Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Intracerebral haemorrhage

Subjects

Abstract

Intracerebral haemorrhage (ICH) is a dramatic condition caused by the rupture of a cerebral vessel and the entry of blood into the brain parenchyma. ICH is a major contributor to stroke-related mortality and dependency: only half of patients survive for 1 year after ICH, and patients who survive have sequelae that affect their quality of life. The incidence of ICH has increased in the past few decades with shifts in the underlying vessel disease over time as vascular prevention has improved and use of antithrombotic agents has increased. The pathophysiology of ICH is complex and encompasses mechanical mass effect, haematoma expansion and secondary injury. Identifying the causes of ICH and predicting the vital and functional outcome of patients and their long-term vascular risk have improved in the past decade; however, no specific treatment is available for ICH. ICH remains a medical emergency, with prevention of haematoma expansion as the key therapeutic target. After discharge, secondary prevention and management of vascular risk factors in patients remains challenging and is based on an individual benefit–risk balance evaluation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Epidemiology of intracerebral haemorrhage.
Fig. 2: Examples of intracerebral haemorrhage associated with deep perforating vasculopathy and probable cerebral amyloid angiopathy.
Fig. 3: Clues for underlying treatable causes of intracerebral haemorrhage.
Fig. 4: Putative secondary injury and adaptive process following intracerebral haemorrhage and potential therapeutic targets.
Fig. 5: Mechanisms involved in the pathophysiology of intracerebral haemorrhage.
Fig. 6: Imaging markers of haematoma expansion.
Fig. 7: Representative example of advanced imaging to determine the cause of intracerebral haemorrhage.

Similar content being viewed by others

References

  1. van Asch, C. J. et al. Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis. Lancet Neurol. 9, 167–176 (2010).

    Article  PubMed  Google Scholar 

  2. Krishnamurthi, R. V. et al. Global and regional burden of first-ever ischaemic and haemorrhagic stroke during 1990–2010: findings from the Global Burden of Disease Study 2010. Lancet Glob. Health 1, e259–e281 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  3. GBD 2019 Stroke Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 20, 795–820 (2021). Provides information on global burden and regional disparities related to ICH.

    Article  Google Scholar 

  4. Poon, M. T. C., Fonville, A. F. & Al-Shahi Salman, R. Long-term prognosis after intracerebral haemorrhage: systematic review and meta-analysis. J. Neurol. Neurosurg. Psychiatry 85, 660–667 (2014).

    Article  PubMed  Google Scholar 

  5. Moulin, S. et al. Dementia risk after spontaneous intracerebral haemorrhage: a prospective cohort study. Lancet Neurol. 15, 820–829 (2016). Patients with ICH are at high risk of developing post-ICH dementia, which contributes to the poor outcome of these patients.

    Article  PubMed  Google Scholar 

  6. Li, L. et al. Risks of recurrent stroke and all serious vascular events after spontaneous intracerebral haemorrhage: pooled analyses of two population-based studies. Lancet Neurol. 20, 437–447 (2021). Reports data from two community-based cohorts on vascular events occurring after ICH. It also identifies a specific subgroup of people with concomitant atrial fibrillation.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Krishnamurthi, R. V. et al. Stroke prevalence, mortality and disability-adjusted life years in adults aged 20–64 years in 1990–2013: data from the global burden of disease 2013 study. Neuroepidemiology 45, 190–202 (2015).

    Article  PubMed  Google Scholar 

  8. Ariesen, M. J., Claus, S. P., Rinkel, G. J. E. & Algra, A. Risk factors for intracerebral hemorrhage in the general population: a systematic review. Stroke 34, 2060–2065 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Tatlisumak, T., Cucchiara, B., Kuroda, S., Kasner, S. E. & Putaala, J. Nontraumatic intracerebral haemorrhage in young adults. Nat. Rev. Neurol. 14, 237–250 (2018).

    Article  PubMed  Google Scholar 

  10. An, S. J., Kim, T. J. & Yoon, B.-W. Epidemiology, risk factors, and clinical features of intracerebral hemorrhage: an update. J. Stroke 19, 3–10 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kittner, S. J. et al. Ethnic and racial variation in intracerebral hemorrhage risk factors and risk factor burden. JAMA Netw. Open 4, e2121921 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Roquer, J. et al. Sex-related differences in primary intracerebral hemorrhage. Neurology 87, 257–262 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gokhale, S., Caplan, L. R. & James, M. L. Sex differences in incidence, pathophysiology, and outcome of primary intracerebral hemorrhage. Stroke 46, 886–892 (2015).

    Article  PubMed  Google Scholar 

  14. van Beijnum, J. et al. Outcome after spontaneous and arteriovenous malformation-related intracerebral haemorrhage: population-based studies. Brain 132, 537–543 (2009).

    Article  PubMed  Google Scholar 

  15. Rannikmäe, K. et al. Reliability of intracerebral hemorrhage classification systems: a systematic review. Int. J. Stroke 11, 626–636 (2016).

    Article  PubMed  Google Scholar 

  16. Meretoja, A. et al. SMASH-U: a proposal for etiologic classification of intracerebral hemorrhage. Stroke 43, 2592–2597 (2012).

    Article  PubMed  Google Scholar 

  17. Charidimou, A. et al. The cerebral haemorrhage anatomical rating instrument (CHARTS): development and assessment of reliability. J. Neurol. Sci. 372, 178–183 (2017).

    Article  PubMed  Google Scholar 

  18. Martí-Fàbregas, J. et al. The H-ATOMIC criteria for the etiologic classification of patients with intracerebral hemorrhage. PLoS ONE 11, e0156992 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Raposo, N. et al. A causal classification system for intracerebral hemorrhage subtypes (CLAS-ICH). Ann. Neurol. 93, 16–28 (2023).

    Article  PubMed  Google Scholar 

  20. van Asch, C. J. J. et al. Diagnostic yield and accuracy of CT angiography, MR angiography, and digital subtraction angiography for detection of macrovascular causes of intracerebral haemorrhage: prospective, multicentre cohort study. BMJ 351, h5762 (2015). Describes diagnostic performance of CTA in an ICH population as well as the prevalence of various causes of non-traumatic ICH when investigations are systematically performed.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Pantoni, L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 9, 689–701 (2010).

    Article  PubMed  Google Scholar 

  22. Rodrigues, M. A. et al. The Edinburgh CT and genetic diagnostic criteria for lobar intracerebral haemorrhage associated with cerebral amyloid angiopathy: model development and diagnostic test accuracy study. Lancet Neurol. 17, 232–240 (2018). Diagnostic criteria for CAA using CT scan and genetic testing.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sembill, J. A. et al. Simplified Edinburgh CT criteria for identification of lobar intracerebral hemorrhage associated with cerebral amyloid angiopathy. Neurology 98, e1997–e2004 (2022).

    CAS  PubMed  Google Scholar 

  24. Flaherty, M. L. et al. Racial variations in location and risk of intracerebral hemorrhage. Stroke 36, 934–937 (2005).

    Article  PubMed  Google Scholar 

  25. Charidimou, A. et al. Emerging concepts in sporadic cerebral amyloid angiopathy. Brain 140, 1829–1850 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Viswanathan, A. & Greenberg, S. M. Cerebral amyloid angiopathy in the elderly. Ann. Neurol. 70, 871–880 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Charidimou, A., Gang, Q. & Werring, D. J. Sporadic cerebral amyloid angiopathy revisited: recent insights into pathophysiology and clinical spectrum. J. Neurol. Neurosurg. Psychiatry 83, 124–137 (2012).

    Article  PubMed  Google Scholar 

  28. Rossrussel, R. W. Observations on intracerebral aneurysms. Brain 86, 425–442 (1963).

    Article  Google Scholar 

  29. Fischer, U. et al. Acute post-stroke blood pressure relative to premorbid levels in intracerebral haemorrhage versus major ischaemic stroke: a population-based study. Lancet Neurol. 13, 374–384 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Al-Shahi Salman, R. et al. Absolute risk and predictors of the growth of acute spontaneous intracerebral haemorrhage: a systematic review and meta-analysis of individual patient data. Lancet Neurol. 17, 885–894 (2018). Provides data on haematoma expansion, the main target of medical treatments of ICH developed to date.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Dowlatshahi, D. et al. Defining hematoma expansion in intracerebral hemorrhage: relationship with patient outcomes. Neurology 76, 1238–1244 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Greenberg, C. H., Frosch, M. P., Goldstein, J. N., Rosand, J. & Greenberg, S. M. Modeling intracerebral hemorrhage growth and response to anticoagulation. PLoS ONE 7, e48458 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schlunk, F. & Greenberg, S. M. The pathophysiology of intracerebral hemorrhage formation and expansion. Transl Stroke Res. 6, 257–263 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Ironside, N., Chen, C.-J., Ding, D., Mayer, S. A. & Connolly, E. S. J. Perihematomal edema after spontaneous intracerebral hemorrhage. Stroke 50, 1626–1633 (2019).

    Article  PubMed  Google Scholar 

  35. Zheng, H., Chen, C., Zhang, J. & Hu, Z. Mechanism and therapy of brain edema after intracerebral hemorrhage. Cerebrovasc. Dis. 42, 155–169 (2016).

    Article  PubMed  Google Scholar 

  36. Keep, R. F., Hua, Y. & Xi, G. Intracerebral haemorrhage: mechanisms of injury and therapeutic targets. Lancet Neurol. 11, 720–731 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Aronowski, J. & Zhao, X. Molecular pathophysiology of cerebral hemorrhage: secondary brain injury. Stroke 42, 1781–1786 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Loan, J. J. et al. Secondary injury and inflammation after intracerebral haemorrhage: a systematic review and meta-analysis of molecular markers in patient brain tissue. J. Neurol. Neurosurg. Psychiatry 93, 126–132 (2022).

    Article  PubMed  Google Scholar 

  39. Maślińska, D. & Gajewski, M. Some aspects of the inflammatory process. Folia Neuropathol. 36, 199–204 (1998).

    PubMed  Google Scholar 

  40. Gong, C., Hoff, J. T. & Keep, R. F. Acute inflammatory reaction following experimental intracerebral hemorrhage in rat. Brain Res. 871, 57–65 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Puy, L. et al. Neutrophil extracellular traps (NETs) infiltrate haematoma and surrounding brain tissue after intracerebral haemorrhage: a post-mortem study. Neuropathol. Appl. Neurobiol. 47, 867–877 (2021).

    Article  CAS  PubMed  Google Scholar 

  42. Papayannopoulos, V. Neutrophil extracellular traps in immunity and disease. Nat. Rev. Immunol. 18, 134–147 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Lai, T. W., Zhang, S. & Wang, Y. T. Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog. Neurobiol. 115, 157–188 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Zhang, Y. et al. Modes of brain cell death following intracerebral hemorrhage. Front. Cell Neurosci. 16, 799753 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Inaji, M. et al. Chronological changes of perihematomal edema of human intracerebral hematoma. Acta Neurochir. Suppl. 86, 445–448 (2003).

    CAS  PubMed  Google Scholar 

  46. Venkatasubramanian, C. et al. Natural history of perihematomal edema after intracerebral hemorrhage measured by serial magnetic resonance imaging. Stroke 42, 73–80 (2011).

    Article  PubMed  Google Scholar 

  47. Puy, L. et al. Brain peri-hematomal area, a strategic interface for blood clearance: a human neuropathological and transcriptomic study. Stroke 53, 2026–2035 (2022).

    Article  CAS  PubMed  Google Scholar 

  48. Schwartz, M. & Shechter, R. Systemic inflammatory cells fight off neurodegenerative disease. Nat. Rev. Neurol. 6, 405–410 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Schaer, D. J., Buehler, P. W., Alayash, A. I., Belcher, J. D. & Vercellotti, G. M. Hemolysis and free hemoglobin revisited: exploring hemoglobin and hemin scavengers as a novel class of therapeutic proteins. Blood 121, 1276–1284 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang, G., Wang, L., Sun, X.-G. & Tang, J. Haematoma scavenging in intracerebral haemorrhage: from mechanisms to the clinic. J. Cell Mol. Med. 22, 768–777 (2018).

    CAS  PubMed  Google Scholar 

  51. Hu, R. et al. Long-term outcomes and risk factors related to hydrocephalus after intracerebral hemorrhage. Transl Stroke Res. 12, 31–38 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Bu, Y. et al. Mechanisms of hydrocephalus after intraventricular haemorrhage in adults. Stroke Vasc. Neurol. 1, 23–27 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Uchida, K. et al. Clinical prediction rules to classify types of stroke at prehospital stage. Stroke 49, 1820–1827 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Fiebach, J. B. et al. Stroke magnetic resonance imaging is accurate in hyperacute intracerebral hemorrhage: a multicenter study on the validity of stroke imaging. Stroke 35, 502–506 (2004).

    Article  PubMed  Google Scholar 

  55. Kidwell, C. S. et al. Comparison of MRI and CT for detection of acute intracerebral hemorrhage. JAMA 292, 1823–1830 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Leira, R. et al. Early neurologic deterioration in intracerebral hemorrhage: predictors and associated factors. Neurology 63, 461–467 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Frija, G. et al. How to improve access to medical imaging in low- and middle-income countries? EClinicalMedicine 38, 101034 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kothari, R. U. et al. The ABCs of measuring intracerebral hemorrhage volumes. Stroke 27, 1304–1305 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Schlunk, F. et al. Volumetric accuracy of different imaging modalities in acute intracerebral hemorrhage. BMC Med. Imaging 22, 9 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Morotti, A. et al. Intracerebral haemorrhage expansion: definitions, predictors, and prevention. Lancet Neurol. 22, 159–171 (2023).

    Article  PubMed  Google Scholar 

  61. Dowlatshahi, D. et al. Predicting intracerebral hemorrhage growth with the spot sign: the effect of onset-to-scan time. Stroke 47, 695–700 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Boulouis, G., Morotti, A., Charidimou, A., Dowlatshahi, D. & Goldstein, J. N. Noncontrast computed tomography markers of intracerebral hemorrhage expansion. Stroke 48, 1120–1125 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Greenberg, S. M. et al. 2022 Guideline for the management of patients with spontaneous intracerebral hemorrhage: a guideline from the American Heart Association/American Stroke Association. Stroke 53, e282–e361 (2022). International guidelines for ICH management.

    Article  CAS  PubMed  Google Scholar 

  64. Greenberg, S. M. et al. Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol. 8, 165–174 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Shams, S. et al. SWI or T2*: which MRI sequence to use in the detection of cerebral microbleeds? The Karolinska imaging dementia study. AJNR Am. J. Neuroradiol. 36, 1089–1095 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Schmieder, R. E. End organ damage in hypertension. Dtsch. Arztebl Int. 107, 866–873 (2010).

    PubMed  PubMed Central  Google Scholar 

  67. Charidimou, A. et al. The Boston criteria version 2.0 for cerebral amyloid angiopathy: a multicentre, retrospective, MRI-neuropathology diagnostic accuracy study. Lancet Neurol. 21, 714–725 (2022). Diagnostic criteria for CAA using MRI.

    Article  PubMed  Google Scholar 

  68. Guidoux, C. et al. Amyloid angiopathy in brain hemorrhage: a postmortem neuropathological-magnetic resonance imaging study. Cerebrovasc. Dis. 45, 124–131 (2018).

    Article  PubMed  Google Scholar 

  69. Carpenter, A. M., Singh, I. P., Gandhi, C. D. & Prestigiacomo, C. J. Genetic risk factors for spontaneous intracerebral haemorrhage. Nat. Rev. Neurol. 12, 40–49 (2016).

    Article  CAS  PubMed  Google Scholar 

  70. Falcone, G. J. & Woo, D. Genetics of spontaneous intracerebral hemorrhage. Stroke 48, 3420–3424 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Rost, N. S., Greenberg, S. M. & Rosand, J. The genetic architecture of intracerebral hemorrhage. Stroke 39, 2166–2173 (2008).

    Article  PubMed  Google Scholar 

  72. O’Donnell, M. J. et al. Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-control study. Lancet 376, 112–123 (2010). Provides data on risk factors for ICH.

    Article  PubMed  Google Scholar 

  73. Arima, H. et al. Prior events predict cerebrovascular and coronary outcomes in the PROGRESS trial. Stroke 37, 1497–1502 (2006).

    Article  PubMed  Google Scholar 

  74. Hilkens, N. A., Greving, J. P., Algra, A. & Klijn, C. J. M. Blood pressure levels and the risk of intracerebral hemorrhage after ischemic stroke. Neurology 88, 177–181 (2017).

    Article  PubMed  Google Scholar 

  75. Langhorne, P. et al. Stroke unit care benefits patients with intracerebral hemorrhage: systematic review and meta-analysis. Stroke 44, 3044–3049 (2013).

    Article  PubMed  Google Scholar 

  76. Parry-Jones, A. R. et al. An intracerebral hemorrhage care bundle is associated with lower case fatality. Ann. Neurol. 86, 495–503 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Willmot, M., Leonardi-Bee, J. & Bath, P. M. W. High blood pressure in acute stroke and subsequent outcome: a systematic review. Hypertension 43, 18–24 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Moullaali, T. J. et al. Early lowering of blood pressure after acute intracerebral haemorrhage: a systematic review and meta-analysis of individual patient data. J. Neurol. Neurosurg. Psychiatry 93, 6–13 (2022).

    Article  PubMed  Google Scholar 

  79. Sandset, E. C. et al. European Stroke Organisation (ESO) guidelines on blood pressure management in acute ischaemic stroke and intracerebral haemorrhage. Eur. Stroke J. 6, XLVIII–LXXXIX (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Shoamanesh, A. et al. Canadian stroke best practice recommendations: management of spontaneous intracerebral hemorrhage, 7th edition update 2020. Int. J. Stroke 16, 321–341 (2021).

    Article  PubMed  Google Scholar 

  81. Qureshi, A. I. et al. Outcomes of intensive systolic blood pressure reduction in patients with intracerebral hemorrhage and excessively high initial systolic blood pressure: post hoc analysis of a randomized clinical trial. JAMA Neurol. 77, 1355–1365 (2020).

    Article  PubMed  Google Scholar 

  82. Wang, X. et al. J-shape relation of blood pressure reduction and outcome in acute intracerebral hemorrhage: a pooled analysis of INTERACT2 and ATACH-II individual participant data. Int. J. Stroke 17, 1129–1136 (2022).

    Article  PubMed  Google Scholar 

  83. Li, Q. et al. Ultra-early blood pressure reduction attenuates hematoma growth and improves outcome in intracerebral hemorrhage. Ann. Neurol. 88, 388–395 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Anadani, M. et al. Race/ethnicity and response to blood pressure lowering treatment after intracerebral hemorrhage. Eur. Stroke J. 6, 343–348 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Divani, A. A. et al. Blood pressure variability predicts poor in-hospital outcome in spontaneous intracerebral hemorrhage. Stroke 50, 2023–2029 (2019).

    Article  PubMed  Google Scholar 

  86. Foerch, C., Lo, E. H., van Leyen, K., Lauer, A. & Schaefer, J. H. Intracerebral hemorrhage formation under direct oral anticoagulants. Stroke 50, 1034–1042 (2019).

    Article  PubMed  Google Scholar 

  87. Inohara, T. et al. Association of intracerebral hemorrhage among patients taking non-vitamin K antagonist vs vitamin K antagonist oral anticoagulants with in-hospital mortality. JAMA 319, 463–473 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Tsivgoulis, G. et al. Neuroimaging and clinical outcomes of oral anticoagulant-associated intracerebral hemorrhage. Ann. Neurol. 84, 694–704 (2018).

    Article  CAS  PubMed  Google Scholar 

  89. Kuramatsu, J. B. et al. Anticoagulant reversal, blood pressure levels, and anticoagulant resumption in patients with anticoagulation-related intracerebral hemorrhage. JAMA 313, 824–836 (2015).

    Article  CAS  PubMed  Google Scholar 

  90. Steiner, T. et al. Fresh frozen plasma versus prothrombin complex concentrate in patients with intracranial haemorrhage related to vitamin K antagonists (INCH): a randomised trial. Lancet Neurol. 15, 566–573 (2016).

    Article  CAS  PubMed  Google Scholar 

  91. Hanger, H. C., Geddes, J. A. A., Wilkinson, T. J., Lee, M. & Baker, A. E. Warfarin-related intracerebral haemorrhage: better outcomes when reversal includes prothrombin complex concentrates. Intern. Med. J. 43, 308–316 (2013).

    Article  CAS  PubMed  Google Scholar 

  92. WOMAN Trial Collaborators. Effect of early tranexamic acid administration on mortality, hysterectomy, and other morbidities in women with post-partum haemorrhage (WOMAN): an international, randomised, double-blind, placebo-controlled trial. Lancet 389, 2105–2116 (2017).

    Article  Google Scholar 

  93. CRASH-3 trial collaborators. Effects of tranexamic acid on death, disability, vascular occlusive events and other morbidities in patients with acute traumatic brain injury (CRASH-3): a randomised, placebo-controlled trial. Lancet 394, 1713–1723 (2019).

    Article  Google Scholar 

  94. Sprigg, N. et al. Tranexamic acid for hyperacute primary IntraCerebral Haemorrhage (TICH-2): an international randomised, placebo-controlled, phase 3 superiority trial. Lancet 391, 2107–2115 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. ISRCTN. ISRCTN registry https://www.isrctn.com/ISRCTNISRCTN97695350 (2022).

  96. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03385928 (2022).

  97. Chinese Clinical Trial Registry. chictr.org https://www.chictr.org.cn/showprojen.aspx?proj=44992 (2019).

  98. Loggini, A. et al. Effect of desmopressin on hematoma expansion in antiplatelet-associated intracerebral hemorrhage: a systematic review and meta-analysis. J. Clin. Neurosci. 86, 116–121 (2021).

    Article  PubMed  Google Scholar 

  99. Al-Shahi Salman, R., Law, Z. K., Bath, P. M., Steiner, T. & Sprigg, N. Haemostatic therapies for acute spontaneous intracerebral haemorrhage. Cochrane Database Syst. Rev. 4, CD005951 (2018).

    PubMed  Google Scholar 

  100. Baharoglu, M. I. et al. Platelet transfusion versus standard care after acute stroke due to spontaneous cerebral haemorrhage associated with antiplatelet therapy (PATCH): a randomised, open-label, phase 3 trial. Lancet 387, 2605–2613 (2016).

    Article  PubMed  Google Scholar 

  101. Lord, A. S., Gilmore, E., Choi, H. A. & Mayer, S. A. Time course and predictors of neurological deterioration after intracerebral hemorrhage. Stroke 46, 647–652 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Hemphill, J. C. 3rd, Farrant, M. & Neill, T. A. J. Prospective validation of the ICH Score for 12-month functional outcome. Neurology 73, 1088–1094 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Burns, J. D. et al. The effect of a neurocritical care service without a dedicated neuro-ICU on quality of care in intracerebral hemorrhage. Neurocrit. Care 18, 305–312 (2013).

    Article  PubMed  Google Scholar 

  104. Knopf, L., Staff, I., Gomes, J. & McCullough, L. Impact of a neurointensivist on outcomes in critically ill stroke patients. Neurocrit. Care 16, 63–71 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Kurtz, P. et al. How does care differ for neurological patients admitted to a neurocritical care unit versus a general ICU? Neurocrit. Care 15, 477–480 (2011).

    Article  PubMed  Google Scholar 

  106. Mirski, M. A., Chang, C. W. & Cowan, R. Impact of a neuroscience intensive care unit on neurosurgical patient outcomes and cost of care: evidence-based support for an intensivist-directed specialty ICU model of care. J. Neurosurg. Anesthesiol. 13, 83–92 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Ungerer, M. N. et al. Stroke unit admission is associated with better outcome and lower mortality in patients with intracerebral hemorrhage. Eur. J. Neurol. 27, 825–832 (2020).

    Article  CAS  PubMed  Google Scholar 

  108. Lovasik, B. P. et al. The effect of external ventricular drain use in intracerebral hemorrhage. World Neurosurg. 94, 309–318 (2016).

    Article  PubMed  Google Scholar 

  109. Herrick, D. B. et al. Determinants of external ventricular drain placement and associated outcomes in patients with spontaneous intraventricular hemorrhage. Neurocrit. Care 21, 426–434 (2014).

    Article  PubMed  Google Scholar 

  110. Hallevi, H. et al. Intraventricular hemorrhage: anatomic relationships and clinical implications. Neurology 70, 848–852 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. Gaberel, T., Magheru, C. & Emery, E. Management of non-traumatic intraventricular hemorrhage. Neurosurg. Rev. 35, 485–494 (2012).

    Article  PubMed  Google Scholar 

  112. Hanley, D. F. Intraventricular hemorrhage: severity factor and treatment target in spontaneous intracerebral hemorrhage. Stroke 40, 1533–1538 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Hanley, D. F. et al. Thrombolytic removal of intraventricular haemorrhage in treatment of severe stroke: results of the randomised, multicentre, multiregion, placebo-controlled CLEAR III trial. Lancet 389, 603–611 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kuramatsu, J. B. et al. Association of intraventricular fibrinolysis with clinical outcomes in intracerebral hemorrhage: an individual participant data meta-analysis. Stroke 53, 2876–2886 (2022).

    Article  CAS  PubMed  Google Scholar 

  115. Zhang, Z. et al. Application of neuroendoscopy in the treatment of intraventricular hemorrhage. Cerebrovasc. Dis. 24, 91–96 (2007).

    Article  PubMed  Google Scholar 

  116. Li, Y. et al. Neuroendoscopic surgery versus external ventricular drainage alone or with intraventricular fibrinolysis for intraventricular hemorrhage secondary to spontaneous supratentorial hemorrhage: a systematic review and meta-analysis. PLoS ONE 8, e80599 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Mei, L. et al. Exploration of efficacy and safety of interventions for intraventricular hemorrhage: a network meta-analysis. World Neurosurg. 136, 382–389.e6 (2020).

    Article  PubMed  Google Scholar 

  118. Godoy, D. A., Núñez-Patiño, R. A., Zorrilla-Vaca, A., Ziai, W. C. & Hemphill, J. C. 3rd Intracranial hypertension after spontaneous intracerebral hemorrhage: a systematic review and meta-analysis of prevalence and mortality rate. Neurocrit. Care 31, 176–187 (2019).

    Article  PubMed  Google Scholar 

  119. Ziai, W. C. et al. Occurrence and impact of intracranial pressure elevation during treatment of severe intraventricular hemorrhage. Crit. Care Med. 40, 1601–1608 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Ziai, W. C. et al. Intracranial hypertension and cerebral perfusion pressure insults in adult hypertensive intraventricular hemorrhage: occurrence and associations with outcome. Crit. Care Med. 47, 1125–1134 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Menacho, S. T. et al. Impact of intracranial pressure monitor-guided therapy on neurologic outcome after spontaneous nontraumatic intracranial hemorrhage. J. Stroke Cerebrovasc. Dis. 30, 105540 (2021).

    Article  PubMed  Google Scholar 

  122. Al-Kawaz, M. N. et al. Intracranial pressure and cerebral perfusion pressure in large spontaneous intracranial hemorrhage and impact of minimally invasive surgery. Front. Neurol. 12, 729831 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Shah, M. et al. Effect of hyperosmolar therapy on outcome following spontaneous intracerebral hemorrhage: ethnic/racial variations of intracerebral hemorrhage (ERICH) study. J. Stroke Cerebrovasc. Dis. 27, 1061–1067 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Mendelow, A. D. et al. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial intracerebral haematomas in the International Surgical Trial in Intracerebral Haemorrhage (STICH): a randomised trial. Lancet 365, 387–397 (2005).

    Article  PubMed  Google Scholar 

  125. Mendelow, A. D. et al. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial lobar intracerebral haematomas (STICH II): a randomised trial. Lancet 382, 397–408 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Bhaskar, M. K. et al. A randomized controlled study of operative versus nonoperative treatment for large spontaneous supratentorial intracerebral hemorrhage. Neurol. India 65, 752–758 (2017).

    Article  PubMed  Google Scholar 

  127. Scaggiante, J., Zhang, X., Mocco, J. & Kellner, C. P. Minimally invasive surgery for intracerebral hemorrhage. Stroke 49, 2612–2620 (2018).

    Article  PubMed  Google Scholar 

  128. Tang, Y. et al. Efficacy and safety of minimal invasive surgery treatment in hypertensive intracerebral hemorrhage: a systematic review and meta-analysis. BMC Neurol. 18, 136 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Sun, S. et al. Neuroendoscopic surgery versus craniotomy for supratentorial hypertensive intracerebral hemorrhage: a systematic review and meta-analysis. World Neurosurg. 134, 477–488 (2020).

    Article  PubMed  Google Scholar 

  130. Wang, J.-W. et al. Stereotactic aspiration versus craniotomy for primary intracerebral hemorrhage: a meta-analysis of randomized controlled trials. PLoS ONE 9, e107614 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Xia, Z. et al. Minimally invasive surgery is superior to conventional craniotomy in patients with spontaneous supratentorial intracerebral hemorrhage: a systematic review and meta-analysis. World Neurosurg. 115, 266–273 (2018).

    Article  PubMed  Google Scholar 

  132. Yao, Z., Hu, X., You, C. & He, M. Effect and feasibility of endoscopic surgery in spontaneous intracerebral hemorrhage: a systematic review and meta-analysis. World Neurosurg. 113, 348–356.e2 (2018).

    Article  PubMed  Google Scholar 

  133. Zhao, X.-H., Zhang, S.-Z., Feng, J., Li, Z.-Z. & Ma, Z.-L. Efficacy of neuroendoscopic surgery versus craniotomy for supratentorial hypertensive intracerebral hemorrhage: a meta-analysis of randomized controlled trials. Brain Behav. 9, e01471 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Zhou, X. et al. Minimally invasive surgery for spontaneous supratentorial intracerebral hemorrhage: a meta-analysis of randomized controlled trials. Stroke 43, 2923–2930 (2012).

    Article  PubMed  Google Scholar 

  135. Hanley, D. F. et al. Efficacy and safety of minimally invasive surgery with thrombolysis in intracerebral haemorrhage evacuation (MISTIE III): a randomised, controlled, open-label, blinded endpoint phase 3 trial. Lancet 393, 1021–1032 (2019). Despite neutral results, mini-invasise surgery is one of the most promising interventions.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Kuramatsu, J. B. et al. Association of surgical hematoma evacuation vs conservative treatment with functional outcome in patients with cerebellar intracerebral hemorrhage. JAMA 322, 1392–1403 (2019). Despite its observational, non-randomized design, this shows the best available data regarding the impact of surgery on mortality only in posterior fossa ICH.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Lo, Y. T., See, A. A. Q. & King, N. K. K. Decompressive craniectomy in spontaneous intracerebral hemorrhage: a case-control study. World Neurosurg. 103, 815–820.e2 (2017).

    Article  PubMed  Google Scholar 

  138. Moussa, W. M. M. & Khedr, W. Decompressive craniectomy and expansive duraplasty with evacuation of hypertensive intracerebral hematoma, a randomized controlled trial. Neurosurg. Rev. 40, 115–127 (2017).

    Article  PubMed  Google Scholar 

  139. Rasras, S., Safari, H., Zeinali, M. & Jahangiri, M. Decompressive hemicraniectomy without clot evacuation in supratentorial deep-seated intracerebral hemorrhage. Clin. Neurol. Neurosurg. 174, 1–6 (2018).

    Article  CAS  PubMed  Google Scholar 

  140. Yao, Z., Ma, L., You, C. & He, M. Decompressive craniectomy for spontaneous intracerebral hemorrhage: a systematic review and meta-analysis. World Neurosurg. 110, 121–128 (2018).

    Article  PubMed  Google Scholar 

  141. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02258919 (2020).

  142. Pasi, M. & Cordonnier, C. Clinical relevance of cerebral small vessel diseases. Stroke 51, 47–53 (2020).

    Article  PubMed  Google Scholar 

  143. Puy, L. et al. Cerebral microbleeds: from depiction to interpretation. J. Neurol. Neurosurg. Psychiatry https://doi.org/10.1136/jnnp-2020-323951 (2021).

    Article  PubMed  Google Scholar 

  144. Casolla, B. et al. Five-year risk of major ischemic and hemorrhagic events after intracerebral hemorrhage. Stroke 50, 1100–1107 (2019).

    Article  PubMed  Google Scholar 

  145. Bailey, R. D., Hart, R. G., Benavente, O. & Pearce, L. A. Recurrent brain hemorrhage is more frequent than ischemic stroke after intracranial hemorrhage. Neurology 56, 773–777 (2001).

    Article  CAS  PubMed  Google Scholar 

  146. Schreuder, F. H. B. M. et al. Apixaban versus no anticoagulation after anticoagulation-associated intracerebral haemorrhage in patients with atrial fibrillation in the Netherlands (APACHE-AF): a randomised, open-label, phase 2 trial. Lancet Neurol. 20, 907–916 (2021).

    Article  CAS  PubMed  Google Scholar 

  147. Mullen, M. T. & Anderson, C. S. Review of long-term blood pressure control after intracerebral hemorrhage: challenges and opportunities. Stroke 53, 2142–2151 (2022).

    Article  PubMed  Google Scholar 

  148. RESTART Collaboration. Effects of antiplatelet therapy after stroke due to intracerebral haemorrhage (RESTART): a randomised, open-label trial. Lancet 393, 2613–2623 (2019).

    Article  Google Scholar 

  149. SoSTART Collaboration. Effects of oral anticoagulation for atrial fibrillation after spontaneous intracranial haemorrhage in the UK: a randomised, open-label, assessor-masked, pilot-phase, non-inferiority trial. Lancet Neurol. 20, 842–853 (2021).

    Article  Google Scholar 

  150. Puy, L., Forman, R., Cordonnier, C. & Sheth, K. N. Protecting the brain, from the heart: safely mitigating the consequences of thrombosis in intracerebral hemorrhage survivors with atrial fibrillation. Stroke 53, 2152–2160 (2022).

    Article  PubMed  Google Scholar 

  151. Ruff, C. T. et al. Comparison of the efficacy and safety of new oral anticoagulants with warfarin in patients with atrial fibrillation: a meta-analysis of randomised trials. Lancet 383, 955–962 (2014).

    Article  CAS  PubMed  Google Scholar 

  152. Cuker, A. et al. Reversal of direct oral anticoagulants: guidance from the anticoagulation forum. Am. J. Hematol. 94, 697–709 (2019).

    Article  PubMed  Google Scholar 

  153. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03243175 (2023).

  154. Endres, M., Nolte, C. H. & Scheitz, J. F. Statin treatment in patients with intracerebral hemorrhage. Stroke 49, 240–246 (2018).

    Article  PubMed  Google Scholar 

  155. Pezzini, A. et al. Serum cholesterol levels, HMG-CoA reductase inhibitors and the risk of intracerebral haemorrhage. The multicenter study on cerebral haemorrhage in Italy (MUCH-Italy). J. Neurol. Neurosurg. Psychiatry 87, 924–929 (2016).

    Article  PubMed  Google Scholar 

  156. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03936361 (2022).

  157. Pedersen, T. G. B. et al. Trends in the incidence and mortality of intracerebral hemorrhage, and the associated risk factors, in Denmark from 2004 to 2017. Eur. J. Neurol. 29, 168–177 (2022).

    Article  PubMed  Google Scholar 

  158. Pasi, M. et al. Long-term mortality in survivors of spontaneous intracerebral hemorrhage. Int. J. Stroke 16, 448–455 (2021).

    Article  PubMed  Google Scholar 

  159. Verhoeven, J. I. et al. Long-term mortality in young patients with spontaneous intracerebral haemorrhage: predictors and causes of death. Eur. Stroke J. 6, 185–193 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Williams, L. S., Weinberger, M., Harris, L. E., Clark, D. O. & Biller, J. Development of a stroke-specific quality of life scale. Stroke 30, 1362–1369 (1999).

    Article  CAS  PubMed  Google Scholar 

  161. Herdman, M. et al. Development and preliminary testing of the new five-level version of EQ-5D (EQ-5D-5L). Qual. Life Res. 20, 1727–1736 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Pasi, M. et al. Long-term functional decline of spontaneous intracerebral haemorrhage survivors. J. Neurol. Neurosurg. Psychiatry 92, 249–254 (2021).

    Article  PubMed  Google Scholar 

  163. Banks, J. L. & Marotta, C. A. Outcomes validity and reliability of the modified Rankin scale: implications for stroke clinical trials: a literature review and synthesis. Stroke 38, 1091–1096 (2007).

    Article  PubMed  Google Scholar 

  164. Kaufer, D. I. et al. Validation of the NPI-Q, a brief clinical form of the neuropsychiatric inventory. J. Neuropsychiatry Clin. Neurosci. 12, 233–239 (2000).

    Article  CAS  PubMed  Google Scholar 

  165. Scopelliti, G. et al. Long-term neuropsychiatric symptoms in spontaneous intracerebral haemorrhage survivors. J. Neurol. Neurosurg. Psychiatry 93, 232–237 (2022).

    Article  PubMed  Google Scholar 

  166. Haapaniemi, E. et al. The CAVE score for predicting late seizures after intracerebral hemorrhage. Stroke 45, 1971–1976 (2014).

    Article  PubMed  Google Scholar 

  167. Lahti, A.-M. et al. Poststroke epilepsy in long-term survivors of primary intracerebral hemorrhage. Neurology 88, 2169–2175 (2017).

    Article  PubMed  Google Scholar 

  168. Rossi, C. et al. Incidence and predictors of late seizures in intracerebral hemorrhages. Stroke 44, 1723–1725 (2013).

    Article  CAS  PubMed  Google Scholar 

  169. Zahuranec, D. B. et al. Early care limitations independently predict mortality after intracerebral hemorrhage. Neurology 68, 1651–1657 (2007).

    Article  CAS  PubMed  Google Scholar 

  170. Shah, V. A. et al. One-year outcome trajectories and factors associated with functional recovery among survivors of intracerebral and intraventricular hemorrhage with initial severe disability. JAMA Neurol. 79, 856–868 (2022).

    Article  PubMed  Google Scholar 

  171. Sembill, J. A. et al. Severity assessment in maximally treated ICH patients: the max-ICH score. Neurology 89, 423–431 (2017).

    Article  PubMed  Google Scholar 

  172. Massicotte, S. et al. How outcomes are measured after spontaneous intracerebral hemorrhage: a systematic scoping review. PLoS ONE 16, e0253964 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03496883 (2023).

  174. Ironside, N. et al. Fully automated segmentation algorithm for perihematomal edema volumetry after spontaneous intracerebral hemorrhage. Stroke 51, 815–823 (2020).

    Article  PubMed  Google Scholar 

  175. Valdés Hernández, M. D. C. et al. Application of texture analysis to study small vessel disease and blood-brain barrier integrity. Front. Neurol. 8, 327 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Hemorrhagic Stroke Academia Industry (HEADS) Roundtable Participants; Second HEADS Roundtable Participants. Recommendations for clinical trials in ICH: the second hemorrhagic stroke academia industry roundtable. Stroke 51, 1333–1338 (2020).

    Article  Google Scholar 

  177. Selim, M. et al. Deferoxamine mesylate in patients with intracerebral haemorrhage (i-DEF): a multicentre, randomised, placebo-controlled, double-blind phase 2 trial. Lancet Neurol. 18, 428–438 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Fouda, A. Y. et al. Minocycline in acute cerebral hemorrhage: an early phase randomized trial. Stroke 48, 2885–2887 (2017).

    Article  CAS  PubMed  Google Scholar 

  179. Chang, J. J. et al. Minocycline and matrix metalloproteinase inhibition in acute intracerebral hemorrhage: a pilot study. Eur. J. Neurol. 24, 1384–1391 (2017).

    Article  CAS  PubMed  Google Scholar 

  180. Fu, Y. et al. Fingolimod for the treatment of intracerebral hemorrhage: a 2-arm proof-of-concept study. JAMA Neurol. 71, 1092–1101 (2014).

    Article  PubMed  Google Scholar 

  181. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04088630 (2022).

  182. Sobowale, O. A. et al. Interleukin-1 in stroke: from bench to bedside. Stroke 47, 2160–2167 (2016).

    Article  PubMed  Google Scholar 

  183. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03737344 (2021).

  184. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04834388 (2022).

  185. Campbell, B. C. V. et al. Ischaemic stroke. Nat. Rev. Dis. Primers 5, 70 (2019).

    Article  PubMed  Google Scholar 

  186. Anderson, C. S. et al. Rapid blood-pressure lowering in patients with acute intracerebral hemorrhage. N. Engl. J. Med. 368, 2355–2365 (2013).

    Article  CAS  PubMed  Google Scholar 

  187. Qureshi, A. I. et al. Intensive blood-pressure lowering in patients with acute cerebral hemorrhage. N. Engl. J. Med. 375, 1033–1043 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Meretoja, A. et al. Tranexamic acid in patients with intracerebral haemorrhage (STOP-AUST): a multicentre, randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 19, 980–987 (2020).

    Article  CAS  PubMed  Google Scholar 

  189. Liu, J. et al. Tranexamic acid for acute intracerebral haemorrhage growth based on imaging assessment (TRAIGE): a multicentre, randomised, placebo-controlled trial. Stroke Vasc. Neurol. 6, 160–169 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank G. Boulouis for his assistance for Fig. 6.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (L.P. and C.C.); Epidemiology (L.P.); Mechanisms/pathophysiology (A.R.P.-J. and L.P.); Diagnosis, screening and prevention (D.D. and L.P.); Management (E.C.S., W.Z., A.RP.-J., L.P. and C.C.); Quality of life (L.P. and D.D.); Outlook (D.D. and C.C.); Overview of Primer (C.C.).

Corresponding author

Correspondence to Charlotte Cordonnier.

Ethics declarations

Competing interests

L.P. received speaker fees from Daichi–Sankyo. A.R.P.-J. participated in advisory boards for and received speaker’s fees from Alexion Pharmaceuticals, Inc. E.C.S. is on the steering committee of ANNEXAi. D.D. holds a patent for the CARL software to automatically detect contrast extravasation, has received honoraria from AstraZeneca Canada, is on the steering committee of the FASTEST and ENRICH-AF trials. W.Z. is supported by the NIH (1U01NS080824, R01NS102583, U01NS106513 and 1R01NS120557). C.C. received speaker fees from BMS and Pfizer.

Peer review

Peer review information

Nature Reviews Disease Primers thanks G. Donnan, J. Kuramatsu, L. P. Liu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puy, L., Parry-Jones, A.R., Sandset, E.C. et al. Intracerebral haemorrhage. Nat Rev Dis Primers 9, 14 (2023). https://doi.org/10.1038/s41572-023-00424-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-023-00424-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing