Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

HIV-associated lung disease

Abstract

Lung disease encompasses acute, infectious processes and chronic, non-infectious processes such as chronic obstructive pulmonary disease, asthma and lung cancer. People living with HIV are at increased risk of both acute and chronic lung diseases. Although the use of effective antiretroviral therapy has diminished the burden of infectious lung disease, people living with HIV experience growing morbidity and mortality from chronic lung diseases. A key risk factor for HIV-associated lung disease is cigarette smoking, which is more prevalent in people living with HIV than in uninfected people. Other risk factors include older age, history of bacterial pneumonia, Pneumocystis pneumonia, pulmonary tuberculosis and immunosuppression. Mechanistic investigations support roles for aberrant innate and adaptive immunity, local and systemic inflammation, oxidative stress, altered lung and gut microbiota, and environmental exposures such as biomass fuel burning in the development of HIV-associated lung disease. Assessment, prevention and treatment strategies are largely extrapolated from data from HIV-uninfected people. Smoking cessation is essential. Data on the long-term consequences of HIV-associated lung disease are limited. Efforts to continue quantifying the effects of HIV infection on the lung, especially in low-income and middle-income countries, are essential to advance our knowledge and optimize respiratory care in people living with HIV.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Risk of HIV-associated lung diseases.
Fig. 2: Factors implicated in the pathogenesis of acute and chronic lung disease in people living with HIV.
Fig. 3: Effects of HIV on the structure and function of alveoli and the airway epithelium.
Fig. 4: Manifestations of HIV-associated lung disease.

Similar content being viewed by others

References

  1. Masur, H. et al. An outbreak of community-acquired Pneumocystis carinii pneumonia: initial manifestation of cellular immune dysfunction. N. Engl. J. Med. 305, 1431–1438 (1981).

    Article  CAS  PubMed  Google Scholar 

  2. Palella, F. J. et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. N. Engl. J. Med. 338, 853–860 (1998).

    Article  PubMed  Google Scholar 

  3. Weverling, G. J. et al. Discontinuation of Pneumocystis carinii pneumonia prophylaxis after start of highly active antiretroviral therapy in HIV-1 infection. Lancet 353, 1293–1298 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Gingo, M. R. et al. The impact of HAART on the respiratory complications of HIV infection: longitudinal trends in the MACS and WIHS cohorts. PLoS ONE 8, e58812 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Segal, L. N. et al. HIV-1 and bacterial pneumonia in the era of antiretroviral therapy. Proc. Am. Thorac. Soc. 8, 282–287 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  6. SeyedAlinaghi, S. et al. COVID-19 mortality in patients with immunodeficiency and its predictors: a systematic review. Eur. J. Med. Res. 27, 195 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gingo, M. R., Morris, A. & Crothers, K. Human immunodeficiency virus-associated obstructive lung diseases. Clin. Chest Med. 34, 273–282 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gingo, M. R. et al. Asthma diagnosis and airway bronchodilator response in HIV-infected patients. J. Allergy Clin. Immunol. 129, 708–714.e8 (2012).

    Article  PubMed  Google Scholar 

  9. Drummond, M. B. et al. Association between HIV and prevalence and manifestations of asthma: analysis of the Multicenter AIDS Cohort Study and Women’s Interagency HIV Study. J. Acquir. Immune Defic. Syndr. https://doi.org/10.1097/QAI.0000000000003088 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  10. World Health Organization. World Health Statistics 2022: Monitoring Health for the SDGs, Sustainable Development Goals (WHO, 2022).

  11. Crothers, K. et al. HIV infection and risk for incident pulmonary diseases in the combination antiretroviral therapy era. Am. J. Respir. Crit. Care Med. 183, 388–395 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Phair, J. et al. The risk of Pneumocystis carinii pneumonia among men infected with human immunodeficiency virus type 1. N. Engl. J. Med. 322, 161–165 (1990).

    Article  CAS  PubMed  Google Scholar 

  13. Stansell, J. D. et al. Predictors of Pneumocystis carinii pneumonia in HIV-infected persons. Pulmonary complications of HIV Infection Study Group. Am. J. Respir. Crit. Care Med. 155, 60–66 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Horsburgh, C. R. Priorities for the treatment of latent tuberculosis infection in the United States. N. Engl. J. Med. 350, 2060–2067 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Andrews, J. R. et al. Risk of progression to active tuberculosis following reinfection with Mycobacterium tuberculosis. Clin. Infect. Dis. 54, 784–791 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sloot, R. S., van der Loeff, M. F., Kouw, P. M. & Borgdorff, M. W. Risk of tuberculosis after recent exposure. A 10-year follow-up study of contacts in Amsterdam. Am. J. Respir. Crit. Care Med. 190, 1044–1052 (2014).

    Article  PubMed  Google Scholar 

  17. Menzies, N. A. et al. Time since infection and risks of future disease for individuals with Mycobacterium tuberculosis infection in the United States. Epidemiology 32, 70–78 (2021).

    Article  PubMed  Google Scholar 

  18. Panel on Guidelines for the Prevention and Treatment of Opportunistic Infections in Adults and Adolescents with HIV. Guidelines for the prevention and treatment of opportunistic infections in adults and adolescents with HIV. Clinical Info HIV.gov https://clinicalinfo.hiv.gov/en/guidelines/adult-and-adolescent-opportunistic-infection (2023).

  19. World Health Organization. Global tuberculosis report 2022. WHO https://www.who.int/publications/i/item/9789240061729 (2022).

  20. Hirschtick, R. E. et al. Bacterial pneumonia in persons infected with the human immunodeficiency virus. N. Engl. J. Med. 333, 845–851 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Kohli, R. et al. Bacterial pneumonia, HIV therapy, and disease progression among HIV-infected women in the HIV Epidemiologic Research (HER) study. Clin. Infect. Dis. 43, 90–98 (2006).

    Article  PubMed  Google Scholar 

  22. Balakrishna, S. et al. Decreasing incidence and determinants of bacterial pneumonia in people with HIV: the Swiss HIV Cohort Study. J. Infect. Dis. https://doi.org/10.1093/infdis/jiab573 (2021).

    Article  Google Scholar 

  23. Mussini, C. et al. Incidence, timing, and determinants of bacterial pneumonia among HIV-infected patients: data from the ICONA Foundation Cohort. J. Acquir. Immune Defic. Syndr. 63, 339–345 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Sullivan, J. H., Moore, R. D., Keruly, J. C. & Chaisson, R. E. Effect of antiretroviral therapy on the incidence of bacterial pneumonia in patients with advanced HIV infection. Am. J. Respir. Crit. Care Med. 162, 64–67 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Bénard, A. et al. Bacterial pneumonia among HIV-infected patients: decreased risk after tobacco smoking cessation. ANRS CO3 Aquitaine Cohort, 2000-2007. PLoS ONE 5, e8896 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kaplan, J. E., Hanson, D. L., Navin, T. R. & Jones, J. L. Risk factors for primary Pneumocystis carinii pneumonia in human immunodeficiency virus-infected adolescents and adults in the United States: reassessment of indications for chemoprophylaxis. J. Infect. Dis. 178, 1126–1132 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Wood, R., Maartens, G. & Lombard, C. J. Risk factors for developing tuberculosis in HIV-1-infected adults from communities with a low or very high incidence of tuberculosis. J. Acquir. Immune Defic. Syndr. 23, 75–80 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Girardi, E. et al. Impact of combination antiretroviral therapy on the risk of tuberculosis among persons with HIV infection. AIDS 14, 1985–1991 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Girardi, E. et al. Incidence of tuberculosis among HIV-infected patients receiving highly active antiretroviral therapy in Europe and North America. Clin. Infect. Dis. 41, 1772–1782 (2005).

    Article  PubMed  Google Scholar 

  30. Severe, P. et al. Early versus standard antiretroviral therapy for HIV-infected adults in Haiti. N. Engl. J. Med. 363, 257–265 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Badri, M., Wilson, D. & Wood, R. Effect of highly active antiretroviral therapy on incidence of tuberculosis in South Africa: a cohort study. Lancet 359, 2059–2064 (2002).

    Article  PubMed  Google Scholar 

  32. del Amo, J. et al. Impact of antiretroviral therapy on tuberculosis incidence among HIV-positive patients in high-income countries. Clin. Infect. Dis. 54, 1364–1372 (2012).

    Article  PubMed  Google Scholar 

  33. Gordin, F. M. et al. Pneumonia in HIV-infected persons: increased risk with cigarette smoking and treatment interruption. Am. J. Respir. Crit. Care Med. 178, 630–636 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Mdodo, R. et al. Cigarette smoking prevalence among adults with HIV compared with the general adult population in the United States: cross-sectional surveys. Ann. Intern. Med. 162, 335–344 (2015).

    Article  PubMed  Google Scholar 

  35. Mdege, N. D., Shah, S., Ayo-Yusuf, O. A., Hakim, J. & Siddiqi, K. Tobacco use among people living with HIV: analysis of data from demographic and health surveys from 28 low-income and middle-income countries. Lancet Glob. Health 5, e578–e592 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Pacek, L. R. & Crum, R. M. A review of the literature concerning HIV and cigarette smoking: morbidity and mortality, associations with individual- and social-level characteristics, and smoking cessation efforts. Addict. Res. Theory 23, 10–23 (2015).

    Article  PubMed  Google Scholar 

  37. Helleberg, M. et al. Mortality attributable to smoking among HIV-1-infected individuals: a nationwide, population-based cohort study. Clin. Infect. Dis. 56, 727–734 (2013).

    Article  PubMed  Google Scholar 

  38. Cornelius, M. E., Wang, T. W., Jamal, A., Loretan, C. G. & Neff, L. J. Tobacco product use among adults – United States, 2019. Morb. Mortal. Wkly Rep. 69, 1736–1742 (2020).

    Article  Google Scholar 

  39. Asfar, T. et al. National estimates of prevalence, time-trend, and correlates of smoking in US people living with HIV (NHANES 1999-2016). Nicotine Tob. Res. 23, 1308–1317 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Murphy, J. D., Liu, B. & Parascandola, M. Smoking and HIV in sub-Saharan Africa: a 25-country analysis of the demographic health surveys. Nicotine Tob. Res. 21, 1093–1102 (2019).

    Article  PubMed  Google Scholar 

  41. Bigna, J. J., Kenne, A. M., Asangbeh, S. L. & Sibetcheu, A. T. Prevalence of chronic obstructive pulmonary disease in the global population with HIV: a systematic review and meta-analysis. Lancet Glob. Health 6, e193–e202 (2018).

    Article  PubMed  Google Scholar 

  42. Brown, J. et al. Respiratory health status is impaired in UK HIV-positive adults with virologically suppressed HIV infection. HIV Med. 18, 604–612 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Madeddu, G. et al. Chronic obstructive pulmonary disease: an emerging comorbidity in HIV-infected patients in the HAART era? Infection 41, 347–353 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Ronit, A. et al. Airflow limitation in people living with HIV and matched uninfected controls. Thorax 73, 431–438 (2018).

    Article  PubMed  Google Scholar 

  45. Makinson, A. et al. HIV is associated with airway obstruction: a matched controlled study. AIDS 32, 227–232 (2018).

    Article  PubMed  Google Scholar 

  46. Verboeket, S. O. et al. Reduced forced vital capacity among human immunodeficiency virus-infected middle-aged individuals. J. Infect. Dis. 219, 1274–1284 (2019).

    Article  PubMed  Google Scholar 

  47. Cui, Q. et al. Effect of smoking on lung function, respiratory symptoms and respiratory diseases amongst HIV-positive subjects: a cross-sectional study. AIDS Res. Ther. 7, 6 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Crothers, K. et al. HIV infection is associated with reduced pulmonary diffusing capacity. J. Acquir. Immune Defic. Syndr. 64, 271–278 (2013).

    Article  PubMed  Google Scholar 

  49. Fitzpatrick, M. E. et al. Novel relationships of markers of monocyte activation and endothelial dysfunction with pulmonary dysfunction in HIV-infected persons. AIDS 30, 1327–1339 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Wang, R. J. et al. Lung function in women with and without HIV. Clin. Infect. Dis. https://doi.org/10.1093/cid/ciac391 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kunisaki, K. M. et al. Lung function in men with and without HIV. AIDS 34, 1227–1235 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Nakamura, H. et al. The prevalence of airway obstruction among Japanese HIV-positive male patients compared with general population; a case-control study of single center analysis. J. Infect. Chemother. 20, 361–364 (2014).

    Article  PubMed  Google Scholar 

  53. van den Berg, O. E. et al. The influence of HIV infection and antiretroviral treatment on pulmonary function in individuals in an urban setting in sub-Saharan Africa. South. Afr. J. HIV Med. 22, 1312 (2021).

    PubMed  PubMed Central  Google Scholar 

  54. Varkila, M. R. J. et al. The association between HIV infection and pulmonary function in a rural African population. PLoS ONE 14, e0210573 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zifodya, J. S. et al. HIV, pulmonary infections, and risk of chronic lung disease among Kenyan adults. Ann. Am. Thorac. Soc. 18, 2090–2093 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Pefura-Yone, E. W., Fodjeu, G., Kengne, A. P., Roche, N. & Kuaban, C. Prevalence and determinants of chronic obstructive pulmonary disease in HIV infected patients in an African country with low level of tobacco smoking. Respir. Med. 109, 247–254 (2015).

    Article  PubMed  Google Scholar 

  57. van Gemert, F. et al. Prevalence of chronic obstructive pulmonary disease and associated risk factors in Uganda (FRESH AIR Uganda): a prospective cross-sectional observational study. Lancet Glob. Health 3, e44–e51 (2015).

    Article  PubMed  Google Scholar 

  58. North, C. M. et al. HIV infection, pulmonary tuberculosis, and COPD in rural Uganda: a cross-sectional study. Lung 196, 49–57 (2018).

    Article  CAS  PubMed  Google Scholar 

  59. Risso, K. et al. COPD in HIV-infected patients: CD4 cell count highly correlated. PLoS ONE 12, e0169359 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Sampériz, G. et al. Prevalence of and risk factors for pulmonary abnormalities in HIV-infected patients treated with antiretroviral therapy. HIV Med. 15, 321–329 (2014).

    Article  PubMed  Google Scholar 

  61. Costiniuk, C. T. et al. Prevalence and predictors of airflow obstruction in an HIV tertiary care clinic in Montreal, Canada: a cross-sectional study. HIV Med. 20, 192–201 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gingo, M. R. et al. Pulmonary function abnormalities in HIV-infected patients during the current antiretroviral therapy era. Am. J. Respir. Crit. Care Med. 182, 790–796 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Drummond, M. B. et al. Factors associated with abnormal spirometry among HIV-infected individuals. AIDS 29, 1691–1700 (2015).

    Article  PubMed  Google Scholar 

  64. Drummond, M. B. et al. Association between obstructive lung disease and markers of HIV infection in a high-risk cohort. Thorax 67, 309–314 (2012).

    Article  PubMed  Google Scholar 

  65. Gupte, A. N. et al. Factors associated with pulmonary impairment in HIV-infected South African adults. PLoS ONE 12, e0184530 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Akanbi, M. O. et al. HIV associated chronic obstructive pulmonary disease in Nigeria. J. AIDS Clin. Res. 6, 453 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Kayongo, A. et al. Chronic obstructive pulmonary disease prevalence and associated factors in a setting of well-controlled HIV, a cross-sectional study. J. COPD 17, 297–305 (2020).

    Article  Google Scholar 

  68. Ddungu, A. et al. Chronic obstructive pulmonary disease prevalence and associated factors in an urban HIV clinic in a low income country. PLoS ONE 16, e0256121 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Drummond, M. B. et al. The effect of HIV infection on longitudinal lung function decline among IDUs: a prospective cohort. AIDS 27, 1303–1311 (2013).

    Article  PubMed  Google Scholar 

  70. Grigsby, M. et al. Socioeconomic status and COPD among low- and middle-income countries. Int. J. Chron. Obstruct. Pulmon. Dis. 11, 2497–2507 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Gershon, A. S., Dolmage, T. E., Stephenson, A. & Jackson, B. Chronic obstructive pulmonary disease and socioeconomic status: a systematic review. J. COPD 9, 216–226 (2012).

    Article  Google Scholar 

  72. Pathak, U., Gupta, N. C. & Suri, J. C. Risk of COPD due to indoor air pollution from biomass cooking fuel: a systematic review and meta-analysis. Int. J. Environ. Health Res. 30, 75–88 (2020).

    Article  PubMed  Google Scholar 

  73. Park, J., Kim, H.-J., Lee, C.-H., Lee, C. H. & Lee, H. W. Impact of long-term exposure to ambient air pollution on the incidence of chronic obstructive pulmonary disease: a systematic review and meta-analysis. Environ. Res. 194, 110703 (2021).

    Article  CAS  PubMed  Google Scholar 

  74. Ronit, A. et al. Incidence of chronic obstructive pulmonary disease in people with HIV, their parents and siblings in Denmark. J. Infect. Dis. https://doi.org/10.1093/infdis/jiab369 (2021).

    Article  PubMed  Google Scholar 

  75. Verboeket, S. O. et al. Changes in lung function among treated HIV-positive and HIV-negative individuals: analysis of the prospective AGEhIV cohort study. Lancet Healthy Longev. 2, e202–e211 (2021).

    Article  PubMed  Google Scholar 

  76. Thudium, R. F. et al. Faster lung function decline in people living with HIV despite adequate treatment: a longitudinal matched cohort study. Thorax https://doi.org/10.1136/thorax-2022-218910 (2023).

    Article  PubMed  Google Scholar 

  77. Depp, T. B. et al. Risk factors associated with acute exacerbation of chronic obstructive pulmonary disease in HIV-infected and uninfected patients. AIDS 30, 455–463 (2016).

    PubMed  Google Scholar 

  78. Lambert, A. A. et al. HIV infection is associated with increased risk for acute exacerbation of COPD. J. Acquir. Immune Defic. Syndr. 69, 68–74 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Gingo, M. R. et al. Decreased lung function and all-cause mortality in HIV-infected individuals. Ann. Am. Thorac. Soc. 15, 192–199 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Triplette, M. et al. Markers of chronic obstructive pulmonary disease are associated with mortality in people living with HIV. AIDS 32, 487–493 (2018).

    Article  PubMed  Google Scholar 

  81. Kalmin, M. M. et al. Incident obstructive lung disease and mortality among HIV-positive and negative persons with a history of injecting drugs. AIDS https://doi.org/10.1097/QAD.0000000000002914 (2021).

    Article  PubMed  Google Scholar 

  82. Petoumenos, K. et al. Prevalence of self-reported comorbidities in HIV positive and HIV negative men who have sex with men over 55 years – the Australian Positive & Peers Longevity Evaluation Study (APPLES). PLoS ONE 12, e0184583 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Rosen, M. J. et al. Pulmonary function tests in HIV-infected patients without AIDS. Pulmonary Complications of HIV Infection Study Group. Am. J. Respir. Crit. Care Med. 152, 738–745 (1995).

    Article  CAS  PubMed  Google Scholar 

  84. Yano, C. et al. Airway hyperresponsiveness and inflammation in Japanese patients with human immunodeficiency virus 1 infection. J. Infect. Chemother. 28, 426–433 (2022).

    Article  CAS  PubMed  Google Scholar 

  85. Kheaw-on, N. et al. Bronchial hyperresponsiveness in HIV patients with CD4 count less than 500 cells/μL. Asian Biomed. 3, 255–260 (2009).

    Google Scholar 

  86. Kummerow, M. et al. Unexpected low frequency of respiratory symptoms in an HIV-positive urban sub-Saharan population compared to an HIV-negative control group. South. Afr. J. HIV Med. 20, 1010 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Kirenga, B. J. et al. The impact of HIV on the prevalence of asthma in Uganda: a general population survey. Respir. Res. 19, 184 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Munyati, S. S. et al. Chronic cough in primary health care attendees, Harare, Zimbabwe: diagnosis and impact of HIV infection. Clin. Infect. Dis. 40, 1818–1827 (2005).

    Article  PubMed  Google Scholar 

  89. Barton, J. H. et al. Adiposity influences airway wall thickness and the asthma phenotype of HIV-associated obstructive lung disease: a cross-sectional study. BMC Pulm. Med. 16, 111 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Gingo, M. R. et al. Pulmonary symptoms and diagnoses are associated with HIV in the MACS and WIHS cohorts. BMC Pulm. Med. 14, 75 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Leung, J. M. et al. The determinants of poor respiratory health status in adults living with human immunodeficiency virus infection. AIDS Patient Care STDS 28, 240–247 (2014).

    Article  PubMed  Google Scholar 

  92. Robbins, H. A. et al. Excess cancers among HIV-infected people in the United States. J. Natl Cancer Inst. 107, dju503 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Worm, S. W. et al. Non-AIDS defining cancers in the D:A:D Study – time trends and predictors of survival: a cohort study. BMC Infect. Dis. 13, 471 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Hernández-Ramírez, R. U., Shiels, M. S., Dubrow, R. & Engels, E. A. Cancer risk in HIV-infected people in the USA from 1996 to 2012: a population-based, registry-linkage study. Lancet HIV 4, e495–e504 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Vandenhende, M.-A. et al. Cancer-related causes of death among HIV-infected patients in France in 2010: evolution since 2000. PLoS ONE 10, e0129550 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Simard, E. P. & Engels, E. A. Cancer as a cause of death among people with AIDS in the United States. Clin. Infect. Dis. 51, 957–962 (2010).

    Article  PubMed  Google Scholar 

  97. Phelps, R. M. et al. Cancer incidence in women with or at risk for HIV. Int. J. Cancer 94, 753–757 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. Engels, E. A. et al. Elevated incidence of lung cancer among HIV-infected individuals. J. Clin. Oncol. 24, 1383–1388 (2006).

    Article  PubMed  Google Scholar 

  99. Engsig, F. N. et al. Lung cancer in HIV patients and their parents: a Danish cohort study. BMC Cancer 11, 272 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Clifford, G. M. et al. Cancer risk in the Swiss HIV Cohort Study: associations with immunodeficiency, smoking, and highly active antiretroviral therapy. J. Natl Cancer Inst. 97, 425–432 (2005).

    Article  PubMed  Google Scholar 

  101. Hleyhel, M. et al. Risk of non-AIDS-defining cancers among HIV-1-infected individuals in France between 1997 and 2009: results from a French cohort. AIDS 28, 2109–2118 (2014).

    Article  PubMed  Google Scholar 

  102. Shiels, M. S., Cole, S. R., Kirk, G. D. & Poole, C. A meta-analysis of the incidence of non-AIDS cancers in HIV-infected individuals. J. Acquir. Immune Defic. Syndr. 52, 611–622 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Grulich, A. E., van Leeuwen, M. T., Falster, M. O. & Vajdic, C. M. Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis. Lancet 370, 59–67 (2007).

    Article  PubMed  Google Scholar 

  104. Shiels, M. S., Cole, S. R., Mehta, S. H. & Kirk, G. D. Lung cancer incidence and mortality among HIV-infected and HIV-uninfected injection drug users. J. Acquir. Immune Defic. Syndr. 55, 510–515 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Sigel, K. et al. HIV as an independent risk factor for incident lung cancer. AIDS 26, 1017–1025 (2012).

    Article  PubMed  Google Scholar 

  106. Park, L. S., Hernández-Ramírez, R. U., Silverberg, M. J., Crothers, K. & Dubrow, R. Prevalence of non-HIV cancer risk factors in persons living with HIV/AIDS: a meta-analysis. AIDS 30, 273–291 (2016).

    Article  CAS  PubMed  Google Scholar 

  107. Hessol, N. A. et al. Lung cancer incidence and survival among HIV-infected and uninfected women and men. AIDS 29, 1183–1193 (2015).

    Article  PubMed  Google Scholar 

  108. Shebl, F. M., Engels, E. A., Goedert, J. J. & Chaturvedi, A. K. Pulmonary infections and risk of lung cancer among persons with AIDS. J. Acquir. Immune Defic. Syndr. 55, 375–379 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Sigel, K. et al. Prognosis in HIV-infected patients with non-small cell lung cancer. Br. J. Cancer 109, 1974–1980 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hysell, K. et al. Decreased overall survival in HIV-associated non-small-cell lung cancer. Clin. Lung Cancer 22, e498–e505 (2021).

    Article  PubMed  Google Scholar 

  111. Marcus, J. L. et al. Survival among HIV-infected and HIV-uninfected individuals with common non-AIDS-defining cancers. Cancer Epidemiol. Biomark. Prev. 24, 1167–1173 (2015).

    Article  Google Scholar 

  112. Wang, Y.-H. & Shen, X.-D. Human immunodeficiency virus infection and mortality risk among lung cancer patients: a systematic review and meta-analysis. Medicine 97, e0361 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Stein, L. et al. The spectrum of human immunodeficiency virus-associated cancers in a South African black population: results from a case-control study, 1995-2004. Int. J. Cancer 122, 2260–2265 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. Jaquet, A. et al. Cancer and HIV infection in referral hospitals from four West African countries. Cancer Epidemiol. 39, 1060–1065 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Githinji, L. & Zar, H. J. Respiratory complications in children and adolescents with human immunodeficiency virus. Pediatr. Clin. North Am. 68, 131–145 (2021).

    Article  PubMed  Google Scholar 

  116. Frigati, L. J. et al. Chronic comorbidities in children and adolescents with perinatally acquired HIV infection in sub-Saharan Africa in the era of antiretroviral therapy. Lancet Child Adolesc. Health 4, 688–698 (2020).

    Article  PubMed  Google Scholar 

  117. Moore, D. P. et al. The etiology of pneumonia in HIV-1-infected South African children in the era of antiretroviral treatment: findings from the Pneumonia Etiology Research for Child Health (PERCH) study. Pediatr. Infect. Dis. J. 40, S69–S78 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Seidenberg, P. et al. The etiology of pneumonia in HIV-infected Zambian children: findings from the Pneumonia Etiology Research for Child Health (PERCH) study. Pediatr. Infect. Dis. J. 40, S50–S58 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Frigati, L. J. et al. Tuberculosis infection and disease in South African adolescents with perinatally acquired HIV on antiretroviral therapy: a cohort study. J. Int. AIDS Soc. 24, e25671 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Marangu, D. & Zar, H. J. Childhood pneumonia in low-and-middle-income countries: an update. Paediatr. Respir. Rev. 32, 3–9 (2019).

    PubMed  PubMed Central  Google Scholar 

  121. Evans, C., Jones, C. E. & Prendergast, A. J. HIV-exposed, uninfected infants: new global challenges in the era of paediatric HIV elimination. Lancet Infect. Dis. 16, e92–e107 (2016).

    Article  PubMed  Google Scholar 

  122. Deeks, S. G., Overbaugh, J., Phillips, A. & Buchbinder, S. HIV infection. Nat. Rev. Dis. Primers 1, 15035 (2015).

    Article  PubMed  Google Scholar 

  123. Visseaux, B., Damond, F., Matheron, S., Descamps, D. & Charpentier, C. Hiv-2 molecular epidemiology. Infect. Genet. Evol. 46, 233–240 (2016).

    Article  CAS  PubMed  Google Scholar 

  124. Campbell-Yesufu, O. T. & Gandhi, R. T. Update on human immunodeficiency virus (HIV)-2 infection. Clin. Infect. Dis. 52, 780–787 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Yuksel, H., Ocalan, M. & Yilmaz, O. E-Cadherin: an important functional molecule at respiratory barrier between defence and dysfunction. Front. Physiol. 12, 720227 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Brune, K. A. et al. HIV impairs lung epithelial integrity and enters the epithelium to promote chronic lung inflammation. PLoS ONE 11, e0149679 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Lambert, A. A. et al. A cross sectional analysis of the role of the antimicrobial peptide cathelicidin in lung function impairment within the ALIVE cohort. PLoS ONE 9, e95099 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Chinnapaiyan, S. et al. HIV infects bronchial epithelium and suppresses components of the mucociliary clearance apparatus. PLoS ONE 12, e0169161 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Unwalla, H. J., Ivonnet, P., Dennis, J. S., Conner, G. E. & Salathe, M. Transforming growth factor-β1 and cigarette smoke inhibit the ability of β2-agonists to enhance epithelial permeability. Am. J. Respir. Cell Mol. Biol. 52, 65–74 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Aschner, Y. & Downey, G. P. Transforming growth factor-β: master regulator of the respiratory system in health and disease. Am. J. Respir. Cell Mol. Biol. 54, 647–655 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Cribbs, S. K., Crothers, K. & Morris, A. Pathogenesis of HIV-related lung disease: immunity, infection, and inflammation. Physiol. Rev. 100, 603–632 (2020).

    Article  CAS  PubMed  Google Scholar 

  132. Chinnapaiyan, S. et al. Cigarette smoke promotes HIV infection of primary bronchial epithelium and additively suppresses CFTR function. Sci. Rep. 8, 7984 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Schiff, A. E. et al. T cell-tropic HIV efficiently infects alveolar macrophages through contact with infected CD4+ T cells. Sci. Rep. 11, 3890 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Joshi, P. C., Raynor, R., Fan, X. & Guidot, D. M. HIV-1-transgene expression in rats decreases alveolar macrophage zinc levels and phagocytosis. Am. J. Respir. Cell Mol. Biol. 39, 218–226 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Akata, K. et al. Altered polarization and impaired phagocytic activity of lung macrophages in people with human immunodeficiency virus and chronic obstructive pulmonary disease. J. Infect. Dis. 225, 862–867 (2022).

    Article  CAS  PubMed  Google Scholar 

  136. Tachado, S. D., Zhang, J., Zhu, J., Patel, N. & Koziel, H. HIV impairs TNF-α release in response to Toll-like receptor 4 stimulation in human macrophages in vitro. Am. J. Respir. Cell Mol. Biol. 33, 610–621 (2005).

    Article  CAS  PubMed  Google Scholar 

  137. Alexandrova, Y., Costiniuk, C. T. & Jenabian, M.-A. Pulmonary immune dysregulation and viral persistence during HIV infection. Front. Immunol. 12, 808722 (2021).

    Article  CAS  PubMed  Google Scholar 

  138. Cribbs, S. K., Lennox, J., Caliendo, A. M., Brown, L. A. & Guidot, D. M. Healthy HIV-1-infected individuals on highly active antiretroviral therapy harbor HIV-1 in their alveolar macrophages. AIDS Res. Hum. Retrovir. 31, 64–70 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Svanberg, C. et al. HIV-1 induction of tolerogenic dendritic cells is mediated by cellular interaction with suppressive T cells. Front. Immunol. 13, 790276 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Gaiha, G. D. et al. Surfactant protein A binds to HIV and inhibits direct infection of CD4+ cells, but enhances dendritic cell-mediated viral transfer. J. Immunol. 181, 601–609 (2008).

    Article  CAS  PubMed  Google Scholar 

  141. Madsen, J. et al. Surfactant protein D modulates HIV infection of both T-cells and dendritic cells. PLoS ONE 8, e59047 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Doitsh, G. et al. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature 505, 509–514 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Neff, C. P. et al. Lymphocytic alveolitis is associated with the accumulation of functionally impaired HIV-specific T cells in the lung of antiretroviral therapy-naive subjects. Am. J. Respir. Crit. Care Med. 191, 464–473 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Moir, S. & Fauci, A. S. B cells in HIV infection and disease. Nat. Rev. Immunol. 9, 235–245 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Morris, D. et al. Unveiling the mechanisms for decreased glutathione in individuals with HIV infection. Clin. Dev. Immunol. 2012, 734125 (2012).

    Article  PubMed  Google Scholar 

  146. Ivanov, A. V. et al. Oxidative stress during HIV infection: mechanisms and consequences. Oxid. Med. Cell. Longev. 2016, 8910396 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Mandas, A. et al. Oxidative imbalance in HIV-1 infected patients treated with antiretroviral therapy. J. Biomed. Biotechnol. 2009, 749575 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Cribbs, S. K., Guidot, D. M., Martin, G. S., Lennox, J. & Brown, L. A. Anti-retroviral therapy is associated with decreased alveolar glutathione levels even in healthy HIV-infected individuals. PLoS ONE 9, e88630 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Yeligar, S. M. et al. Dysregulation of alveolar macrophage PPARγ, NADPH oxidases, and TGFβ1 in otherwise healthy HIV-infected individuals. AIDS Res. Hum. Retrovir. 33, 1018–1026 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Lassiter, C. et al. HIV-1 transgene expression in rats causes oxidant stress and alveolar epithelial barrier dysfunction. AIDS Res. Ther. 6, 1 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Staitieh, B. S. et al. HIV-1 decreases Nrf2/ARE activity and phagocytic function in alveolar macrophages. J. Leukoc. Biol. 102, 517–525 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Kukoyi, A. T. et al. MiR-144 mediates Nrf2 inhibition and alveolar epithelial dysfunction in HIV-1 transgenic rats. Am. J. Physiol., Cell Physiol. 317, C390–C397 (2019).

    Article  CAS  PubMed  Google Scholar 

  153. Wang, T. et al. Transfer of intracellular HIV Nef to endothelium causes endothelial dysfunction. PLoS ONE 9, e91063 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Kanmogne, G. D., Primeaux, C. & Grammas, P. Induction of apoptosis and endothelin-1 secretion in primary human lung endothelial cells by HIV-1 gp120 proteins. Biochem. Biophys. Res. Commun. 333, 1107–1115 (2005).

    Article  CAS  PubMed  Google Scholar 

  155. Spikes, L. et al. Enhanced pulmonary arteriopathy in simian immunodeficiency virus-infected macaques exposed to morphine. Am. J. Respir. Crit. Care Med. 185, 1235–1243 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Jacob, B. A. et al. HIV-1-induced pulmonary oxidative and nitrosative stress: exacerbated response to endotoxin administration in HIV-1 transgenic mouse model. Am. J. Physiol. Lung Cell. Mol. Physiol. 291, L811–L819 (2006).

    Article  CAS  PubMed  Google Scholar 

  157. Cole, S. B. et al. Oxidative stress and antioxidant capacity in smoking and nonsmoking men with HIV/acquired immunodeficiency syndrome. Nutr. Clin. Pract. 20, 662–667 (2005).

    Article  PubMed  Google Scholar 

  158. Pacht, E. R., Diaz, P., Clanton, T., Hart, J. & Gadek, J. E. Alveolar fluid glutathione decreases in asymptomatic HIV-seropositive subjects over time. Chest 112, 785–788 (1997).

    Article  CAS  PubMed  Google Scholar 

  159. Morris, A. et al. Comparison of the respiratory microbiome in healthy nonsmokers and smokers. Am. J. Respir. Crit. Care Med. 187, 1067–1075 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Segal, L. N. et al. Enrichment of the lung microbiome with oral taxa is associated with lung inflammation of a Th17 phenotype. Nat. Microbiol. 1, 16031 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Beck, J. M. et al. Multicenter comparison of lung and oral microbiomes of HIV-infected and HIV-uninfected individuals. Am. J. Respir. Crit. Care Med. 192, 1335–1344 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Cui, L. et al. Topographic diversity of the respiratory tract mycobiome and alteration in HIV and lung disease. Am. J. Respir. Crit. Care Med. 191, 932–942 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Lozupone, C. et al. Widespread colonization of the lung by Tropheryma whipplei in HIV infection. Am. J. Respir. Crit. Care Med. 187, 1110–1117 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Morris, A. et al. Longitudinal analysis of the lung microbiota of cynomolgous macaques during long-term SHIV infection. Microbiome 4, 38 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Zhou, J. J. et al. Supraglottic lung microbiome taxa are associated with pulmonary abnormalities in an HIV longitudinal cohort. Am. J. Respir. Crit. Care Med. 202, 1727–1731 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Yang, L. et al. Alterations in oral microbiota in HIV are related to decreased pulmonary function. Am. J. Respir. Crit. Care Med. 201, 445–457 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Nazli, A. et al. Exposure to HIV-1 directly impairs mucosal epithelial barrier integrity allowing microbial translocation. PLoS Pathog. 6, e1000852 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Estes, J. D. et al. Damaged intestinal epithelial integrity linked to microbial translocation in pathogenic simian immunodeficiency virus infections. PLoS Pathog. 6, e1001052 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Brenchley, J. M. Mucosal immunity in human and simian immunodeficiency lentivirus infections. Mucosal Immunol. 6, 657–665 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. He, S. et al. A systematic review and meta-analysis of diagnostic accuracy of serum 1,3-β-d-glucan for invasive fungal infection: focus on cutoff levels. J. Microbiol. Immunol. Infect. 48, 351–361 (2015).

    Article  CAS  PubMed  Google Scholar 

  171. Morris, A. et al. Serum (1→3)-β-D-glucan levels in HIV-infected individuals are associated with immunosuppression, inflammation, and cardiopulmonary function. J. Acquir. Immune Defic. Syndr. 61, 462–468 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Hameiri Bowen, D. et al. Cytomegalovirus-specific immunoglobulin G is associated with chronic lung disease in children and adolescents from sub-Saharan Africa Living with perinatal human immunodeficiency virus. Clin. Infect. Dis. 73, e264–e266 (2021).

    Article  PubMed  Google Scholar 

  173. Nenna, R. et al. High cytomegalovirus serology and subsequent COPD-related mortality: a longitudinal study. ERJ Open Res. 6, 00062 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Nenna, R. et al. Cytomegalovirus serology in young to mid-adult life and decline of lung function. Clin. Respir. J. https://doi.org/10.1111/crj.13600 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Ahlström, M. G. et al. Association between smoking status assessed with plasma-cotinine and inflammatory and endothelial biomarkers in HIV-positive and HIV-negative individuals. HIV Med. 19, 679–687 (2018).

    Article  PubMed  Google Scholar 

  176. Poudel, K. C., Poudel-Tandukar, K., Bertone-Johnson, E. R., Pekow, P. & Vidrine, D. J. Inflammation in relation to intensity and duration of cigarette smoking among people living with HIV. AIDS Behav. 25, 856–865 (2021).

    Article  PubMed  Google Scholar 

  177. Neff, C. P. et al. HIV infection is associated with loss of anti-inflammatory alveolar macrophages. J. Immunol. 205, 2447–2455 (2020).

    Article  CAS  PubMed  Google Scholar 

  178. Corleis, B. et al. Smoking and human immunodeficiency virus 1 infection promote retention of CD8+ T cells in the airway mucosa. Am. J. Respir. Cell Mol. Biol. 65, 513–520 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Staitieh, B. S. et al. HIV increases the risk of cigarette smoke-induced emphysema via MMP-9. J. Acquir. Immune Defic. Syndr. https://doi.org/10.1097/QAI.0000000000003125 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Nieman, R. B., Fleming, J., Coker, R. J., Harris, J. R. & Mitchell, D. M. The effect of cigarette smoking on the development of AIDS in HIV-1-seropositive individuals. AIDS 7, 705–710 (1993).

    Article  CAS  PubMed  Google Scholar 

  181. Feldman, J. G. et al. Association of cigarette smoking with HIV prognosis among women in the HAART era: a report from the Women’s Interagency HIV study. Am. J. Public Health 96, 1060–1065 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Winhusen, T. et al. Baseline cigarette smoking status as a predictor of virologic suppression and CD4 cell count during one-year follow-up in substance users with uncontrolled HIV infection. AIDS Behav. 22, 2026–2032 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Brown, J. L. et al. The association between cigarette smoking, virologic suppression, and CD4+ lymphocyte count in HIV-infected Russian women. AIDS Care 29, 1102–1106 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Akhtar-Khaleel, W. Z. et al. Trends and predictors of cigarette smoking among HIV seropositive and seronegative men: the multicenter aids cohort study. AIDS Behav. 20, 622–632 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Jones, T. P. W. et al. Alcohol, smoking, recreational drug use and association with virological outcomes among people living with HIV: cross-sectional and longitudinal analyses. HIV Med. 23, 209–226 (2022).

    Article  PubMed  Google Scholar 

  186. Cyktor, J. et al. Associations of HIV persistence, cigarette smoking, inflammation, and pulmonary dysfunction in people with HIV on antiretroviral therapy. Medicine 101, e29264 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Clarke, J. R. et al. The epidemiology of HIV-1 infection of the lung in AIDS patients. AIDS 7, 555–560 (1993).

    Article  CAS  PubMed  Google Scholar 

  188. Ranjit, S., Sinha, N., Kodidela, S. & Kumar, S. Benzo(a)pyrene in cigarette smoke enhances HIV-1 replication through NF-κB activation via CYP-mediated oxidative stress pathway. Sci. Rep. 8, 10394 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Global Initiative for Chronic Obstructive Lung Disease. Global strategy for the diagnosis, management and prevention of chronic obstructive pulmonary disease. Global Initiative for Chronic Obstructive Lung Disease https://goldcopd.org/wp-content/uploads/2022/12/GOLD-2023-ver-1.1-2Dec2022_WMV.pdf (2023).

  190. US Preventive Services Task Force. Screening for chronic obstructive pulmonary disease: US Preventive Services Task Force reaffirmation recommendation statement. J. Am. Med. Assoc. 327, 1806–1811 (2022).

    Article  Google Scholar 

  191. Lambert, A. A. et al. Implementation of a COPD screening questionnaire in an outpatient HIV clinic. Chron. Obstruct. Pulmon. Dis. 13, 767–772 (2016).

    Article  Google Scholar 

  192. Schnieders, E. et al. Performance of alternative COPD case-finding tools: a systematic review and meta-analysis. Eur. Respir. Rev. 30, 200350 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  193. MacDonald, D. M. et al. Smoking and accelerated lung function decline in HIV-positive individuals: a secondary analysis of the START pulmonary substudy. J. Acquir. Immune Defic. Syndr. 79, e85–e92 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Fan, H. et al. Pulmonary tuberculosis as a risk factor for chronic obstructive pulmonary disease: a systematic review and meta-analysis. Ann. Transl Med. 9, 390 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Global Initiative for Asthma. Global strategy for asthma management and prevention. Global Initiative for Asthma https://ginasthma.org/wp-content/uploads/2022/07/GINA-Main-Report-2022-FINAL-22-07-01-WMS.pdf (2022).

  196. Pekkanen, J. & Pearce, N. Defining asthma in epidemiological studies. Eur. Respir. J. 14, 951–957 (1999).

    Article  CAS  PubMed  Google Scholar 

  197. Weakley, J. et al. Agreement between obstructive airways disease diagnoses from self-report questionnaires and medical records. Prev. Med. 57, 38–42 (2013).

    Article  PubMed  Google Scholar 

  198. Coghill, A. E. et al. Advanced stage at diagnosis and elevated mortality among US patients with cancer infected with HIV in the National Cancer Data Base. Cancer 125, 2868–2876 (2019).

    PubMed  Google Scholar 

  199. Shiels, M. S., Pfeiffer, R. M. & Engels, E. A. Age at cancer diagnosis among persons with AIDS in the United States. Ann. Intern. Med. 153, 452–460 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Rengan, R., Mitra, N., Liao, K., Armstrong, K. & Vachani, A. Effect of HIV on survival in patients with non-small-cell lung cancer in the era of highly active antiretroviral therapy: a population-based study. Lancet Oncol. 13, 1203–1209 (2012).

    Article  PubMed  Google Scholar 

  201. Shuter, J., Reddy, K. P., Hyle, E. P., Stanton, C. A. & Rigotti, N. A. Harm reduction for smokers living with HIV. Lancet HIV 8, e652–e658 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. National Lung Screening Trial Research Team. Reduced lung-cancer mortality with low-dose computed tomographic screening. N. Engl. J. Med. 365, 395–409 (2011).

    Article  Google Scholar 

  203. Kong, C. Y. et al. Benefits and harms of lung cancer screening in HIV-infected individuals with CD4+ cell count at least 500 cells/μl. AIDS 32, 1333–1342 (2018).

    Article  PubMed  Google Scholar 

  204. US Preventive Services Task Force. Screening for lung cancer: US Preventive Services Task Force recommendation statement. J. Am. Med. Assoc. 325, 962–970 (2021).

    Article  Google Scholar 

  205. Sellers, S. A. et al. Optimal lung cancer screening criteria among persons living with HIV. J. Acquir. Immune Defic. Syndr. 90, 184–192 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  206. World Health Organization. Consolidated Guidelines on HIV Prevention, Testing, Treatment, Service Delivery and Monitoring: Recommendations for a Public Health Approach (WHO, 2021).

  207. Frigati, L. J. et al. The impact of isoniazid preventive therapy and antiretroviral therapy on tuberculosis in children infected with HIV in a high tuberculosis incidence setting. Thorax 66, 496–501 (2011).

    Article  CAS  PubMed  Google Scholar 

  208. World Health Organization. WHO Consolidated Guidelines on Tuberculosis: Module 5: Management of Tuberculosis in Children and Adolescents (WHO, 2022).

  209. Githinji, L. N., Gray, D. M., Hlengwa, S., Myer, L. & Zar, H. J. Lung function in South African adolescents infected perinatally with HIV and treated long-term with antiretroviral therapy. Ann. Am. Thorac. Soc. 14, 722–729 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  210. European AIDS Clinical Society. Guidelines, version 11.1. EACS https://www.eacsociety.org/media/guidelines-11.1_final_09-10.pdf (2022).

  211. Nahid, P. et al. Executive summary: official American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America Clinical Practice Guidelines: treatment of drug-susceptible tuberculosis. Clin. Infect. Dis. 63, 853–867 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Dorman, S. E. et al. Four-month rifapentine regimens with or without moxifloxacin for tuberculosis. N. Engl. J. Med. 384, 1705–1718 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Lam, J. O. et al. Smoking and cessation treatment among persons with and without HIV in a US integrated health system. Drug Alcohol. Depend. 213, 108128 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Pool, E. R. M., Dogar, O., Lindsay, R. P., Weatherburn, P. & Siddiqi, K. Interventions for tobacco use cessation in people living with HIV and AIDS. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD011120.pub2 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Uthman, O. A. et al. Comparison of mHealth and face-to-face interventions for smoking cessation among people living with HIV: meta-analysis. JMIR Mhealth Uhealth 7, e203 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Mann-Jackson, L. et al. A qualitative systematic review of cigarette smoking cessation interventions for persons living with HIV. J. Cancer Educ. 34, 1045–1058 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Oshagbemi, O. A., Odiba, J. O., Daniel, A. & Yunusa, I. Absolute blood eosinophil counts to guide inhaled corticosteroids therapy among patients with COPD: systematic review and meta-analysis. Curr. Drug Targets 20, 1670–1679 (2019).

    Article  CAS  PubMed  Google Scholar 

  218. Harries, T. H. et al. Blood eosinophil count, a marker of inhaled corticosteroid effectiveness in preventing COPD exacerbations in post-hoc RCT and observational studies: systematic review and meta-analysis. Respir. Res. 21, 3 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Miravitlles, M. et al. Systematic review on long-term adverse effects of inhaled corticosteroids in the treatment of COPD. Eur. Respir. Rev. 30, 210075 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Dong, Y. H. et al. Use of inhaled corticosteroids in patients with COPD and the risk of TB and influenza: a systematic review and meta-analysis of randomized controlled trials. Chest 145, 1286–1297 (2014).

    Article  CAS  PubMed  Google Scholar 

  221. Chapman, K. R. et al. Long-term triple therapy de-escalation to indacaterol/glycopyrronium in patients with chronic obstructive pulmonary disease (SUNSET): a randomized, double-blind, triple-dummy clinical trial. Am. J. Respir. Crit. Care Med. 198, 329–339 (2018).

    Article  CAS  PubMed  Google Scholar 

  222. Rogliani, P., Ritondo, B. L., Gabriele, M., Cazzola, M. & Calzetta, L. Optimizing de-escalation of inhaled corticosteroids in COPD: a systematic review of real-world findings. Expert Rev. Clin. Pharmacol. 13, 977–990 (2020).

    Article  CAS  PubMed  Google Scholar 

  223. Boyd, S. D. et al. Influence of low-dose ritonavir with and without darunavir on the pharmacokinetics and pharmacodynamics of inhaled beclomethasone. J. Acquir. Immune Defic. Syndr. 63, 355–361 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the use of antiretroviral agents in adults and adolescents with HIV. Clinical Info HIV.gov https://clinicalinfo.hiv.gov/en/guidelines/adult-and-adolescent-arv (2023).

  225. Sigel, K. M. et al. Short-term outcomes for lung cancer resection surgery in HIV infection. AIDS 33, 1353–1360 (2019).

    Article  PubMed  Google Scholar 

  226. Makinson, A. et al. Risks of opportunistic infections in people with human immunodeficiency virus with cancers treated with chemotherapy. Open Forum Infect. Dis. 8, ofab389 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Uldrick, T. S. et al. Assessment of the safety of pembrolizumab in patients with HIV and advanced cancer – a phase 1 study. JAMA Oncol. 5, 1332–1339 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Peluso, M. J. et al. Outcomes of immunomodulatory and biologic therapy in people living with HIV. AIDS 34, 1171–1179 (2020).

    Article  CAS  PubMed  Google Scholar 

  229. Grover, S. et al. Reduced cancer survival among adults with HIV and AIDS-defining illnesses despite no difference in cancer stage at diagnosis. J. Acquir. Immune Defic. Syndr. 79, 421–429 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  230. World Health Organization. Revised WHO classification and treatment of childhood pneumonia at health facilities: evidence summaries. WHO https://apps.who.int/iris/bitstream/handle/10665/137319/9789241507813_eng.pdf (2014).

  231. Punpanich, W., Groome, M., Muhe, L., Qazi, S. A. & Madhi, S. A. Systematic review on the etiology and antibiotic treatment of pneumonia in human immunodeficiency virus-infected children. Pediatr. Infect. Dis. J. 30, e192–202 (2011).

    Article  PubMed  Google Scholar 

  232. Turkova, A. et al. Shorter treatment for non-severe tuberculosis in African and Indian children. N. Engl. J. Med. 386, 911–922 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Price, A. et al. Effect of azithromycin on incidence of acute respiratory exacerbations in children with HIV taking antiretroviral therapy and co-morbid chronic lung disease: a secondary analysis of the BREATHE trial. eClinicalMedicine 42, 101195 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  234. Rubinstein, A., Bernstein, L. J., Charytan, M., Krieger, B. Z. & Ziprkowski, M. Corticosteroid treatment for pulmonary lymphoid hyperplasia in children with the acquired immune deficiency syndrome. Pediatr. Pulmonol. 4, 13–17 (1988).

    Article  CAS  PubMed  Google Scholar 

  235. Sabin, C. A. et al. Respiratory symptoms and chronic bronchitis in people with and without HIV infection. HIV Med. 22, 11–21 (2021).

    Article  CAS  PubMed  Google Scholar 

  236. Brown, J. et al. Respiratory symptoms in people living with HIV and the effect of antiretroviral therapy: a systematic review and meta-analysis. Thorax 72, 355–366 (2017).

    Article  PubMed  Google Scholar 

  237. Kunisaki, K. M. et al. Pulmonary effects of immediate versus deferred antiretroviral therapy in HIV-positive individuals: a nested substudy within the multicentre, international, randomised, controlled Strategic Timing of Antiretroviral Treatment (START) trial. Lancet Respir. Med. 4, 980–989 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  238. Terry, C. et al. Dyspnea and pulmonary function among participants in the multicenter AIDS cohort study using protease inhibitors: a cross-sectional study. AIDS Res. Hum. Retrovir. 38, 143–151 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Khoury, A. L. et al. Diminished physical function in older HIV-infected adults in the Southeastern U.S. despite successful antiretroviral therapy. PLoS ONE 12, e0179874 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  240. Robertson, T. E. et al. HIV infection is an independent risk factor for decreased 6-minute walk test distance. PLoS ONE 14, e0212975 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Campo, M. et al. Association of chronic cough and pulmonary function with 6-minute walk test performance in HIV infection. J. Acquir. Immune Defic. Syndr. 65, 557–563 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Triplette, M. et al. The differential impact of emphysema on respiratory symptoms and 6-minute walk distance in HIV infection. J. Acquir. Immune Defic. Syndr. 74, e23–e29 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  243. Chen, Y. et al. Human immunodeficiency virus infection and incident heart failure: a meta-analysis of prospective studies. J. Acquir. Immune Defic. Syndr. 87, 741–749 (2021).

    Article  PubMed  Google Scholar 

  244. Wolff, A. J. & O’Donnell, A. E. Pulmonary effects of illicit drug use. Clin. Chest Med. 25, 203–216 (2004).

    Article  PubMed  Google Scholar 

  245. Metlay, J. P. et al. Diagnosis and treatment of adults with community-acquired pneumonia. an official clinical practice guideline of the American Thoracic Society and Infectious Diseases Society of America. Am. J. Respir. Crit. Care Med. 200, e45–e67 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  246. Jan, A. K. et al. Markers of inflammation and immune activation are associated with lung function in a multi-center cohort of persons with HIV. AIDS 35, 1031–1040 (2021).

    Article  CAS  PubMed  Google Scholar 

  247. de Koning, H. J. et al. Reduced lung-cancer mortality with volume CT screening in a randomized trial. N. Engl. J. Med. 382, 503–513 (2020).

    Article  PubMed  Google Scholar 

  248. Matthay, M. A. et al. Acute respiratory distress syndrome. Nat. Rev. Dis. Primers 5, 18 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Hewitt, R. J. & Lloyd, C. M. Regulation of immune responses by the airway epithelial cell landscape. Nat. Rev. Immunol. 21, 347–362 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Introduction (A.M.); Epidemiology (I.K.); Mechanisms/pathophysiology (A.M., K.C., M.B.D., T.B. & L.H.); Diagnosis, screening and prevention (K.C., K.M.K., M.B.D., T.B. & H.J.Z.); Management (K.C., K.M.K., M.B.D., T.B. & H.J.Z.); Quality of life (K.M.K.); Outlook (L.H.).

Corresponding author

Correspondence to Alison Morris.

Ethics declarations

Competing interests

K.M.K. reports personal fees for Data and Safety Monitoring Board activities (Nuvaira, Organicell) and consulting (Allergan/AbbVie) outside the published work. T.B. reports grants (Novo Nordisk Foundation, Lundbeck Foundation, Simonsen Foundation, GSK, Pfizer, Gilead, Kai Hansen Foundation and Erik and Susanna Olesen’s Charitable Fund) and personal fees (GSK, Pfizer, Bavarian Nordic, Boehringer Ingelheim, Gilead, MSD, Pentabase ApS, Becton Dickinson, Janssen and Astra Zeneca) outside the published work. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Disease Primers thanks K. A. Norris, M. C. I. Lipman, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Disclaimer The views expressed in this article are those of the authors and do not necessarily reflect the position or policy of the Department of Veterans Affairs or the United States Government.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konstantinidis, I., Crothers, K., Kunisaki, K.M. et al. HIV-associated lung disease. Nat Rev Dis Primers 9, 39 (2023). https://doi.org/10.1038/s41572-023-00450-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-023-00450-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing