuries in football: a clinically relevant review of mechanisms of injury, risk factors and preventive strategies. Br. J. Sports Med. 47, 359–366 (2013).

    Article  PubMed  Google Scholar 

  85. Roman, W. et al. Muscle repair after physiological damage relies on nuclear migration for cellular reconstruction. Science 374, 355–359 (2021).

    Article  CAS  PubMed  Google Scholar 

  86. Tajbakhsh, S. Skeletal muscle stem cells in developmental versus regenerative myogenesis. J. Intern. Med. 266, 372–389 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Mackey, A. L. & Kjaer, M. The breaking and making of healthy adult human skeletal muscle in vivo. Skelet. Muscle 7, 24 (2017). This paper reports the regeneration process in humans and compares between animal and human models.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Vracko, R. & Benditt, E. P. Basal lamina: the scaffold for orderly cell replacement: observations on regeneration of injured skeletal muscle fibers and capillaries. J. Cell Biol. 55, 406–419 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Karlsen, A. et al. Distinct myofibre domains of the human myotendinous junction revealed by single nucleus RNA-seq. J. Cell Sci. 136, jcs260913 (2023).

    Article  CAS  PubMed  Google Scholar 

  90. Lepper, C., Partridge, T. A. & Fan, C. M. An absolute requirement for pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration. Development 138, 3639–3646 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Murphy, M. M., Lawson, J. A., Mathew, S. J., Hutcheson, D. A. & Kardon, G. Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration. Development 138, 3625–3637 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Abou-Khalil, R., Mounier, R. & Chazaud, B. Regulation of myogenic stem cell behavior by vessel cells: the ‘ménage à trois’ of satellite cells, periendothelial cells and endothelial cells. Cell Cycle 9, 892–896 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Saclier, M. et al. Differentially activated macrophages orchestrate myogenic precursor cell fate during human skeletal muscle regeneration. Stem Cell 31, 384–396 (2013).

    Article  CAS  Google Scholar 

  94. Collins, B. C. & Kardon, G. It takes all kinds: heterogeneity among satellite cells and fibro-adipogenic progenitors during skeletal muscle regeneration. Development 148, dev199861 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Contreras, O., Rossi, F. M. V. & Theret, M. Origins, potency, and heterogeneity of skeletal muscle fibro-adipogenic progenitors — time for new definitions. Skelet. Muscle 11, 16 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Bernard, C., Jomard, C., Chazaud, B. & Gondin, J. Kinetics of skeletal muscle regeneration after mild and severe muscle damage induced by electrically-evoked lengthening contractions. FASEB J. 37, e23107 (2023).

    Article  CAS  PubMed  Google Scholar 

  97. Mackey, A. L., Magnan, M., Chazaud, B. & Kjaer, M. Human skeletal muscle fibroblasts stimulate in vitro myogenesis and in vivo muscle regeneration. J. Physiol. 595, 5115–5127 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bayer, M. L. et al. Muscle-strain injury exudate favors acute tissue healing and prolonged connective tissue formation in humans. FASEB J. 33, 10369–10382 (2019).

    Article  CAS  PubMed  Google Scholar 

  99. Warren, G. L. et al. Mechanisms of skeletal muscle injury and repair revealed by gene expression studies in mouse models. J. Physiol. 582, 825–841 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hardy, D. et al. Comparative study of injury models for studying muscle regeneration in mice. PLoS ONE 11, e0147198 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  101. McCully, K. K. & Faulkner, J. A. Injury to skeletal muscle fibers of mice following lengthening contractions. J. Appl. Physiol. 59, 119–126 (1985).

    Article  CAS  PubMed  Google Scholar 

  102. Lieber, R. L., Woodburn, T. M. & Friden, J. Muscle damage induced by eccentric contractions of 25% strain. J. Appl. Physiol. 70, 2498–2507 (1991).

    Article  CAS  PubMed  Google Scholar 

  103. Katz, B. Y. B. The relation between force and speed. J. Physiol. 96, 45–64 (1939).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lieber, R. L. & Fridén, J. Mechanisms of muscle injury after eccentric contraction. J. Sci. Med. Sport 2, 253–265 (1999).

    Article  CAS  PubMed  Google Scholar 

  105. Clarkson, P. M. & Hubal, M. J. Exercise-induced muscle damage in humans. Am. J. Phys. Med. Rehabil. 81, S52–S69 (2002).

    Article  PubMed  Google Scholar 

  106. Friden, J., Sjostrom, M. & Ekblom, B. Myofibrillar damage following intense eccentric exercise in man. Int. J. Sports Med. 4, 170–176 (1983).

    Article  CAS  PubMed  Google Scholar 

  107. Patel, T. & Lieber, R. L. Force transmission in skeletal muscle. From actomyosin to external tendons. Exerc. Sport Sci. Rev. 25, 321–363 (1997).

    Article  CAS  PubMed  Google Scholar 

  108. Tidball, J. G., Salem, G. & Zernicke, R. Site and mechanical conditions for failure of skeletal muscle in experimental strain injuries. J. Appl. Physiol. 74, 1280–1286 (1993).

    Article  CAS  PubMed  Google Scholar 

  109. Karpati, G. & Carpenter, S. Pathology of Skeletal Muscle (Churchill Livingstone, 1984).

  110. Lieber, R. L., Thornell, L.-E. & Fridén, J. Muscle cytoskeletal disruption occurs within the first 15 min of cyclic eccentric contraction. J. Appl. Physiol. 80, 278–284 (1996).

    Article  CAS  PubMed  Google Scholar 

  111. Herzog, W. The role of titin in eccentric muscle contraction. J. Exp. Biol. 217, 2825–2833 (2014).

    Article  PubMed  Google Scholar 

  112. Palmisano, M. G. et al. Skeletal muscle intermediate filaments form a stress-transmitting and stress-signaling network. J. Cell Sci. 128, 219–224 (2015).

    PubMed  PubMed Central  Google Scholar 

  113. Peters, D. et al. Asynchronous functional, cellular and transcriptional changes after a bout of eccentric exercise in the rat. J. Physiol. 553, 947–957 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sam, M. et al. Desmin knockout muscles generate lower stress and are less vulnerable to injury compared with wild-type muscles. Am. J. Physiol. Cell Physiol. 279, 1116–1122 (2000).

    Article  Google Scholar 

  115. Järvinen, T. A. H., Järvinen, T. L. N., Kääriäinen, M., Kalimo, H. & Järvinen, M. Muscle injuries: biology and treatment. Am. J. Sports Med. 33, 745–764 (2005).

    Article  PubMed  Google Scholar 

  116. Hurme, T., Kalimo, H., Lehto, M. & Järvinen, M. Healing of skeletal muscle injury: an ultrastructural and immunohistochemical study. Med. Sci. Sports Exerc. 23, 801–810 (1991).

    Article  CAS  PubMed  Google Scholar 

  117. Bernard, C., Zavoriti, A., Pucelle, Q., Chazaud, B. & Gondin, J. Role of macrophages during skeletal muscle regeneration and hypertrophy — implications for immunomodulatory strategies. Physiol. Rep. 10, e15480 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Patsalos, A. et al. A growth factor-expressing macrophage subpopulation orchestrates regenerative inflammation via GDF-15. J. Exp. Med. 219, e20210420 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Järvinen, M. Healing of a crush injury in rat striated muscle. 3. A micro-angiographical study of the effect of early mobilization and immobilization on capillary ingrowth. Acta Pathol. Microbiol. Scand. A 84, 8594 (1976).

    Google Scholar 

  120. Engquist, E. N. & Zammit, P. S. The satellite cell at 60: the foundation years. J. Neuromuscul. Dis. 8, S183–S203 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Hurme, T. & Kalimo, H. Activation of myogenic precursor cells after muscle injury. Med. Sci. Sports Exerc. 24, 197–207 (1992).

    Article  CAS  PubMed  Google Scholar 

  122. Kääriäinen, M. et al. Integrin and dystrophin associated adhesion protein complexes during regeneration of shearing-type muscle injury. Neuromuscul. Disord. 10, 121–132 (2000).

    Article  PubMed  Google Scholar 

  123. Hurme, T. & Kalimo, H. Adhesion in skeletal muscle during regeneration. Muscle Nerve 15, 482–489 (1992).

    Article  CAS  PubMed  Google Scholar 

  124. Kääriäinen, M. et al. Expression of α7β1 integrin splicing variants during skeletal muscle regeneration. Am. J. Pathol. 161, 1023–1031 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Koch, M. et al. A novel marker of tissue junctions, collagen XXII*. J. Biol. Chem. 279, 22514–22521 (2004).

    Article  CAS  PubMed  Google Scholar 

  126. Frenette, J. & Tidball, J. G. Mechanical loading regulates expression of talin and its mRNA, which are concentrated at myotendinous junctions. Am. J. Physiol. 275, C818–C825 (1998).

    Article  CAS  PubMed  Google Scholar 

  127. Tidball, J. G. Desmin at myotendinous junctions. Exp. Cell Res. 212, 206–212 (1992).

    Article  Google Scholar 

  128. Morin, A. et al. Dystrophin myonuclear domain restoration governs treatment efficacy in dystrophic muscle. Proc. Natl Acad. Sci. USA 120, e2206324120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Jacobson, K. R. et al. Comparative analysis of the extracellular matrix proteome across the myotendinous junction. J. Proteome Res. 19, 3955–3967 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Karlsen, A., Jens, R., Schiaffino, S., Mackey, A. L. & Deshmukh, A. S. The proteomic profile of the human myotendinous junction. iScience 25, 103836 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Petrany, M. J. et al. Single-nucleus RNA-seq identifies transcriptional heterogeneity in multinucleated skeletal myofibers. Nat. Commun. 11, 6374 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Charvet, B., Ruggiero, F. & Le Guellec, D. The development of the myotendinous junction. A review. Muscles Ligaments Tendons J. 2, 53–63 (2012).

    PubMed  PubMed Central  Google Scholar 

  133. Henderson, C. A., Gomez, C. G., Novak, S. M., Mi-mi, L. & Gregorio, C. C. Overview of the muscle cytoskeleton. Compr. Physiol. 7, 891–944 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Grange, S. et al. Location of hamstring injuries based on magnetic resonance imaging: a systematic review. Sports Health 15, 111–123 (2023).

    Article  PubMed  Google Scholar 

  135. Mueller-Wohlfahrt, H.-W. et al. Terminology and classification of muscle injuries in sport: the Munich consensus statement. Br. J. Sports Med. 47, 342–350 (2013).

    Article  PubMed  Google Scholar 

  136. Schiller, J., DeFroda, S. & Blood, T. Lower extremity avulsion fractures in the pediatric and adolescent athlete. J. Am. Acad. Orthop. Surg. 25, 251–259 (2017).

    Article  PubMed  Google Scholar 

  137. Alessandrino, F. & Balconi, G. Complications of muscle injuries. J. Ultrasound 16, 215–222 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Millar, N. L. et al. Tendinopathy. Nat. Rev. Dis. Primers 7, 1 (2021).

    Article  PubMed  Google Scholar 

  139. Libby, P. et al. Atherosclerosis. Nat. Rev. Dis. Primers 5, 56 (2019).

    Article  PubMed  Google Scholar 

  140. Wolberg, A. S. et al. Venous thrombosis. Nat. Rev. Dis. Primers 1, 15006 (2015).

    Article  PubMed  Google Scholar 

  141. Hoenig, T. et al. Bone stress injuries. Nat. Rev. Dis. Primers 8, 26 (2022).

    Article  PubMed  Google Scholar 

  142. Beird, H. C. et al. Osteosarcoma. Nat. Rev. Dis. Primers 8, 77 (2022).

    Article  PubMed  Google Scholar 

  143. Coleman, R. E. et al. Bone metastases. Nat. Rev. Dis. Primers 6, 83 (2020).

    Article  PubMed  Google Scholar 

  144. Ekstrand, J., Lee, J. C. & Healy, J. C. MRI findings and return to play in football: a prospective analysis of 255 hamstring injuries in the UEFA Elite Club Injury Study. Br. J. Sports Med. 50, 738–743 (2016).

    Article  PubMed  Google Scholar 

  145. Reurink, G. et al. Magnetic resonance imaging in acute hamstring injury: can we provide a return to play prognosis? Sports Med. 45, 133–146 (2015). This paper discusses the interest of imaging for the prognosis hamstring muscle injury.

    Article  PubMed  Google Scholar 

  146. Hamilton, B., Alonso, J.-M. & Best, T. M. Time for a paradigm shift in the classification of muscle injuries. J. Sport Health Sci. 6, 255–261 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Rachun, A. Standard Nomenclature Of Athletics Injuries (American Medical Association, 1966).

  148. Peetrons, P. Ultrasound of muscles. Eur. Radiol. 12, 35–43 (2002).

    Article  CAS  PubMed  Google Scholar 

  149. Pollock, N., James, S. L. J., Lee, J. C. & Chakraverty, R. British athletics muscle injury classification: a new grading system. Br. J. Sports Med. 48, 1347–1351 (2014).

    Article  PubMed  Google Scholar 

  150. Valle, X. et al. Muscle injuries in sports: a new evidence-informed and expert consensus-based classification with clinical application. Sport Med. 47, 1241–1253 (2017).

    Article  Google Scholar 

  151. Nauta, H. J. A., van der Made, A. D., Tol, J. L., Reurink, G. & Kerkhoffs, G. M. Satisfactory clinical outcome of operative and non-operative treatment of avulsion fracture of the hamstring origin with treatment selection based on extent of displacement: a systematic review. Knee Surg. Sports Traumatol. Arthrosc. 29, 1813–1821 (2021).

    Article  PubMed  Google Scholar 

  152. Ueblacker, P., Müller-Wohlfahrt, H. W. & Ekstrand, J. Epidemiological and clinical outcome comparison of indirect (‘strain’) versus direct (‘contusion’) anterior and posterior thigh muscle injuries in male elite football players: UEFA Elite League study of 2287 thigh injuries (2001-2013). Br. J. Sports Med. 49, 1461–1465 (2015).

    Article  PubMed  Google Scholar 

  153. Jacobsen, P., Witvrouw, E., Muxart, P., Tol, J. L. & Whiteley, R. A combination of initial and follow-up physiotherapist examination predicts physician-determined time to return to play after hamstring injury, with no added value of MRI. Br. J. Sports Med. 50, 431–439 (2016). This paper reports the role of some factors and time regarding hamstring muscle injury prognosis.

    Article  PubMed  Google Scholar 

  154. Guillodo, Y. et al. Clinical predictors of time to return to competition following hamstring injuries. Muscles Ligaments Tendons J. 4, 386–390 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Shrier, I. Strategic Assessment of Risk and Risk Tolerance (StARRT) framework for return-to-play decision-making. Br. J. Sports Med. 49, 1311–1315 (2015).

    Article  PubMed  Google Scholar 

  156. Bahr, R. Why screening tests to predict injury do not work-and probably never will.: a critical review. Br. J. Sports Med. 50, 776–780 (2016).

    Article  PubMed  Google Scholar 

  157. van Mechelen, W., Hlobil, H. & Kemper, H. C. G. Incidence, severity, aetiology and prevention of sports injuries. Sports Med. 14, 82–99 (1992). In this paper, a sequence of sports injury prevention is introduced, including relevant information about aetiology.

    Article  PubMed  Google Scholar 

  158. Meeuwisse, W. H., Tyreman, H., Hagel, B. & Emery, C. A dynamic model of etiology in sport injury: the recursive nature of risk and causation. Clin. J. Sports Med. 17, 215–219 (2007).

    Article  Google Scholar 

  159. Bittencourt, N. F. N. et al. Complex systems approach for sports injuries: moving from risk factor identification to injury pattern recognition — narrative review and new concept. Br. J. Sports Med. 50, 1309–1314 (2016).

    Article  CAS  PubMed  Google Scholar 

  160. Esmaeili, A. et al. Normal variability of weekly musculoskeletal screening scores and the influence of training load across an Australian football league season. Front. Physiol. 9, 144 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Esmaeili, A. et al. The individual and combined effects of multiple factors on the risk of soft tissue non-contact injuries in elite team sport athletes. Front. Physiol. 9, 1280 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Opar, D. A. et al. Screening hamstring injury risk factors multiple times in a season does not improve the identification of future injury risk. Med. Sci. Sports Exerc. 54, 321–329 (2022).

    Article  PubMed  Google Scholar 

  163. Opar, D. A., Williams, M. D. & Shield, A. J. Hamstring strain injuries factors that lead to injury and re-injury. Sports Med. 42, 209226 (2012).

    Article  Google Scholar 

  164. Mendiguchia, J., Alentorn-Geli, E. & Brughelli, M. Hamstring strain injuries: are we heading in the right direction? Br. J. Sports Med. 46, 81–85 (2012).

    Article  PubMed  Google Scholar 

  165. Van Eetvelde, H., Mendonça, L. D., Ley, C., Seil, R. & Tischer, T. Machine learning methods in sport injury prediction and prevention: a systematic review. J. Exp. Orthop. 8, 27 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Verhagen, E., Van Dyk, N., Clark, N. & Shrier, I. Do not throw the baby out with the bathwater; screening can identify meaningful risk factors for sports injuries. Br. J. Sports Med. 52, 1223–1224 (2018).

    Article  PubMed  Google Scholar 

  167. Fanchini, M. et al. Exercise-based strategies to prevent muscle injury in elite footballers: a systematic review and best evidence synthesis. Sports Med. 50, 1653–1666 (2020).

    Article  PubMed  Google Scholar 

  168. Thorborg, K. et al. Effect of specific exercise-based football injury prevention programmes on the overall injury rate in football: a systematic review and meta-analysis of the FIFA 11 and 11+ programmes. Br. J. Sports Med. 51, 562–571 (2017).

    Article  PubMed  Google Scholar 

  169. Biz, C. et al. Hamstring strain injury (HSI) prevention in professional and semi-professional football teams: a systematic review and meta-analysis. Int. J. Environ. Res. Public. Health 18, 8272 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Goode, A. P. et al. Eccentric training for prevention of hamstring injuries may depend on intervention compliance: a systematic review and meta-analysis. Br. J. Sports Med. 49, 349–356 (2015).

    Article  PubMed  Google Scholar 

  171. Al Attar, W. S. A., Soomro, N., Sinclair, P. J., Pappas, E. & Sanders, R. H. Effect of injury prevention programs that include the Nordic hamstring exercise on hamstring injury rates in soccer players: a systematic review and meta-analysis. Sports Med. 47, 907–916 (2017).

    Article  PubMed  Google Scholar 

  172. Van Dyk, N., Behan, F. P. & Whiteley, R. Including the Nordic hamstring exercise in injury prevention programmes halves the rate of hamstring injuries: a systematic review and meta-analysis of 8459 athletes. Br. J. Sports Med. 53, 1362–1370 (2019).

    Article  PubMed  Google Scholar 

  173. Ishøi, L., Krommes, K., Husted, R. S., Juhl, C. B. & Thorborg, K. Diagnosis, prevention and treatment of common lower extremity muscle injuries in sport — grading the evidence: a statement paper commissioned by the Danish Society of Sports Physical Therapy (DSSF). Br. J. Sports Med. 54, 528–539 (2020).

    Article  PubMed  Google Scholar 

  174. Ribeiro Lemes, I. et al. Do exercise-based prevention programmes reduce non-contact musculoskeletal injuries in football (soccer)? A systematic review and meta-analysis with 13 355 athletes and more than 1 million exposure hours. Br. J. Sports Med. 55, 1170–1178 (2021). This paper is a large meta-analysis highlighting that exercise-based prevention programmes may reduce the risk of non-contact musculoskeletal injuries in football.

    Article  Google Scholar 

  175. Kellis, E. Intra- and inter-muscular variations in hamstring architecture and mechanics and their implications for injury: a narrative review. Sports Med. 48, 2271–2283 (2018).

    Article  PubMed  Google Scholar 

  176. Ishøi, L. et al. Large eccentric strength increase using the Copenhagen adduction exercise in football: a randomized controlled trial. Scand. J. Med. Sci. Sports 26, 1334–1342 (2016).

    Article  PubMed  Google Scholar 

  177. Harøy, J. et al. The adductor strengthening programme prevents groin problems among male football players: a cluster-randomised controlled trial. Br. J. Sports Med. 53, 145–152 (2019).

    Google Scholar 

  178. Herbert, R. D. & Gabriel, M. Effects of stretching before and after exercising on muscle soreness and risk of injury: systematic review. BMJ 325, 468 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Arnason, A., Andersen, T. E., Holme, I., Engebretsen, L. & Bahr, R. Prevention of hamstring strains in elite soccer: an intervention study. Scand. J. Med. Sci. Sports 18, 40–48 (2008).

    Article  CAS  PubMed  Google Scholar 

  180. Verrall, G. M., Slavotinek, J. P. & Barnes, P. G. The effect of sports specific training on reducing the incidence of hamstring injuries in professional Australian Rules football players. Br. J. Sports Med. 39, 363–368 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Behm, D. G., Blazevich, A. J., Kay, A. D. & McHugh, M. Acute effects of muscle stretching on physical performance, range of motion, and injury incidence in healthy active individuals: a systematic review. Appl. Physiol. Nutr. Metab. 41, 1–11 (2016).

    Article  PubMed  Google Scholar 

  182. Rogan, S., Wüst, D., Schwitter, T. & Schmidtbleicher, D. Static stretching of the hamstring muscle for injury prevention in football codes: a systematic review. Asian J. Sports Med. 4, 1–9 (2013).

    PubMed  Google Scholar 

  183. Melegati, G. et al. Reducing muscle injuries and reinjuries in one Italian professional male soccer team. Muscles Ligaments Tendons J. 3, 324–330 (2013).

    Article  PubMed  Google Scholar 

  184. Söderman, K., Werner, S., Pietilä, T., Engström, B. & Alfredson, H. Balance board training: prevention of traumatic injuries of the lower extremities in female soccer players? A prospective randomized intervention study. Knee Surg. Sports Traumatol. Arthrosc. 8, 356–363 (2000).

    Article  PubMed  Google Scholar 

  185. Kraemer, R. & Knobloch, K. A soccer-specific balance training program for hamstring muscle and patellar and achilles tendon injuries: an intervention study in premier league female soccer. Am. J. Sports Med. 37, 1384–1393 (2009).

    Article  PubMed  Google Scholar 

  186. Vatovec, R., Kozinc, Ž. & Šarabon, N. Exercise interventions to prevent hamstring injuries in athletes: a systematic review and meta-analysis. Eur. J. Sport Sci. 20, 992–1004 (2020).

    Article  PubMed  Google Scholar 

  187. Mendiguchia, J. et al. A multifactorial, criteria-based progressive algorithm for hamstring injury treatment. Med. Sci. Sports Exerc. 49, 1482–1492 (2017). This paper reports the efficacy of a multifactorial criteria-based individualized programme to reduce hamstring muscle reinjury.

    Article  PubMed  Google Scholar 

  188. MacDonald, B. et al. Hamstring rehabilitation in elite track and field athletes: applying the British Athletics Muscle Injury Classification in clinical practice. Br. J. Sports Med. 53, 1464–1473 (2019).

    Article  PubMed  Google Scholar 

  189. Ivarsson, A. et al. Psychosocial factors and sport injuries: meta-analyses for prediction and prevention. Sports Med. 47, 353–365 (2017).

    Article  PubMed  Google Scholar 

  190. Johnson, U. & Ivarsson, A. Psychosocial factors and sport injuries: prediction, prevention and future research directions. Curr. Opin. Psychol. 16, 89–92 (2017).

    Article  PubMed  Google Scholar 

  191. Bolling, C., van Mechelen, W., Pasman, H. R. & Verhagen, E. Context matters: revisiting the first step of the ‘sequence of prevention’ of sports injuries. Sports Med. 48, 2227–2234 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Bolling, C., Mellette, J., Pasman, H. R., Van Mechelen, W. & Verhagen, E. From the safety net to the injury prevention web: applying systems thinking to unravel injury prevention challenges and opportunities in Cirque du Soleil. BMJ Open Sport Exerc. Med. 5, e000492 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Guex, K. & Millet, G. P. Conceptual framework for strengthening exercises to prevent hamstring strains. Sports Med. 43, 1207–1215 (2013).

    Article  PubMed  Google Scholar 

  194. Bahr, R., Thorborg, K. & Ekstrand, J. Evidence-based hamstring injury prevention is not adopted by the majority of Champions League or Norwegian Premier League football teams: the Nordic Hamstring Survey. Br. J. Sports Med. 49, 1466–1471 (2015).

    Article  PubMed  Google Scholar 

  195. Ripley, N. J., Cuthbert, M., Ross, S., Comfort, P. & McMahon, J. J. The effect of exercise compliance on risk reduction for hamstring strain injury: a systematic review and meta-analyses. Int. J. Environ. Res. Public. Health 18, 11260 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Minnig, M. C. et al. Barriers and facilitators to the adoption and implementation of evidence-based injury prevention training programmes: a narrative review. BMJ Open Sport Exerc. Med. 8, e001374 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Wangensteen, A. et al. New MRI muscle classification systems and associations with return to sport after acute hamstring injuries: a prospective study. Eur. Radiol. 28, 3532–3541 (2018).

    Article  PubMed  Google Scholar 

  198. Green, B. et al. Return to play and recurrence after calf muscle strain injuries in elite Australian football players. Am. J. Sports Med. 48, 3306–3315 (2020).

    Article  PubMed  Google Scholar 

  199. Ekstrand, J. et al. Time before return to play for the most common injuries in professional football: a 16-year follow-up of the UEFA Elite Club Injury Study. Br. J. Sports Med. 54, 421–426 (2020).

    Article  PubMed  Google Scholar 

  200. Hickey, J. T., Timmins, R. G., Maniar, N., Williams, M. D. & Opar, D. A. Criteria for progressing rehabilitation and determining return-to-play clearance following hamstring strain injury: a systematic review. Sports Med. 47, 1375–1387 (2017).

    Article  PubMed  Google Scholar 

  201. Hickey, J. T. et al. Pain-free versus pain-threshold rehabilitation following acute hamstring strain injury: a randomized controlled trial. J. Orthop. Sports Phys. Ther. 50, 91–103 (2020).

    Article  PubMed  Google Scholar 

  202. Mendiguchia, J. & Brughelli, M. A return-to-sport algorithm for acute hamstring injuries. Phys. Ther. Sport 12, 2–14 (2011).

    Article  PubMed  Google Scholar 

  203. Bleakley, C. M. et al. The PRICE study (Protection Rest Ice Compression Elevation): design of a randomised controlled trial comparing standard versus cryokinetic ice applications in the management of acute ankle sprain [ISRCTN13903946]. BMC Musculoskelet. Disord. 8, 125 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Bleakley, C. M., Glasgow, P. & MacAuley, D. C. PRICE needs updating, should we call the POLICE? Br. J. Sports Med. 46, 220–221 (2012).

    Article  CAS  PubMed  Google Scholar 

  205. Dubois, B. & Esculier, J. F. Soft-tissue injuries simply need PEACE and LOVE. Br. J. Sports Med. 54, 72–73 (2020).

    Article  PubMed  Google Scholar 

  206. Järvinen, M. J. & Lehto, M. U. K. The effects of early mobilisation and immobilisation on the healing process following muscle injuries. Sports Med. 15, 78–89 (1993).

    Article  PubMed  Google Scholar 

  207. Kääriäinen, M. et al. Regulation of α7 integrin by mechanical stress during skeletal muscle regeneration. Neuromuscul. Disord. 11, 360–369 (2001).

    Article  PubMed  Google Scholar 

  208. Kannus, P., Parkkari, J., Järvinen, T. L. N., Järvinen, T. A. H. & Järvinen, M. Basic science and clinical studies coincide: active treatment approach is needed after a sports injury.pdf. Scand. J. Med. Sci. Sport 13, 150–154 (2003).

    Article  CAS  Google Scholar 

  209. Khan, K. M. & Scott, A. Mechanotherapy: how physical therapists’ prescription of exercise promotes tissue repair. Br. J. Sports Med. 43, 247–252 (2009).

    Article  CAS  PubMed  Google Scholar 

  210. Wade, D. T. What is rehabilitation? An empirical investigation leading to an evidence-based description. Clin. Rehabil. 34, 571–583 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Papagoras, H., Pizzari, T., Coburn, P., Sleigh, K. & Briggs, A. M. Supporting return to work through appropriate certification: a systematic approach for Australian primary care. Aust. Health Rev. 42, 239 (2018).

    Article  PubMed  Google Scholar 

  212. Ardern, C. L. et al. 2016 Consensus statement on return to sport from the first world congress in sports physical therapy, bern. Br. J. Sports Med. 50, 853–864 (2016).

    Article  PubMed  Google Scholar 

  213. Maestroni, L., Read, P., Bishop, C. & Turner, A. Strength and power training in rehabilitation: underpinning principles and practical strategies to return athletes to high performance. Sports Med. 50, 239–252 (2020).

    Article  PubMed  Google Scholar 

  214. LaStayo, P. C. et al. Eccentric muscle contractions: their contribution to injury, prevention. J. Orthop. Sport Phys. Ther. 33, 557–571 (2003).

    Article  Google Scholar 

  215. Askling, C. M., Tengvar, M., Tarassova, O. & Thorstensson, A. Acute hamstring injuries in Swedish elite sprinters and jumpers: a prospective randomised controlled clinical trial comparing two rehabilitation protocols. Br. J. Sports Med. 48, 532–539 (2014).

    Article  PubMed  Google Scholar 

  216. Brughelli, M. & Cronin, J. Altering the length-tension relationship with eccentric exercise: implications for performance and injury. Sport Med. 37, 807–826 (2007).

    Article  Google Scholar 

  217. Heiderscheit, B. C., Sherry, M. A., Silder, A., Chummanov, E. S. & Thelen, D. G. Hamstring strain injuries: recommendations for diagnosis, rehabilitation, and injury prevention. J. Orthop. Sports Phys. Ther. 40, 67–81 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Hendy, A. M., Spittle, M. & Kidgell, D. J. Cross education and immobilisation: mechanisms and implications for injury rehabilitation. J. Sci. Med. Sport 15, 94–101 (2012).

    Article  PubMed  Google Scholar 

  219. Green, L. A. & Gabriel, D. A. The effect of unilateral training on contralateral limb strength in young, older, and patient populations: a meta-analysis of cross education. Phys. Ther. Rev. 23, 238–249 (2018).

    Article  Google Scholar 

  220. Cuyul-Vásquez, I., Álvarez, E., Riquelme, A., Zimmermann, R. & Araya-Quintanilla, F. Effectiveness of unilateral training of the uninjured limb on muscle strength and knee function of patients with anterior cruciate ligament reconstruction: a systematic review and meta-analysis of cross-education. J. Sport Rehabil. 31, 605–616 (2022).

    PubMed  Google Scholar 

  221. Cruz-Jentoft, A. J. & Sayer, A. A. Sarcopenia. Lancet 393, 2636–2646 (2019).

    Article  PubMed  Google Scholar 

  222. Peake, J., Della Gatta, P. & Cameron-Smith, D. Aging and its effects on inflammation in skeletal muscle at rest and following exercise-induced muscle injury. J. Physiol. Regul. Integr. Comp. Physiol. 298, 1485–1495 (2010).

    Article  Google Scholar 

  223. Geneen, L. J. et al. Physical activity and exercise for chronic pain in adults: an overview of Cochrane reviews. Cochrane Database Syst. Rev. 1, CD011279 (2017).

    PubMed  Google Scholar 

  224. Chou, C.-H., Hwang, C.-L. & Wu, Y.-T. Effect of exercise on physical function, daily living activities, and quality of life in the frail older adults: a meta-analysis. Arch. Phys. Med. Rehabil. 93, 237–244 (2012).

    Article  PubMed  Google Scholar 

  225. Carrick-Ranson, G., Howden, E. J. & Levine, B. D. Exercise in octogenarians: how much is too little? Annu. Rev. Med. 73, 377–391 (2022).

    Article  PubMed  Google Scholar 

  226. Motl, R. W. & McAuley, E. Physical activity, disability, and quality of life in older adults. Phys. Med. Rehabil. Clin. North Am. 21, 299–308 (2010).

    Article  Google Scholar 

  227. Edouard, P., Bolling, C., Chapon, J. & Verhagen, E. ‘What does not kill us can make us stronger’: can we use injury experience as an opportunity to help athletes and their teams engage in injury risk reduction? BMJ Open Sport Exerc. Med. 8, e001359 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Allahabadi, S. et al. Hamstring injuries: a current concepts review: evaluation, nonoperative treatment, and surgical decision making. Am. J. Sports Med. https://doi.org/10.1177/03635465231164931 (2023).

    Article  PubMed  Google Scholar 

  229. Looney, A. M., Day, H. K., Comfort, S. M., Donaldson, S. T. & Cohen, S. B. Proximal hamstring ruptures: treatment, rehabilitation, and return to play. Curr. Rev. Musculoskelet. Med. 16, 103–113 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  230. van der Made, A. D. et al. Proximal hamstring tendon avulsions: comparable clinical outcomes of operative and non-operative treatment at 1-year follow-up using a shared decision-making model. Br. J. Sports Med. 56, 340–348 (2022). This paper discusses the shared decision-making model for the treatment of proximal hamstring tendon avulsions.

    Article  PubMed  Google Scholar 

  231. Orlandi, D. et al. Ultrasound-guided procedures to treat sport-related muscle injuries. Br. J. Radiol. 89, 20150484 (2016).

    Article  PubMed  Google Scholar 

  232. Hotfiel, T. et al. Nonoperative treatment of muscle injuries-recommendations from the GOTS Expert. meeting. J. Exp. Orthop. 5, 24 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Reynolds, J. F., Noakes, T. D., Schwellnus, M. P., Windt, A. & Bowerbank, P. Non-steroidal anti-inflammatory drugs fail to enhance healing of acute hamstring injuries treated with physiotherapy. S. Afr. Med. J. 85, 517–522 (1995).

    CAS  PubMed  Google Scholar 

  234. Pas, H. I. M. F. L. et al. Efficacy of rehabilitation (lengthening) exercises, platelet-rich plasma injections, and other conservative interventions in acute hamstring injuries: an updated systematic review and meta-analysis. Br. J. Sports Med. 49, 1197–1205 (2015). This paper systematically reviews the scientific evidence of treatments for acute hamstring muscle injuries.

    Article  PubMed  Google Scholar 

  235. Hamilton, B. et al. Platelet-rich plasma does not enhance return to play in hamstring injuries: a randomised controlled trial. Br. J. Sports Med. 49, 943–950 (2015).

    Article  PubMed  Google Scholar 

  236. A Hamid, M. S., Mohamed Ali, M. R., Yusof, A., George, J. & Lee, L. P. C. Platelet-rich plasma injections for the treatment of hamstring injuries: a randomized controlled trial. Am. J. Sports Med. 42, 2410–2418 (2014).

    Article  PubMed  Google Scholar 

  237. Brock, J. et al. Update on the role of actovegin in musculoskeletal medicine: a review of the past 10 years. Clin. J. Sport Med. 30, 83–90 (2020).

    Article  PubMed  Google Scholar 

  238. Levine, W. N., Bergfeld, J. A., Tessendorf, W. & Moorman, C. T. Intramuscular corticosteroid injection for hamstring injuries: a 13-year experience in the National Football League. Am. J. Sports Med. 28, 297–300 (2000).

    Article  CAS  PubMed  Google Scholar 

  239. Horie, M. et al. Enhancement of satellite cell differentiation and functional recovery in injured skeletal muscle by hyperbaric oxygen treatment. J. Appl. Physiol. 116, 149–155 (2014).

    Article  CAS  PubMed  Google Scholar 

  240. Bedair, H. S., Karthikeyan, T., Quintero, A., Li, Y. & Huard, J. Angiotensin II receptor blockade administered after injury improves muscle regeneration and decreases fibrosis in normal skeletal muscle. Am. J. Sports Med. 36, 1548–1554 (2008).

    Article  PubMed  Google Scholar 

  241. Morgan, J. P. M., Hamm, M., Schmitz, C. & Brem, M. H. Return to play after treating acute muscle injuries in elite football players with radial extracorporeal shock wave therapy. J. Orthop. Surg. Res. 16, 708 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Rantanen, J., Thorsson, O., Wollmer, P., Hurme, T. & Kalimo, H. Effects of therapeutic ultrasound on the regeneration of skeletal myofibers after experimental muscle injury. Am. J. Sports Med. 27, 54–59 (1999).

    Article  CAS  PubMed  Google Scholar 

  243. Mishra, D. K., Friden, J., Schmitz, M. C. & Lieber, R. L. Anti-inflammatory medication after muscle injury. A treatment resulting in short-term improvement but subsequent loss of muscle function. J. Bone Jt Surg. Am. 77, 1510–1519 (1995).

    Article  CAS  Google Scholar 

  244. Mikkelsen, U. R. et al. Local NSAID infusion inhibits satellite cell proliferation in human skeletal muscle after eccentric exercise. J. Appl. Physiol. 107, 1600–1611 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Mackey, A. L. et al. Activation of satellite cells and the regeneration of human skeletal muscle are expedited by ingestion of nonsteroidal anti-inflammatory medication. FASEB J. 30, 2266–2281 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Morelli, K. M., Brown, L. B. & Warren, G. L. Effect of NSAIDs on recovery from acute skeletal muscle injury: a systematic review and meta-analysis. Am. J. Sports Med. 46, 224–233 (2018).

    Article  PubMed  Google Scholar 

  247. Engebretsen, L. et al. IOC consensus paper on the use of platelet-rich plasma in sports medicine. Br. J. Sports Med. 44, 1072–1081 (2010).

    Article  PubMed  Google Scholar 

  248. Boivin, J., Tolsma, R., Awad, P., Kenter, K. & Li, Y. The biological use of platelet-rich plasma in skeletal muscle injury and repair. Am. J. Sports Med. 51, 1347–1355 (2023).

    Article  PubMed  Google Scholar 

  249. Afonso, J. et al. Effectiveness of conservative interventions after acute hamstrings injuries in athletes: a living systematic review. Sport Med. 53, 615–635 (2023).

    Article  Google Scholar 

  250. Pieters, D., Wezenbeek, E., Schuermans, J. & Witvrouw, E. Return to play after a hamstring strain injury: it is time to consider natural healing. Sport Med. 51, 2067–2077 (2021). This paper discusses the challenge of reinjury after hamstring muscle injury.

    Article  Google Scholar 

  251. Taberner, M., Allen, T. & Cohen, D. D. Progressing rehabilitation after injury: consider the ‘control-chaos continuum’. Br. J. Sports Med. 53, 1132–1136 (2019). This paper gives an example framework for injury rehabilitation within a control-to-chaos continuum, which includes demand-specific variables and unanticipated movements in return to activity management.

    Article  PubMed  Google Scholar 

  252. van der Horst, N., van de Hoef, S., Reurink, G., Huisstede, B. & Backx, F. Return to play after hamstring injuries: a qualitative systematic review of definitions and criteria. Sport Med. 46, 899–912 (2016).

    Article  Google Scholar 

  253. Wangensteen, A. et al. Hamstring reinjuries occur at the same location and early after return to sport a descriptive study of MRI-confirmed reinjuries. Am. J. Sports Med. 44, 2112–2121 (2016).

    Article  PubMed  Google Scholar 

  254. Eime, R. M., Young, J. A., Harvey, J. T., Charity, M. J. & Payne, W. R. A systematic review of the psychological and social benefits of participation in sport for children and adolescents: informing development of a conceptual model of health through sport. Int. J. Behav. Nutr. Phys. Act. 10, 98 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  255. Linton, S. J. & Shaw, W. S. Impact of psychological factors in the experience of pain. Phys. Ther. 91, 700–711 (2011).

    Article  PubMed  Google Scholar 

  256. Lee, I. M. et al. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet 380, 219–229 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  257. Dunstan, D. W., Dogra, S., Carter, S. E. & Owen, N. Sit less and move more for cardiovascular health: emerging insights and opportunities. Nat. Rev. Cardiol. 18, 637–648 (2021).

    Article  PubMed  Google Scholar 

  258. Labeit, S. & Kolmerer, B. Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science 270, 293–296 (1995).

    Article  CAS  PubMed  Google Scholar 

  259. Meyer, G. A. & Lieber, R. L. Elucidation of extracellular matrix mechanics from muscle fibers and fiber bundles. J. Biomech. 44, 771–773 (2011).

    Article  PubMed  Google Scholar 

  260. Meyer, G. & Lieber, R. L. Muscle fibers bear a larger fraction of passive muscle tension in frogs compared with mice. J. Exp. Biol. 221, jeb182089 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  261. Shorten, M. R. Muscle elasticity and human performance. Med. Sport Sci. 25, 1–18 (1987).

    Google Scholar 

  262. Mathew, S. J. et al. Connective tissue fibroblasts and Tcf4 regulate myogenesis. Development 138, 371–384 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Glasby, M. A., Gschmeissner, S. G., Hitchcock, R. J. I. & Huang, C. L. H. The dependence of nerve regeneration through muscle grafts in the rat on the availability and orientation of basement membrane. J. Neurocytol. 15, 497–510 (1986).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank S. Grange (Department of Radiology, University Hospital of Saint-Etienne, France) for providing imaging of muscle injuries.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (P.E.); Epidemiology (K.H. and P.E.); Mechanisms/pathophysiology (A.L.M., R.L.L. and T.G.); Diagnosis, screening and prevention (G.R., PE., T.P. and T.G.); Management (P.E., T.P., G.R., T.A.H.J. and T.G.); Quality of life (T.G. and P.E.); Outlook (P.E.); all authors critically revised all aspects of the article. P.E. and K.H. were responsible for overall handling of the manuscript.

Corresponding author

Correspondence to Pascal Edouard.

Ethics declarations

Competing interests

P.E. reports received funding from the French Research Agency for research on muscle injuries in the context of the FULGUR project (ANR-19-STPH-003) in the perspective of the Paris 2024 Olympic and Paralympic Games. G.R. reports an institutional grant from Arthrex for a previously performed randomized clinical trial on the efficacy of PRP in hamstring injuries and non-financial support to his institution from Arthrex (Heittich centrifuge on loan) for a previously performed randomized clinical trial on the efficacy of PRP in ankle osteoarthritis. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Disease Primers thanks B. Feeley and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edouard, P., Reurink, G., Mackey, A.L. et al. Traumatic muscle injury. Nat Rev Dis Primers 9, 56 (2023). https://doi.org/10.1038/s41572-023-00469-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-023-00469-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing