Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Applications of liquid biopsy in the Pharmacological Audit Trail for anticancer drug development

Subjects

Abstract

Anticancer drug development is a costly and protracted activity, and failure at late phases of clinical testing is common. We have previously proposed the Pharmacological Audit Trail (PhAT) intended to improve the efficiency of drug development, with a focus on the use of tumour tissue-based biomarkers. Blood-based ‘liquid biopsy’ approaches, such as targeted or whole-genome sequencing studies of plasma circulating cell-free tumour DNA (ctDNA) and circulating tumour cells (CTCs), are of increasing relevance to this drug development paradigm. Liquid biopsy assays can provide quantitative and qualitative data on prognostic, predictive, pharmacodynamic and clinical response biomarkers, and can also enable the characterization of disease evolution and resistance mechanisms. In this Perspective, we examine the promise of integrating liquid biopsy analyses into the PhAT, focusing on the current evidence, advances, limitations and challenges. We emphasize the continued importance of analytical validation and clinical qualification of circulating tumour biomarkers through prospective clinical trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Liquid biopsies can be used at multiple steps of the PhAT.
Fig. 2: Liquid biopsy analyses can serve multiple functions in drug development.
Fig. 3: Demonstration of intrapatient heterogeneity through single-cell genomic analysis of CTCs.
Fig. 4: Example of the power of single-cell analysis of CTCs in fully understanding the heterogeneity of tumour biology and evolution.
Fig. 5: Serial analysis of cfDNA with LPWGS.
Fig. 6: LPWGS of cfDNA can provide insights into tumour biology and provide new biomarkers.

Similar content being viewed by others

References

  1. Sharpe, E., Hoey, R., Yap, C. & Workman, P. From patent to patient: analysing access to innovative cancer drugs. Drug Discov. Today 25, 1561–1568 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Biotechnology Innovation Organization, Biomedtracker & Amplion. Clinical Development Success Rates 2006-2015 bio.org https://www.bio.org/sites/default/files/legacy/bioorg/docs/Clinical%20Development%20Success%20Rates%202006-2015%20-%20BIO,%20Biomedtracker,%20Amplion%202016.pdf (2016).

  3. Workman, P., Draetta, G. F., Schellens, J. H. M. & Bernards, R. How much longer will we put up with 100,000 cancer drugs? Cell 168, 579–583 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Workman, P. How much gets there and what does it do?: The need for better pharmacokinetic and pharmacodynamic endpoints in contemporary drug discovery and development. Curr. Pharm. Des. 9, 891–902 (2005).

    Article  Google Scholar 

  5. Yap, T. A., Sandhu, S. K., Workman, P. & de Bono, J. S. Envisioning the future of early anticancer drug development. Nat. Rev. Cancer 10, 514 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Workman, P. Auditing the pharmacological accounts for Hsp90 molecular chaperone inhibitors: unfolding the relationship between pharmacokinetics and pharmacodynamics. Mol. Cancer Ther. 2, 131–138 (2003).

    CAS  PubMed  Google Scholar 

  7. Banerji, U. et al. Phase I pharmacokinetic and pharmacodynamic study of 17-allylamino, 17-demethoxygeldanamycin in patients with advanced malignancies. J. Clin. Oncol. 23, 4152–4161 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Attard, G. et al. Phase I clinical trial of a selective inhibitor of CYP17, abiraterone acetate, confirms that castration-resistant prostate cancer commonly remains hormone driven. J. Clin. Oncol. 26, 4563–4571 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Attard, G. et al. Selective inhibition of CYP17 with abiraterone acetate is highly active in the treatment of castration-resistant prostate cancer. J. Clin. Oncol. 27, 3742–3748 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Fong, P. C. et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N. Engl. J. Med. 361, 123–134 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Sarker, D. et al. First-in-human phase I study of pictilisib (GDC-0941), a potent pan-class I phosphatidylinositol-3-kinase (PI3K) inhibitor, in patients with advanced solid tumors. Clin. Cancer Res. 21, 77–86 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Yap, T. A. et al. First-in-class phase I trial of a selective Akt inhibitor, MK2206 (MK), evaluating alternate day (QOD) and once weekly (QW) doses in advanced cancer patients (pts) with evidence of target modulation and antitumor activity [abstract]. J. Clin. Oncol. 28 (Suppl. 15), 3009 (2010).

    Article  Google Scholar 

  13. Raynaud, F. I. et al. Biological properties of potent inhibitors of class I phosphatidylinositide 3-kinases: from PI-103 through PI-540, PI-620 to the oral agent GDC-0941. Mol. Cancer Ther. 8, 1725–1738 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Carden, C. P., Banerji, U., Kaye, S. B., Workman, P. & de Bono, J. S. From darkness to light with biomarkers in early clinical trials of cancer drugs. Clin. Pharmacol. Ther. 85, 131–133 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Carden, C. P. et al. Can molecular biomarker-based patient selection in phase I trials accelerate anticancer drug development? Drug Discov. Today 15, 88–97 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. de Bono, J. S. et al. Randomized phase II study evaluating Akt blockade with ipatasertib, in combination with abiraterone, in patients with metastatic prostate cancer with and without PTEN loss. Clin. Cancer Res. 25, 928–936 (2019).

    Article  PubMed  Google Scholar 

  17. Ferraldeschi, R. et al. PTEN protein loss and clinical outcome from castration-resistant prostate cancer treated with abiraterone acetate. Eur. Urol. 67, 795–802 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Biondo, A. et al. Research related tumour biopsies in early-phase trials with simultaneous molecular characterisation – a single unit experience. Cancer Treat. Res. Commun. 27, 100309 (2021).

    Article  PubMed  Google Scholar 

  19. Perez-Lopez, R. et al. Diffusion-weighted imaging as a treatment response biomarker for evaluating bone metastases in prostate cancer: a pilot study. Radiology 283, 168–177 (2017).

    Article  PubMed  Google Scholar 

  20. Goodall, J. et al. Circulating cell-free DNA to guide prostate cancer treatment with PARP inhibition. Cancer Discov. 7, 1006–1017 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Attard, G. et al. Characterization of ERG, AR and PTEN gene status in circulating tumor cells from patients with castration-resistant prostate cancer. Cancer Res. 69, 2912–2918 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Banerji, U. & Workman, P. Critical parameters in targeted drug development: the pharmacological audit trail. Semin. Oncol. 43, 436–445 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Rossanese, O. et al. The pharmacological audit trail (PhAT): Use of tumor models to address critical issues in the preclinical development of targeted anticancer drugs. Drug Discov. Today Dis. Model. 21, 23–32 (2016).

    Article  Google Scholar 

  24. Takimoto, C. H. Pharmacokinetics and pharmacodynamic biomarkers in early oncology drug development. Eur. J. Cancer 45, 436–438 (2009).

    Article  PubMed  Google Scholar 

  25. Seyhan, A. A. Biomarkers in drug discovery and development. Eur. Pharm. Rev. 5, 19–25 (2010).

    Google Scholar 

  26. Hait, W. N. Forty years of translational cancer research. Cancer Discov. 1, 383–390 (2011).

    Article  PubMed  Google Scholar 

  27. Garralda, E., Dienstmann, R. & Tabernero, J. Pharmacokinetic/pharmacodynamic modeling for drug development in oncology. Am. Soc. Clin. Oncol. Educ. Book 37, 210–215 (2017).

    Article  PubMed  Google Scholar 

  28. Takimoto, C. & Wick, M. in Principles of Clinical Pharmacology Ch. 31 (eds Arthur, J. & Huang, S.-M.) 517–529 (Academic, 2012).

  29. Eisenhauer, E. A., Twelves, C. & Buyse, M. Phase I Cancer Clinical Trials: A Practical Guide (Oxford Univ. Press, 2015).

  30. Hait, W. in Cancer Medicine Ch. 27 (ed. Hong, W.) (People’s Medical Publishing House, 2010).

  31. Sandhu, S. K. et al. The poly(ADP-ribose) polymerase inhibitor niraparib (MK4827) in BRCA mutation carriers and patients with sporadic cancer: a phase 1 dose-escalation trial. Lancet. Oncol. 14, 882–892 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. de Bono, J. et al. Phase I, dose-escalation, two-part trial of the PARP inhibitor talazoparib in patients with advanced germline BRCA1/2 mutations and selected sporadic cancers. Cancer Discov. 7, 620–629 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yap, T. A. et al. Phase I trial of first-in-class ATR inhibitor M6620 (VX-970) as monotherapy or in combination with carboplatin in patients with advanced solid tumors. J. Clin. Oncol. 38, 3195–3204 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Slovin, S. F. et al. Pharmacodynamic and clinical results from a phase 1/2 study of the HSP90 inhibitor onalespib in combination with abiraterone acetate in prostate cancer. Clin. Cancer Res. 25, 4624–4633 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Levit, L. A. et al. Ethical framework for including research biopsies in oncology clinical trials: American Society of Clinical Oncology research statement. J. Clin. Oncol. 37, 2368–2377 (2019).

    Article  PubMed  Google Scholar 

  36. Kimmelman, J., Resnik, D. B., Peppercorn, J. & Ratain, M. J. Burdensome research procedures in trials: why less is more. J. Natl. Cancer Inst. 109, djw315 (2017).

    Article  PubMed Central  Google Scholar 

  37. Helft, P. R. & Daugherty, C. K. Are we taking without giving in return? The ethics of research-related biopsies and the benefits of clinical trial participation. J. Clin. Oncol. 24, 4793–4795 (2006).

    Article  PubMed  Google Scholar 

  38. El-Osta, H. et al. Outcomes of research biopsies in phase I clinical trials: the MD Anderson Cancer Center experience. Oncologist 16, 1292–1298 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gomez-Roca, C. A. et al. Sequential research-related biopsies in phase I trials: acceptance, feasibility and safety. Ann. Oncol. 23, 1301–1306 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Mok, T. S. et al. Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer. N. Engl. J. Med. 376, 629–640 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Oxnard, G. R. et al. Association between plasma genotyping and outcomes of treatment with osimertinib (AZD9291) in advanced non-small-cell lung cancer. J. Clin. Oncol. 34, 3375–3382 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mayrhofer, M. et al. Cell-free DNA profiling of metastatic prostate cancer reveals microsatellite instability, structural rearrangements and clonal hematopoiesis. Genome Med. 10, 85 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Smith, C. G. et al. Comprehensive characterization of cell-free tumor DNA in plasma and urine of patients with renal tumors. Genome Med. 12, 23 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gabriel, E. & Bagaria, S. P. Assessing the impact of circulating tumor DNA (ctDNA) in patients with colorectal cancer: separating fact from fiction. Front. Oncol. 8, 297 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Miller, A. M. et al. Tracking tumour evolution in glioma through liquid biopsies of cerebrospinal fluid. Nature 565, 654–658 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li, J. et al. Assessment of ctDNA in CSF may be a more rapid means of assessing surgical outcomes than plasma ctDNA in glioblastoma. Mol. Cell. Probes 46, 101411 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Micalizzi, D. S., Maheswaran, S. & Haber, D. A. A conduit to metastasis: circulating tumor cell biology. Genes Dev. 31, 1827–1840 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rodrigues, P. & Vanharanta, S. Circulating tumor cells: come together, right now, over metastasis. Cancer Discov. 9, 22–24 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. De Rubis, G., Rajeev Krishnan, S. & Bebawy, M. Liquid biopsies in cancer diagnosis, monitoring, and prognosis. Trends Pharmacol. Sci. 40, 172–186 (2019).

    Article  PubMed  Google Scholar 

  50. Gast, C. E. et al. Cell fusion potentiates tumor heterogeneity and reveals circulating hybrid cells that correlate with stage and survival. Sci. Adv. 4, eaat7828 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Miller, M. C., Doyle, G. V. & Terstappen, L. W. M. M. Significance of circulating tumor cells detected by the CellSearch system in patients with metastatic breast colorectal and prostate cancer. J. Oncol. 2010, 617421 (2010).

    Article  PubMed  Google Scholar 

  52. Bankó, P. et al. Technologies for circulating tumor cell separation from whole blood. J. Hematol. Oncol. 12, 48 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Scher, H. I. et al. Phenotypic heterogeneity of circulating tumor cells informs clinical decisions between AR signaling inhibitors and taxanes in metastatic prostate cancer. Cancer Res. 77, 5687–5698 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Stilwell, J. L. et al. RareCyte® CTC analysis step 3: using the CytePicker® module for individual cell retrieval and subsequent whole genome amplification of circulating tumor cells for genomic analysis. Methods Mol. Biol. 1634, 181–192 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. Werbin, J. L. et al. RareCyte® CTC analysis step 2: detection of circulating tumor cells by CyteFinder® automated scanning and semiautomated image analysis. Methods Mol. Biol. 1634, 173–180 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Ramirez, A. B. et al. RareCyte® CTC analysis step 1: AccuCyte® sample preparation for the comprehensive recovery of nucleated cells from whole blood. Methods Mol. Biol. 1634, 163–172 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. Ohnaga, T., Takei, Y., Nagata, T. & Shimada, Y. Highly efficient capture of cancer cells expressing EGFR by microfluidic methods based on antigen-antibody association. Sci. Rep. 8, 12005 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Agarwal, A., Balic, M., El-Ashry, D. & Cote, R. J. Circulating tumor cells: strategies for capture, analyses, and propagation. Cancer J. 24, 70–77 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cristofanilli, M. et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N. Engl. J. Med. 351, 781–791 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. De Bono, J. S. et al. Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin. Cancer Res. 14, 6302–6309 (2008).

    Article  PubMed  Google Scholar 

  61. Cohen, S. J. et al. Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. J. Clin. Oncol. 26, 3213–3221 (2008).

    Article  PubMed  Google Scholar 

  62. Punnoose, E. A. et al. PTEN loss in circulating tumour cells correlates with PTEN loss in fresh tumour tissue from castration-resistant prostate cancer patients. Br. J. Cancer 113, 1225–1233 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ligthart, S. T. et al. Unbiased and automated identification of a circulating tumour cell definition that associates with overall survival. PLoS ONE 6, e27419 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Werner, S. L. et al. Analytical validation and capabilities of the Epic CTC platform: enrichment-free circulating tumour cell detection and characterization. J. Circ. Biomarkers 4, 3 (2015).

    Article  Google Scholar 

  65. Pailler, E. et al. Acquired resistance mutations to ALK inhibitors identified by single circulating tumor cell sequencing in ALK-rearranged non-small-cell lung cancer. Clin. Cancer Res. 25, 6671–6682 (2019).

    Article  CAS  PubMed  Google Scholar 

  66. Zeune, L. L. et al. How to agree on a CTC: evaluating the consensus in circulating tumor cell scoring. Cytom. Part A 93, 1202–1206 (2018).

    Article  Google Scholar 

  67. Kuhn, P. et al. Lessons learned: transfer of the high-definition circulating tumor cell assay platform to development as a commercialized clinical assay platform. Clin. Pharmacol. Ther. 102, 777–785 (2017).

    Article  CAS  PubMed  Google Scholar 

  68. Kaldjian, E. P. et al. The RareCyte® platform for next-generation analysis of circulating tumor cells. Cytom. Part A 93, 1220–1225 (2018).

    Article  CAS  Google Scholar 

  69. Rapanotti, M. C. et al. Minimal residual disease in melanoma: circulating melanoma cells and predictive role of MCAM/MUC18/MelCAM/CD146. Cell Death Discov. 3, 17006 (2017).

    Article  Google Scholar 

  70. Ward, K. et al. Epithelial cell adhesion molecule is expressed in a subset of sarcomas and correlates to the degree of cytological atypia in leiomyosarcomas. Mol. Clin. Oncol. 3, 31–36 (2015).

    Article  PubMed  Google Scholar 

  71. Sorotsky, H. et al. Quantifying EpCAM heterogeneity of circulating-tumor-cells (CTCs) from small cell lung cancer (SCLC) patients [abstract]. J. Clin. Oncol. 37, e20091 (2019).

    Article  Google Scholar 

  72. Ferreira, M. M., Ramani, V. C. & Jeffrey, S. S. Circulating tumor cell technologies. Mol. Oncol. 10, 374–394 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lambros, M. B. et al. Single-cell analyses of prostate cancer liquid biopsies acquired by apheresis. Clin. Cancer Res. 24, 5635–5644 (2018).

    Article  CAS  PubMed  Google Scholar 

  74. Rothwell, D. G. et al. Utility of ctDNA to support patient selection for early phase clinical trials: the TARGET study. Nat. Med. 25, 738–743 (2019).

    Article  CAS  PubMed  Google Scholar 

  75. Sharp, A. et al. Clinical utility of circulating tumour cell androgen receptor splice variant-7 status in metastatic castration-resistant prostate cancer. Eur. Urol. 76, 676–685 (2019).

    Article  CAS  PubMed  Google Scholar 

  76. Sharp, A. et al. Androgen receptor splice variant-7 expression emerges with castration resistance in prostate cancer. J. Clin. Invest. 129, 192–208 (2019).

    Article  PubMed  Google Scholar 

  77. Antonarakis, E. S. et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N. Engl. J. Med. 371, 1028–1038 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Armstrong, A. J. et al. Prospective multicenter validation of androgen receptor splice variant 7 and hormone therapy resistance in high-risk castration-resistant prostate cancer: the PROPHECY study. J. Clin. Oncol. 37, 1120–1129 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Plymate, S. R., Sharp, A. & de Bono, J. S. Nuclear circulating tumor cell androgen receptor variant 7 in castration-resistant prostate cancer: the devil is in the detail. JAMA Oncol. 4, 1187–1188 (2018).

    Article  PubMed  Google Scholar 

  80. Wülfing, P. et al. HER2-positive circulating tumor cells indicate poor clinical outcome in stage I to III breast cancer patients. Clin. Cancer Res. 12, 1715–1720 (2006).

    Article  PubMed  Google Scholar 

  81. Janning, M. et al. Determination of PD-L1 expression in circulating tumor cells of NSCLC patients and correlation with response to PD-1/PD-L1 inhibitors. Cancers 11, 835 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  82. Yap, T. A., Lorente, D., Omlin, A., Olmos, D. & De Bono, J. S. Circulating tumor cells: a multifunctional biomarker. Clin. Cancer Res. 20, 2553–2558 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Smerage, J. B. et al. Circulating tumor cells and response to chemotherapy in metastatic breast cancer: SWOG S0500. J. Clin. Oncol. 32, 3483–3489 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Marcuello, M. et al. Circulating biomarkers for early detection and clinical management of colorectal cancer. Mol. Aspects Med. 69, 107–122 (2019).

    Article  CAS  PubMed  Google Scholar 

  85. Devriese, L. A., Voest, E. E., Beijnen, J. H. & Schellens, J. H. M. Circulating tumor cells as pharmacodynamic biomarker in early clinical oncological trials. Cancer Treat. Rev. 37, 579–589 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Siravegna, G., Marsoni, S., Siena, S. & Bardelli, A. Integrating liquid biopsies into the management of cancer. Nat. Rev. Clin. Oncol. 14, 531–548 (2017).

    Article  CAS  PubMed  Google Scholar 

  87. Khetrapal, P. et al. The role of circulating tumour cells and nucleic acids in blood for the detection of bladder cancer: a systematic review. Cancer Treat. Rev. 66, 56–63 (2018).

    Article  CAS  PubMed  Google Scholar 

  88. Garcia-Villa, A. et al. Assessment of γ-H2AX levels in circulating tumor cells from patients receiving chemotherapy. Front. Oncol. 2, 128 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Pixberg, C. F. et al. Analysis of DNA methylation in single circulating tumor cells. Oncogene 36, 3223–3231 (2017).

    Article  CAS  PubMed  Google Scholar 

  90. Hayes, D. F. et al. Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival. Clin. Cancer Res. 12, 4218–4224 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Budd, G. T. et al. Circulating tumor cells versus imaging – Predicting overall survival in metastatic breast cancer. Clin. Cancer Res. 12, 6403–6409 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Janni, W. J. et al. Pooled analysis of the prognostic relevance of circulating tumor cells in primary breast cancer. Clin. Cancer Res. 22, 2583–2593 (2016).

    Article  CAS  PubMed  Google Scholar 

  93. Rack, B. et al. Circulating tumor cells predict survival in early average-to-high risk breast cancer patients. J. Natl. Cancer Inst. 106, dju066–11 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Olmos, D. et al. Baseline circulating tumor cell counts significantly enhance a prognostic score for patients participating in phase I oncology trials. Clin. Cancer Res. 17, 5188–5196 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Bao, H. et al. Circulating tumor cells: application as a biomarker for molecular characterization and predictor of survival in an all-comer solid tumor phase I clinical study. PLoS ONE 8, e58557 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Massard, C. et al. RECIST response and variation of circulating tumour cells in phase 1 trials: a prospective multicentric study. Eur. J. Cancer 83, 185–193 (2017).

    Article  PubMed  Google Scholar 

  97. Heller, G. et al. Circulating tumor cell number as a response measure of prolonged survival for metastatic castration-resistant prostate cancer: a comparison with prostate-specific antigen across five randomized phase III clinical trials. J. Clin. Oncol. 36, 572–580 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Nagrath, S. et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450, 1235–1239 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Chabon, J. J. et al. Circulating tumour DNA profiling reveals heterogeneity of EGFR inhibitor resistance mechanisms in lung cancer patients. Nat. Commun. 7, 11815 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Cremolini, C. et al. Rechallenge for patients with RAS and BRAF wild-type metastatic colorectal cancer with acquired resistance to first-line cetuximab and irinotecan: a phase 2 single-arm clinical trial. JAMA Oncol. 5, 343–350 (2019).

    Article  PubMed  Google Scholar 

  101. Sorber, L. et al. Circulating cell-free nucleic acids and platelets as a liquid biopsy in the provision of personalized therapy for lung cancer patients. Lung Cancer 107, 100–107 (2017).

    Article  CAS  PubMed  Google Scholar 

  102. Vallée, A. et al. Plasma is a better source of tumor-derived circulating cell-free DNA than serum for the detection of EGFR alterations in lung tumor patients. Lung Cancer 82, 373–374 (2013).

    Article  PubMed  Google Scholar 

  103. AstraZeneca. IRESSA 250 mg film-coated tablets. Summary of Product Characteristics (AstraZeneca, 2017).

  104. André, F. et al. Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer. N. Engl. J. Med. 380, 1929–1940 (2019).

    Article  PubMed  Google Scholar 

  105. US Food and Drug Administration. FDA approves first liquid biopsy next-generation sequencing companion diagnostic test. FDA https://www.fda.gov/news-events/press-announcements/fda-approves-first-liquid-biopsy-next-generation-sequencing-companion-diagnostic-test (2020).

  106. Woodhouse, R. et al. Clinical and analytical validation of FoundationOne liquid CDx, a novel 324-gene cfDNA-based comprehensive genomic profiling assay for cancers of solid tumor origin. PLoS ONE 15, e0237802 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. US Food and Drug Administration. FDA approves liquid biopsy NGS companion diagnostic test for multiple cancers and biomarkers. FDA https://www.fda.gov/drugs/fda-approves-liquid-biopsy-ngs-companion-diagnostic-test-multiple-cancers-and-biomarkers (2021).

  108. Mehra, N. et al. Plasma cell-free DNA concentration and outcomes from taxane therapy in metastatic castration-resistant prostate cancer from two phase III trials (FIRSTANA and PROSELICA). Eur. Urol. 74, 283–291 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Alix-Panabieres, C. & Pantel, K. Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy. Cancer Discov. 6, 479–491 (2016).

    Article  CAS  PubMed  Google Scholar 

  110. Gupta, R. et al. Guardant360 circulating tumor DNA assay is concordant with FoundationOne next-generation sequencing in detecting actionable driver mutations in anti-EGFR naive metastatic colorectal cancer. Oncologist 25, 235–243 (2020).

    Article  CAS  PubMed  Google Scholar 

  111. Aggarwal, C. et al. Clinical implications of plasma-based genotyping with the delivery of personalized therapy in metastatic non-small cell lung cancer. JAMA Oncol. 5, 173–180 (2019).

    Article  PubMed  Google Scholar 

  112. Leighl, N. B. et al. Clinical utility of comprehensive cell-free DNA analysis to identify genomic biomarkers in patients with newly diagnosed metastatic non-small cell lung cancer. Clin. Cancer Res. 25, 4691–4700 (2019).

    Article  CAS  PubMed  Google Scholar 

  113. Clark, T. A. et al. Analytical validation of a hybrid capture-based next-generation sequencing clinical assay for genomic profiling of cell-free circulating tumor DNA. J. Mol. Diagn. 20, 686–702 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hayes, D. F. et al. Tumor marker utility grading system: a framework to evaluate clinical utility of tumor markers. J. Natl. Cancer Inst. 88, 1456–1466 (1996).

    Article  CAS  PubMed  Google Scholar 

  115. Li, G. et al. Genomic profiling of cell-free circulating tumor DNA in patients with colorectal cancer and its fidelity to the genomics of the tumor biopsy. J. Gastrointest. Oncol. 10, 831–840 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Mateo, J. et al. DNA-repair defects and olaparib in metastatic prostate cancer. N. Engl. J. Med. 373, 1697–1708 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Socinski, M. et al. Final efficacy results from B-F1RST, a prospective phase II trial evaluating blood-based tumour mutational burden (bTMB) as a predictive biomarker for atezolizumab (atezo) in 1L non-small cell lung cancer (NSCLC) [abstract LBA83]. Ann. Oncol. 30 (Suppl. 5), v919–v920 (2019).

    Article  Google Scholar 

  118. Turner, N. C. et al. Circulating tumour DNA analysis to direct therapy in advanced breast cancer (plasmaMATCH): a multicentre, multicohort, phase 2a, platform trial. Lancet Oncol. 21, 1296–1308 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Gadgeel, S. et al. Phase II/III blood first assay screening trial (BFAST) in patients (pts) with treatment-naïve NSCLC: initial results from the ALK+ cohort [abstract LBA81_PR]. Ann. Oncol. 30 (Suppl. 5), v918 (2019).

    Article  Google Scholar 

  120. Middleton, G. et al. The National Lung Matrix Trial of personalized therapy in lung cancer. Nature 583, 807–812 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Li, M. M. et al. Standards and guidelines for the interpretation and reporting of sequence variants in cancer: a joint consensus recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J. Mol. Diagn. 19, 4–23 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Remon, J. et al. Liquid biopsy in oncology: a consensus statement of the Spanish Society of Pathology and the Spanish Society of Medical Oncology. Clin. Transl Oncol. 22, 823–834 (2020).

    Article  CAS  PubMed  Google Scholar 

  123. Merker, J. D. et al. Circulating tumor DNA analysis in patients with cancer: American Society of Clinical Oncology and College of American Pathologists joint review. J. Clin. Oncol. 36, 1631–1641 (2018).

    Article  CAS  PubMed  Google Scholar 

  124. Wu, Y.-M. et al. Inactivation of CDK12 delineates a distinct immunogenic class of advanced prostate cancer. Cell 173, 1770–1782 (2018).

    Article  CAS  PubMed  Google Scholar 

  125. Chen, X. et al. Low-pass whole-genome sequencing of circulating cell-free DNA demonstrates dynamic changes in genomic copy number in a squamous lung cancer clinical cohort. Clin. Cancer Res. 25, 2254–2263 (2019).

    Article  CAS  PubMed  Google Scholar 

  126. Chaudhuri, A. A., Binkley, M. S., Osmundson, E. C., Alizadeh, A. A. & Diehn, M. Predicting radiotherapy responses and treatment outcomes through analysis of circulating tumor DNA. Semin. Radiat. Oncol. 25, 305–312 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Sumanasuriya, S. et al. Cell-free DNA as a biomarker for taxane treatment in advanced prostate cancer [abstract]. J. Clin. Oncol. 37 (Suppl. 15), 5070 (2019).

    Article  Google Scholar 

  128. Seed, G. et al. Discovery of genomic correlates and tumor purity as an independent clinical factor of poor outcome in advanced prostate cancer lpWGS CNA data [abstract]. Cancer Res. 80 (Suppl. 16), LB-270 (2020).

    Article  Google Scholar 

  129. Dawson, S. J. et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N. Engl. J. Med. 368, 1199–1209 (2013).

    Article  CAS  PubMed  Google Scholar 

  130. Remon, J. et al. Real-world utility of an amplicon-based next-generation sequencing liquid biopsy for broad molecular profiling in patients with advanced non-small-cell lung cancer. JCO Precis. Oncol. 3, PO.18.00211 (2019).

    PubMed  PubMed Central  Google Scholar 

  131. Sclafani, F. et al. KRAS and BRAF mutations in circulating tumour DNA from locally advanced rectal cancer. Sci. Rep. 8, 1445 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Perkins, G. et al. Multi-purpose utility of circulating plasma DNA testing in patients with advanced cancers. PLoS ONE 7, e47020 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zhou, C. Early clearance of plasma EGFR mutations as a predictor of response to osimertinib and comparator EGFR-TKIs in the FLAURA trial [abstract]. J. Clin. Oncol. 37 (Suppl. 15), 9020 (2020).

    Google Scholar 

  134. Thress, K. S. Complete clearance of plasma EGFR mutations as a predictor of outcome on osimertinib in the AURA trial [abstract]. J. Clin. Oncol. 35 (Suppl. 15), 9018 (2017).

    Article  Google Scholar 

  135. Zhang, Q. et al. Prognostic and predictive impact of circulating tumor DNA in patients with advanced cancers treated with immune checkpoint blockade. Cancer Discov. 10, 1842–1853 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Goldberg, S. B. et al. Early assessment of lung cancer immunotherapy response via circulating tumor DNA. Clin. Cancer Res. 24, 1872–1880 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Schiavon, G. et al. Analysis of ESR1 mutation in circulating tumor DNA demonstrates evolution during therapy for metastatic breast cancer. Sci. Transl Med. 7, 313ra182 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Condorelli, R. et al. Polyclonal RB1 mutations and acquired resistance to CDK 4/6 inhibitors in patients with metastatic breast cancer. Ann. Oncol. 29, 640–645 (2018).

    Article  CAS  PubMed  Google Scholar 

  139. Bidard, F.-C. et al. Emergence of ESR1 mutation in cell-free DNA during first line aromatase inhibitor and palbociclib: an exploratory analysis of the PADA-1 trial [abstract]. Ann. Oncol. 30 (Suppl. 5), v105–v106 (2019).

    Article  Google Scholar 

  140. Turner, N. C. et al. Genetic landscape of resistance to CDK4/6 inhibition in circulating tumor DNA (ctDNA) analysis of the PALOMA3 trial of palbociclib and fulvestrant versus placebo and fulvestrant [abstract]. J. Clin. Oncol. 36 (Suppl. 15), 1001 (2018).

    Article  Google Scholar 

  141. O’Leary, B. et al. Early circulating tumor DNA dynamics and clonal selection with palbociclib and fulvestrant for breast cancer. Nat. Commun. 9, 896 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Fribbens, C. et al. Tracking evolution of aromatase inhibitor resistance with circulating tumour DNA analysis in metastatic breast cancer. Ann. Oncol. 29, 145–153 (2017).

    Article  Google Scholar 

  143. Lin, K. K. et al. BRCA reversion mutations in circulating tumor DNA predict primary and acquired resistance to the PARP inhibitor rucaparib in high-grade ovarian carcinoma. Cancer Discov. 9, 210–219 (2019).

    Article  CAS  PubMed  Google Scholar 

  144. Khan, K. H. et al. Longitudinal liquid biopsy and mathematical modeling of clonal evolution forecast time to treatment failure in the PROSPECT-C phase II colorectal cancer clinical trial. Cancer Discov. 8, 1270–1285 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Yang, Z. et al. Investigating novel resistance mechanisms to third-generation EGFR tyrosine kinase inhibitor osimertinib in non-small cell lung cancer patients. Clin. Cancer Res. 24, 3097–3107 (2018).

    Article  CAS  PubMed  Google Scholar 

  146. Shaw, A. T. et al. ALK resistance mutations and efficacy of lorlatinib in advanced anaplastic lymphoma kinase-positive non-small-cell lung cancer. J. Clin. Oncol. 37, 1370–1379 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Kalluri, R. & LeBleu, V. S. The biology, function, and biomedical applications of exosomes. Science 367, eaau6977 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Best, M. G. et al. RNA-seq of tumor-educated platelets enables blood-based pan-cancer, multiclass, and molecular pathway cancer diagnostics. Cancer Cell 28, 666–676 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Ying, L. et al. Development of a serum miRNA panel for detection of early stage non-small cell lung cancer. Proc. Natl Acad. Sci. USA 117, 25036–25042 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kohno, T. et al. Comprehensive analysis of circulating microRNAs as predictive biomarkers for sorafenib therapy outcome in hepatocellular carcinoma. Oncol. Lett. 20, 1727–1733 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Gioffré, S. et al. Circulating microRNAs as potential predictors of anthracycline-induced troponin elevation in breast cancer patients: diverging effects of doxorubicin and epirubicin. J. Clin. Med. 9, 1418 (2020).

    Article  PubMed Central  Google Scholar 

  152. Fan, J. et al. Circulating microRNAs predict the response to anti-PD-1 therapy in non-small cell lung cancer. Genomics 112, 2063–2071 (2020).

    Article  CAS  PubMed  Google Scholar 

  153. Rontogianni, S. et al. Proteomic profiling of extracellular vesicles allows for human breast cancer subtyping. Commun. Biol. 2, 325 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Rikkert, L. G. et al. Detection of extracellular vesicles in plasma and urine of prostate cancer patients by flow cytometry and surface plasmon resonance imaging. PLoS ONE 15, e0233443 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. de Miguel Pérez, D. et al. Extracellular vesicle-miRNAs as liquid biopsy biomarkers for disease identification and prognosis in metastatic colorectal cancer patients. Sci. Rep. 10, 3974 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Olmos, D. et al. Prognostic value of blood mRNA expression signatures in castration-resistant prostate cancer: a prospective, two-stage study. Lancet Oncol. 13, 1114–1124 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Overman, M. J. et al. Use of research biopsies in clinical trials: are risks and benefits adequately discussed? J. Clin. Oncol. 31, 17–22 (2013).

    Article  PubMed  Google Scholar 

  158. Olson, E. M., Lin, N. U., Krop, I. E. & Winer, E. P. The ethical use of mandatory research biopsies. Nat. Rev. Clin. Oncol. 8, 620–625 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Hipp, S. et al. A bispecific DLL3/CD3 IgG-Like T-cell engaging antibody induces antitumor responses in small cell lung cancer. Clin. Cancer Res. 26, 5258–5268 (2020).

    Article  CAS  PubMed  Google Scholar 

  160. Puca, L. et al. Delta-like protein 3 expression and therapeutic targeting in neuroendocrine prostate cancer. Sci. Transl Med. 11, eaav0891 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

P.W. acknowledges funding from Cancer Research UK (C309/A11566 and C35696/A23187), Wellcome (212969/Z/18/Z) and the Mark Foundation and the Chordoma Foundation. J.d.B. acknowledges funding support from Cancer Research UK through The ICR Cancer Centre Grant, from an Experimental Cancer Medicines Centre grant funded by Cancer Research UK and the Department of Health to The Institute of Cancer Research and Royal Marsden, from Movember to the London Prostate Cancer Centre of Excellence programme, and from Prostate Cancer UK and the Prostate Cancer Foundation.

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contributions to each stage of the preparation of this manuscript.

Corresponding author

Correspondence to Johann de Bono.

Ethics declarations

Competing interests

M.S.M. has become an employee of AstraZeneca since this manuscript was initiated, and is a current shareholder of this company; however, this affiliation does not lead to a direct conflict of interest with the presented work. P.W. is a consultant and/or scientific advisory board member for Astex Pharmaceuticals, Black Diamond Therapeutics, CV6, NextechInvest and Storm Therapeutics, and holds stock in Black Diamond Therapeutics, Chroma Therapeutics, NextechInvest and Storm Therapeutics; he is also a former employee of AstraZeneca and a Non-Executive Director of Storm Therapeutics and the Royal Marsden NHS Trust, and is an Executive Director of the non-profit Chemical Probes Portal. P.W. has received research funding from CRT Pioneer Fund/6th Element Capital and Merck. J.d.B. has served on advisory boards for Astellas, AstraZeneca, Bayer, Boehringer Ingelheim, Daiichi, Eisai, Genentech/Roche, Genmab, GlaxoSmithKline, Janssen, Merck Serono, Merck Sharp & Dohme, Menarini Silicon Biosystems, Orion, Pfizer, Qiagen, Sanofi-Aventis, Sierra Oncology, Taiho and Vertex Pharmaceuticals. He is an employee of The Institute of Cancer Research, which has received funding or other support for his research work from Astellas, AstraZeneca, Bayer, Cellcentric, Daiichi, Genentech, Genmab, GlaxoSmithKline, Janssen, Merck Serono, Merck Sharp & Dohme, Menarini Silicon Biosystems, Orion, Pfizer, Sanofi-Aventis, Sierra Oncology, Taiho and Vertex. The Institute of Cancer Research also has a commercial interest in abiraterone, PARP inhibition in DNA repair-defective cancers and PI3K/AKT pathway inhibitors (which provide no personal income to J.d.B.). J.d.B. is named as an inventor, with no financial interest, on US patent 8,822,438. A.P. and R.S. declare no competing interests.

Additional information

Peer review information

Nature Reviews Clinical Oncology thanks J.-Y. Pierga, C. Rolfo, A. Sartore-Bianchi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, A., Shinde, R., Miralles, M.S. et al. Applications of liquid biopsy in the Pharmacological Audit Trail for anticancer drug development. Nat Rev Clin Oncol 18, 454–467 (2021). https://doi.org/10.1038/s41571-021-00489-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-021-00489-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing